- 根目录:
- drivers
- staging
- skein
- skein_block.c
/***********************************************************************
**
** Implementation of the Skein block functions.
**
** Source code author: Doug Whiting, 2008.
**
** This algorithm and source code is released to the public domain.
**
** Compile-time switches:
**
** SKEIN_USE_ASM -- set bits (256/512/1024) to select which
** versions use ASM code for block processing
** [default: use C for all block sizes]
**
************************************************************************/
#include <linux/string.h>
#include "skein_base.h"
#include "skein_block.h"
#ifndef SKEIN_USE_ASM
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
#endif
#ifndef SKEIN_LOOP
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
#endif
#define BLK_BITS (WCNT * 64) /* some useful definitions for code here */
#define KW_TWK_BASE (0)
#define KW_KEY_BASE (3)
#define ks (kw + KW_KEY_BASE)
#define ts (kw + KW_TWK_BASE)
#ifdef SKEIN_DEBUG
#define debug_save_tweak(ctx) \
{ \
ctx->h.tweak[0] = ts[0]; \
ctx->h.tweak[1] = ts[1]; \
}
#else
#define debug_save_tweak(ctx)
#endif
#if !(SKEIN_USE_ASM & 256)
#undef RCNT
#define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
#else
#define SKEIN_UNROLL_256 (0)
#endif
#if SKEIN_UNROLL_256
#if (RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
#endif
#endif
#define ROUND256(p0, p1, p2, p3, ROT, r_num) \
do { \
X##p0 += X##p1; \
X##p1 = rotl_64(X##p1, ROT##_0); \
X##p1 ^= X##p0; \
X##p2 += X##p3; \
X##p3 = rotl_64(X##p3, ROT##_1); \
X##p3 ^= X##p2; \
} while (0)
#if SKEIN_UNROLL_256 == 0
#define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
ROUND256(p0, p1, p2, p3, ROT, r_num)
#define I256(R) \
do { \
/* inject the key schedule value */ \
X0 += ks[((R) + 1) % 5]; \
X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
X3 += ks[((R) + 4) % 5] + (R) + 1; \
} while (0)
#else
/* looping version */
#define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
#define I256(R) \
do { \
/* inject the key schedule value */ \
X0 += ks[r + (R) + 0]; \
X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \
X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \
X3 += ks[r + (R) + 3] + r + (R); \
/* rotate key schedule */ \
ks[r + (R) + 4] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
} while (0)
#endif
#define R256_8_ROUNDS(R) \
do { \
R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
I256(2 * (R)); \
R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
I256(2 * (R) + 1); \
} while (0)
#define R256_UNROLL_R(NN) \
((SKEIN_UNROLL_256 == 0 && \
SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
(SKEIN_UNROLL_256 > (NN)))
#if (SKEIN_UNROLL_256 > 14)
#error "need more unrolling in skein_256_process_block"
#endif
#endif
#if !(SKEIN_USE_ASM & 512)
#undef RCNT
#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
#else
#define SKEIN_UNROLL_512 (0)
#endif
#if SKEIN_UNROLL_512
#if (RCNT % SKEIN_UNROLL_512)
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
#endif
#endif
#define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
do { \
X##p0 += X##p1; \
X##p1 = rotl_64(X##p1, ROT##_0); \
X##p1 ^= X##p0; \
X##p2 += X##p3; \
X##p3 = rotl_64(X##p3, ROT##_1); \
X##p3 ^= X##p2; \
X##p4 += X##p5; \
X##p5 = rotl_64(X##p5, ROT##_2); \
X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3); \
X##p7 ^= X##p6; \
} while (0)
#if SKEIN_UNROLL_512 == 0
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)
#define I512(R) \
do { \
/* inject the key schedule value */ \
X0 += ks[((R) + 1) % 9]; \
X1 += ks[((R) + 2) % 9]; \
X2 += ks[((R) + 3) % 9]; \
X3 += ks[((R) + 4) % 9]; \
X4 += ks[((R) + 5) % 9]; \
X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
X7 += ks[((R) + 8) % 9] + (R) + 1; \
} while (0)
#else /* looping version */
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
#define I512(R) \
do { \
/* inject the key schedule value */ \
X0 += ks[r + (R) + 0]; \
X1 += ks[r + (R) + 1]; \
X2 += ks[r + (R) + 2]; \
X3 += ks[r + (R) + 3]; \
X4 += ks[r + (R) + 4]; \
X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
X7 += ks[r + (R) + 7] + r + (R); \
/* rotate key schedule */ \
ks[r + (R) + 8] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
} while (0)
#endif /* end of looped code definitions */
#define R512_8_ROUNDS(R) /* do 8 full rounds */ \
do { \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
I512(2 * (R)); \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
I512(2 * (R) + 1); /* and key injection */ \
} while (0)
#define R512_UNROLL_R(NN) \
((SKEIN_UNROLL_512 == 0 && \
SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || \
(SKEIN_UNROLL_512 > (NN)))
#if (SKEIN_UNROLL_512 > 14)
#error "need more unrolling in skein_512_process_block"
#endif
#endif
#if !(SKEIN_USE_ASM & 1024)
#undef RCNT
#define RCNT (SKEIN_1024_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
#else
#define SKEIN_UNROLL_1024 (0)
#endif
#if (SKEIN_UNROLL_1024 != 0)
#if (RCNT % SKEIN_UNROLL_1024)
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
#endif
#endif
#define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, r_num) \
do { \
X##p0 += X##p1; \
X##p1 = rotl_64(X##p1, ROT##_0); \
X##p1 ^= X##p0; \
X##p2 += X##p3; \
X##p3 = rotl_64(X##p3, ROT##_1); \
X##p3 ^= X##p2; \
X##p4 += X##p5; \
X##p5 = rotl_64(X##p5, ROT##_2); \
X##p5 ^= X##p4; \
X##p6 += X##p7; \
X##p7 = rotl_64(X##p7, ROT##_3); \
X##p7 ^= X##p6; \
X##p8 += X##p9; \
X##p9 = rotl_64(X##p9, ROT##_4); \
X##p9 ^= X##p8; \
X##pA += X##pB; \
X##pB = rotl_64(X##pB, ROT##_5); \
X##pB ^= X##pA; \
X##pC += X##pD; \
X##pD = rotl_64(X##pD, ROT##_6); \
X##pD ^= X##pC; \
X##pE += X##pF; \
X##pF = rotl_64(X##pF, ROT##_7); \
X##pF ^= X##pE; \
} while (0)
#if SKEIN_UNROLL_1024 == 0
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
ROT, rn) \
ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, rn) \
#define I1024(R) \
do { \
/* inject the key schedule value */ \
X00 += ks[((R) + 1) % 17]; \
X01 += ks[((R) + 2) % 17]; \
X02 += ks[((R) + 3) % 17]; \
X03 += ks[((R) + 4) % 17]; \
X04 += ks[((R) + 5) % 17]; \
X05 += ks[((R) + 6) % 17]; \
X06 += ks[((R) + 7) % 17]; \
X07 += ks[((R) + 8) % 17]; \
X08 += ks[((R) + 9) % 17]; \
X09 += ks[((R) + 10) % 17]; \
X10 += ks[((R) + 11) % 17]; \
X11 += ks[((R) + 12) % 17]; \
X12 += ks[((R) + 13) % 17]; \
X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
X15 += ks[((R) + 16) % 17] + (R) + 1; \
} while (0)
#else /* looping version */
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
ROT, rn) \
ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, rn) \
#define I1024(R) \
do { \
/* inject the key schedule value */ \
X00 += ks[r + (R) + 0]; \
X01 += ks[r + (R) + 1]; \
X02 += ks[r + (R) + 2]; \
X03 += ks[r + (R) + 3]; \
X04 += ks[r + (R) + 4]; \
X05 += ks[r + (R) + 5]; \
X06 += ks[r + (R) + 6]; \
X07 += ks[r + (R) + 7]; \
X08 += ks[r + (R) + 8]; \
X09 += ks[r + (R) + 9]; \
X10 += ks[r + (R) + 10]; \
X11 += ks[r + (R) + 11]; \
X12 += ks[r + (R) + 12]; \
X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
X15 += ks[r + (R) + 15] + r + (R); \
/* rotate key schedule */ \
ks[r + (R) + 16] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
} while (0)
#endif
#define R1024_8_ROUNDS(R) \
do { \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
R1024_0, 8*(R) + 1); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
R1024_1, 8*(R) + 2); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
R1024_2, 8*(R) + 3); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
R1024_3, 8*(R) + 4); \
I1024(2*(R)); \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
R1024_4, 8*(R) + 5); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
R1024_5, 8*(R) + 6); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
R1024_6, 8*(R) + 7); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
R1024_7, 8*(R) + 8); \
I1024(2*(R)+1); \
} while (0)
#define R1024_UNROLL_R(NN) \
((SKEIN_UNROLL_1024 == 0 && \
SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) || \
(SKEIN_UNROLL_1024 > (NN)))
#if (SKEIN_UNROLL_1024 > 14)
#error "need more unrolling in Skein_1024_Process_Block"
#endif
#endif
/***************************** SKEIN_256 ******************************/
#if !(SKEIN_USE_ASM & 256)
void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
size_t blk_cnt, size_t byte_cnt_add)
{ /* do it in C */
enum {
WCNT = SKEIN_256_STATE_WORDS
};
size_t r;
#if SKEIN_UNROLL_256
/* key schedule: chaining vars + tweak + "rot"*/
u64 kw[WCNT+4+RCNT*2];
#else
/* key schedule words : chaining vars + tweak */
u64 kw[WCNT+4];
#endif
u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
X_ptr[0] = &X0;
X_ptr[1] = &X1;
X_ptr[2] = &X2;
X_ptr[3] = &X3;
#endif
skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
ts[0] = ctx->h.tweak[0];
ts[1] = ctx->h.tweak[1];
do {
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byte_cnt_add; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->x[0];
ks[1] = ctx->x[1];
ks[2] = ctx->x[2];
ks[3] = ctx->x[3];
ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
skein_get64_lsb_first(w, blk_ptr, WCNT);
debug_save_tweak(ctx);
/* do the first full key injection */
X0 = w[0] + ks[0];
X1 = w[1] + ks[1] + ts[0];
X2 = w[2] + ks[2] + ts[1];
X3 = w[3] + ks[3];
blk_ptr += SKEIN_256_BLOCK_BYTES;
/* run the rounds */
for (r = 1;
r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
R256_8_ROUNDS(0);
#if R256_UNROLL_R(1)
R256_8_ROUNDS(1);
#endif
#if R256_UNROLL_R(2)
R256_8_ROUNDS(2);
#endif
#if R256_UNROLL_R(3)
R256_8_ROUNDS(3);
#endif
#if R256_UNROLL_R(4)
R256_8_ROUNDS(4);
#endif
#if R256_UNROLL_R(5)
R256_8_ROUNDS(5);
#endif
#if R256_UNROLL_R(6)
R256_8_ROUNDS(6);
#endif
#if R256_UNROLL_R(7)
R256_8_ROUNDS(7);
#endif
#if R256_UNROLL_R(8)
R256_8_ROUNDS(8);
#endif
#if R256_UNROLL_R(9)
R256_8_ROUNDS(9);
#endif
#if R256_UNROLL_R(10)
R256_8_ROUNDS(10);
#endif
#if R256_UNROLL_R(11)
R256_8_ROUNDS(11);
#endif
#if R256_UNROLL_R(12)
R256_8_ROUNDS(12);
#endif
#if R256_UNROLL_R(13)
R256_8_ROUNDS(13);
#endif
#if R256_UNROLL_R(14)
R256_8_ROUNDS(14);
#endif
}
/* do the final "feedforward" xor, update context chaining */
ctx->x[0] = X0 ^ w[0];
ctx->x[1] = X1 ^ w[1];
ctx->x[2] = X2 ^ w[2];
ctx->x[3] = X3 ^ w[3];
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
} while (--blk_cnt);
ctx->h.tweak[0] = ts[0];
ctx->h.tweak[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t skein_256_process_block_code_size(void)
{
return ((u8 *) skein_256_process_block_code_size) -
((u8 *) skein_256_process_block);
}
unsigned int skein_256_unroll_cnt(void)
{
return SKEIN_UNROLL_256;
}
#endif
#endif
/***************************** SKEIN_512 ******************************/
#if !(SKEIN_USE_ASM & 512)
void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
size_t blk_cnt, size_t byte_cnt_add)
{ /* do it in C */
enum {
WCNT = SKEIN_512_STATE_WORDS
};
size_t r;
#if SKEIN_UNROLL_512
u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/
#else
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
X_ptr[0] = &X0;
X_ptr[1] = &X1;
X_ptr[2] = &X2;
X_ptr[3] = &X3;
X_ptr[4] = &X4;
X_ptr[5] = &X5;
X_ptr[6] = &X6;
X_ptr[7] = &X7;
#endif
skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
ts[0] = ctx->h.tweak[0];
ts[1] = ctx->h.tweak[1];
do {
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byte_cnt_add; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->x[0];
ks[1] = ctx->x[1];
ks[2] = ctx->x[2];
ks[3] = ctx->x[3];
ks[4] = ctx->x[4];
ks[5] = ctx->x[5];
ks[6] = ctx->x[6];
ks[7] = ctx->x[7];
ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
skein_get64_lsb_first(w, blk_ptr, WCNT);
debug_save_tweak(ctx);
/* do the first full key injection */
X0 = w[0] + ks[0];
X1 = w[1] + ks[1];
X2 = w[2] + ks[2];
X3 = w[3] + ks[3];
X4 = w[4] + ks[4];
X5 = w[5] + ks[5] + ts[0];
X6 = w[6] + ks[6] + ts[1];
X7 = w[7] + ks[7];
blk_ptr += SKEIN_512_BLOCK_BYTES;
/* run the rounds */
for (r = 1;
r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
R512_8_ROUNDS(0);
#if R512_UNROLL_R(1)
R512_8_ROUNDS(1);
#endif
#if R512_UNROLL_R(2)
R512_8_ROUNDS(2);
#endif
#if R512_UNROLL_R(3)
R512_8_ROUNDS(3);
#endif
#if R512_UNROLL_R(4)
R512_8_ROUNDS(4);
#endif
#if R512_UNROLL_R(5)
R512_8_ROUNDS(5);
#endif
#if R512_UNROLL_R(6)
R512_8_ROUNDS(6);
#endif
#if R512_UNROLL_R(7)
R512_8_ROUNDS(7);
#endif
#if R512_UNROLL_R(8)
R512_8_ROUNDS(8);
#endif
#if R512_UNROLL_R(9)
R512_8_ROUNDS(9);
#endif
#if R512_UNROLL_R(10)
R512_8_ROUNDS(10);
#endif
#if R512_UNROLL_R(11)
R512_8_ROUNDS(11);
#endif
#if R512_UNROLL_R(12)
R512_8_ROUNDS(12);
#endif
#if R512_UNROLL_R(13)
R512_8_ROUNDS(13);
#endif
#if R512_UNROLL_R(14)
R512_8_ROUNDS(14);
#endif
}
/* do the final "feedforward" xor, update context chaining */
ctx->x[0] = X0 ^ w[0];
ctx->x[1] = X1 ^ w[1];
ctx->x[2] = X2 ^ w[2];
ctx->x[3] = X3 ^ w[3];
ctx->x[4] = X4 ^ w[4];
ctx->x[5] = X5 ^ w[5];
ctx->x[6] = X6 ^ w[6];
ctx->x[7] = X7 ^ w[7];
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
} while (--blk_cnt);
ctx->h.tweak[0] = ts[0];
ctx->h.tweak[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t skein_512_process_block_code_size(void)
{
return ((u8 *) skein_512_process_block_code_size) -
((u8 *) skein_512_process_block);
}
unsigned int skein_512_unroll_cnt(void)
{
return SKEIN_UNROLL_512;
}
#endif
#endif
/***************************** SKEIN_1024 ******************************/
#if !(SKEIN_USE_ASM & 1024)
void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
size_t blk_cnt, size_t byte_cnt_add)
{ /* do it in C, always looping (unrolled is bigger AND slower!) */
enum {
WCNT = SKEIN_1024_STATE_WORDS
};
size_t r;
#if (SKEIN_UNROLL_1024 != 0)
u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */
#else
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
/* local copy of vars, for speed */
u64 X00, X01, X02, X03, X04, X05, X06, X07,
X08, X09, X10, X11, X12, X13, X14, X15;
u64 w[WCNT]; /* local copy of input block */
skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
ts[0] = ctx->h.tweak[0];
ts[1] = ctx->h.tweak[1];
do {
/*
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
ts[0] += byte_cnt_add; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->x[0];
ks[1] = ctx->x[1];
ks[2] = ctx->x[2];
ks[3] = ctx->x[3];
ks[4] = ctx->x[4];
ks[5] = ctx->x[5];
ks[6] = ctx->x[6];
ks[7] = ctx->x[7];
ks[8] = ctx->x[8];
ks[9] = ctx->x[9];
ks[10] = ctx->x[10];
ks[11] = ctx->x[11];
ks[12] = ctx->x[12];
ks[13] = ctx->x[13];
ks[14] = ctx->x[14];
ks[15] = ctx->x[15];
ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
skein_get64_lsb_first(w, blk_ptr, WCNT);
debug_save_tweak(ctx);
/* do the first full key injection */
X00 = w[0] + ks[0];
X01 = w[1] + ks[1];
X02 = w[2] + ks[2];
X03 = w[3] + ks[3];
X04 = w[4] + ks[4];
X05 = w[5] + ks[5];
X06 = w[6] + ks[6];
X07 = w[7] + ks[7];
X08 = w[8] + ks[8];
X09 = w[9] + ks[9];
X10 = w[10] + ks[10];
X11 = w[11] + ks[11];
X12 = w[12] + ks[12];
X13 = w[13] + ks[13] + ts[0];
X14 = w[14] + ks[14] + ts[1];
X15 = w[15] + ks[15];
for (r = 1;
r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
R1024_8_ROUNDS(0);
#if R1024_UNROLL_R(1)
R1024_8_ROUNDS(1);
#endif
#if R1024_UNROLL_R(2)
R1024_8_ROUNDS(2);
#endif
#if R1024_UNROLL_R(3)
R1024_8_ROUNDS(3);
#endif
#if R1024_UNROLL_R(4)
R1024_8_ROUNDS(4);
#endif
#if R1024_UNROLL_R(5)
R1024_8_ROUNDS(5);
#endif
#if R1024_UNROLL_R(6)
R1024_8_ROUNDS(6);
#endif
#if R1024_UNROLL_R(7)
R1024_8_ROUNDS(7);
#endif
#if R1024_UNROLL_R(8)
R1024_8_ROUNDS(8);
#endif
#if R1024_UNROLL_R(9)
R1024_8_ROUNDS(9);
#endif
#if R1024_UNROLL_R(10)
R1024_8_ROUNDS(10);
#endif
#if R1024_UNROLL_R(11)
R1024_8_ROUNDS(11);
#endif
#if R1024_UNROLL_R(12)
R1024_8_ROUNDS(12);
#endif
#if R1024_UNROLL_R(13)
R1024_8_ROUNDS(13);
#endif
#if R1024_UNROLL_R(14)
R1024_8_ROUNDS(14);
#endif
}
/* do the final "feedforward" xor, update context chaining */
ctx->x[0] = X00 ^ w[0];
ctx->x[1] = X01 ^ w[1];
ctx->x[2] = X02 ^ w[2];
ctx->x[3] = X03 ^ w[3];
ctx->x[4] = X04 ^ w[4];
ctx->x[5] = X05 ^ w[5];
ctx->x[6] = X06 ^ w[6];
ctx->x[7] = X07 ^ w[7];
ctx->x[8] = X08 ^ w[8];
ctx->x[9] = X09 ^ w[9];
ctx->x[10] = X10 ^ w[10];
ctx->x[11] = X11 ^ w[11];
ctx->x[12] = X12 ^ w[12];
ctx->x[13] = X13 ^ w[13];
ctx->x[14] = X14 ^ w[14];
ctx->x[15] = X15 ^ w[15];
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
blk_ptr += SKEIN_1024_BLOCK_BYTES;
} while (--blk_cnt);
ctx->h.tweak[0] = ts[0];
ctx->h.tweak[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t skein_1024_process_block_code_size(void)
{
return ((u8 *) skein_1024_process_block_code_size) -
((u8 *) skein_1024_process_block);
}
unsigned int skein_1024_unroll_cnt(void)
{
return SKEIN_UNROLL_1024;
}
#endif
#endif