dm-raid ======= The device-mapper RAID (dm-raid) target provides a bridge from DM to MD. It allows the MD RAID drivers to be accessed using a device-mapper interface. Mapping Table Interface ----------------------- The target is named "raid" and it accepts the following parameters: <raid_type> <#raid_params> <raid_params> \ <#raid_devs> <metadata_dev0> <dev0> [.. <metadata_devN> <devN>] <raid_type>: raid1 RAID1 mirroring raid4 RAID4 dedicated parity disk raid5_la RAID5 left asymmetric - rotating parity 0 with data continuation raid5_ra RAID5 right asymmetric - rotating parity N with data continuation raid5_ls RAID5 left symmetric - rotating parity 0 with data restart raid5_rs RAID5 right symmetric - rotating parity N with data restart raid6_zr RAID6 zero restart - rotating parity zero (left-to-right) with data restart raid6_nr RAID6 N restart - rotating parity N (right-to-left) with data restart raid6_nc RAID6 N continue - rotating parity N (right-to-left) with data continuation raid10 Various RAID10 inspired algorithms chosen by additional params - RAID10: Striped Mirrors (aka 'Striping on top of mirrors') - RAID1E: Integrated Adjacent Stripe Mirroring - RAID1E: Integrated Offset Stripe Mirroring - and other similar RAID10 variants Reference: Chapter 4 of http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf <#raid_params>: The number of parameters that follow. <raid_params> consists of Mandatory parameters: <chunk_size>: Chunk size in sectors. This parameter is often known as "stripe size". It is the only mandatory parameter and is placed first. followed by optional parameters (in any order): [sync|nosync] Force or prevent RAID initialization. [rebuild <idx>] Rebuild drive number 'idx' (first drive is 0). [daemon_sleep <ms>] Interval between runs of the bitmap daemon that clear bits. A longer interval means less bitmap I/O but resyncing after a failure is likely to take longer. [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization [write_mostly <idx>] Mark drive index 'idx' write-mostly. [max_write_behind <sectors>] See '--write-behind=' (man mdadm) [stripe_cache <sectors>] Stripe cache size (RAID 4/5/6 only) [region_size <sectors>] The region_size multiplied by the number of regions is the logical size of the array. The bitmap records the device synchronisation state for each region. [raid10_copies <# copies>] [raid10_format <near|far|offset>] These two options are used to alter the default layout of a RAID10 configuration. The number of copies is can be specified, but the default is 2. There are also three variations to how the copies are laid down - the default is "near". Near copies are what most people think of with respect to mirroring. If these options are left unspecified, or 'raid10_copies 2' and/or 'raid10_format near' are given, then the layouts for 2, 3 and 4 devices are: 2 drives 3 drives 4 drives -------- ---------- -------------- A1 A1 A1 A1 A2 A1 A1 A2 A2 A2 A2 A2 A3 A3 A3 A3 A4 A4 A3 A3 A4 A4 A5 A5 A5 A6 A6 A4 A4 A5 A6 A6 A7 A7 A8 A8 .. .. .. .. .. .. .. .. .. The 2-device layout is equivalent 2-way RAID1. The 4-device layout is what a traditional RAID10 would look like. The 3-device layout is what might be called a 'RAID1E - Integrated Adjacent Stripe Mirroring'. If 'raid10_copies 2' and 'raid10_format far', then the layouts for 2, 3 and 4 devices are: 2 drives 3 drives 4 drives -------- -------------- -------------------- A1 A2 A1 A2 A3 A1 A2 A3 A4 A3 A4 A4 A5 A6 A5 A6 A7 A8 A5 A6 A7 A8 A9 A9 A10 A11 A12 .. .. .. .. .. .. .. .. .. A2 A1 A3 A1 A2 A2 A1 A4 A3 A4 A3 A6 A4 A5 A6 A5 A8 A7 A6 A5 A9 A7 A8 A10 A9 A12 A11 .. .. .. .. .. .. .. .. .. If 'raid10_copies 2' and 'raid10_format offset', then the layouts for 2, 3 and 4 devices are: 2 drives 3 drives 4 drives -------- ------------ ----------------- A1 A2 A1 A2 A3 A1 A2 A3 A4 A2 A1 A3 A1 A2 A2 A1 A4 A3 A3 A4 A4 A5 A6 A5 A6 A7 A8 A4 A3 A6 A4 A5 A6 A5 A8 A7 A5 A6 A7 A8 A9 A9 A10 A11 A12 A6 A5 A9 A7 A8 A10 A9 A12 A11 .. .. .. .. .. .. .. .. .. Here we see layouts closely akin to 'RAID1E - Integrated Offset Stripe Mirroring'. <#raid_devs>: The number of devices composing the array. Each device consists of two entries. The first is the device containing the metadata (if any); the second is the one containing the data. If a drive has failed or is missing at creation time, a '-' can be given for both the metadata and data drives for a given position. Example Tables -------------- # RAID4 - 4 data drives, 1 parity (no metadata devices) # No metadata devices specified to hold superblock/bitmap info # Chunk size of 1MiB # (Lines separated for easy reading) 0 1960893648 raid \ raid4 1 2048 \ 5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81 # RAID4 - 4 data drives, 1 parity (with metadata devices) # Chunk size of 1MiB, force RAID initialization, # min recovery rate at 20 kiB/sec/disk 0 1960893648 raid \ raid4 4 2048 sync min_recovery_rate 20 \ 5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82 Status Output ------------- 'dmsetup table' displays the table used to construct the mapping. The optional parameters are always printed in the order listed above with "sync" or "nosync" always output ahead of the other arguments, regardless of the order used when originally loading the table. Arguments that can be repeated are ordered by value. 'dmsetup status' yields information on the state and health of the array. The output is as follows (normally a single line, but expanded here for clarity): 1: <s> <l> raid \ 2: <raid_type> <#devices> <health_chars> \ 3: <sync_ratio> <sync_action> <mismatch_cnt> Line 1 is the standard output produced by device-mapper. Line 2 & 3 are produced by the raid target and are best explained by example: 0 1960893648 raid raid4 5 AAAAA 2/490221568 init 0 Here we can see the RAID type is raid4, there are 5 devices - all of which are 'A'live, and the array is 2/490221568 complete with its initial recovery. Here is a fuller description of the individual fields: <raid_type> Same as the <raid_type> used to create the array. <health_chars> One char for each device, indicating: 'A' = alive and in-sync, 'a' = alive but not in-sync, 'D' = dead/failed. <sync_ratio> The ratio indicating how much of the array has undergone the process described by 'sync_action'. If the 'sync_action' is "check" or "repair", then the process of "resync" or "recover" can be considered complete. <sync_action> One of the following possible states: idle - No synchronization action is being performed. frozen - The current action has been halted. resync - Array is undergoing its initial synchronization or is resynchronizing after an unclean shutdown (possibly aided by a bitmap). recover - A device in the array is being rebuilt or replaced. check - A user-initiated full check of the array is being performed. All blocks are read and checked for consistency. The number of discrepancies found are recorded in <mismatch_cnt>. No changes are made to the array by this action. repair - The same as "check", but discrepancies are corrected. reshape - The array is undergoing a reshape. <mismatch_cnt> The number of discrepancies found between mirror copies in RAID1/10 or wrong parity values found in RAID4/5/6. This value is valid only after a "check" of the array is performed. A healthy array has a 'mismatch_cnt' of 0. Message Interface ----------------- The dm-raid target will accept certain actions through the 'message' interface. ('man dmsetup' for more information on the message interface.) These actions include: "idle" - Halt the current sync action. "frozen" - Freeze the current sync action. "resync" - Initiate/continue a resync. "recover"- Initiate/continue a recover process. "check" - Initiate a check (i.e. a "scrub") of the array. "repair" - Initiate a repair of the array. "reshape"- Currently unsupported (-EINVAL). Discard Support --------------- The implementation of discard support among hardware vendors varies. When a block is discarded, some storage devices will return zeroes when the block is read. These devices set the 'discard_zeroes_data' attribute. Other devices will return random data. Confusingly, some devices that advertise 'discard_zeroes_data' will not reliably return zeroes when discarded blocks are read! Since RAID 4/5/6 uses blocks from a number of devices to calculate parity blocks and (for performance reasons) relies on 'discard_zeroes_data' being reliable, it is important that the devices be consistent. Blocks may be discarded in the middle of a RAID 4/5/6 stripe and if subsequent read results are not consistent, the parity blocks may be calculated differently at any time; making the parity blocks useless for redundancy. It is important to understand how your hardware behaves with discards if you are going to enable discards with RAID 4/5/6. Since the behavior of storage devices is unreliable in this respect, even when reporting 'discard_zeroes_data', by default RAID 4/5/6 discard support is disabled -- this ensures data integrity at the expense of losing some performance. Storage devices that properly support 'discard_zeroes_data' are increasingly whitelisted in the kernel and can thus be trusted. For trusted devices, the following dm-raid module parameter can be set to safely enable discard support for RAID 4/5/6: 'devices_handle_discards_safely' Version History --------------- 1.0.0 Initial version. Support for RAID 4/5/6 1.1.0 Added support for RAID 1 1.2.0 Handle creation of arrays that contain failed devices. 1.3.0 Added support for RAID 10 1.3.1 Allow device replacement/rebuild for RAID 10 1.3.2 Fix/improve redundancy checking for RAID10 1.4.0 Non-functional change. Removes arg from mapping function. 1.4.1 RAID10 fix redundancy validation checks (commit 55ebbb5). 1.4.2 Add RAID10 "far" and "offset" algorithm support. 1.5.0 Add message interface to allow manipulation of the sync_action. New status (STATUSTYPE_INFO) fields: sync_action and mismatch_cnt. 1.5.1 Add ability to restore transiently failed devices on resume. 1.5.2 'mismatch_cnt' is zero unless [last_]sync_action is "check". 1.6.0 Add discard support (and devices_handle_discard_safely module param). 1.7.0 Add support for MD RAID0 mappings.