/* * linux/arch/arm/mach-pxa/pxa3xx.c * * code specific to pxa3xx aka Monahans * * Copyright (C) 2006 Marvell International Ltd. * * 2007-09-02: eric miao <eric.miao@marvell.com> * initial version * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/gpio-pxa.h> #include <linux/pm.h> #include <linux/platform_device.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/of.h> #include <linux/syscore_ops.h> #include <linux/i2c/pxa-i2c.h> #include <asm/mach/map.h> #include <asm/suspend.h> #include <mach/hardware.h> #include <mach/pxa3xx-regs.h> #include <mach/reset.h> #include <linux/platform_data/usb-ohci-pxa27x.h> #include <mach/pm.h> #include <mach/dma.h> #include <mach/smemc.h> #include <mach/irqs.h> #include "generic.h" #include "devices.h" #define PECR_IE(n) ((1 << ((n) * 2)) << 28) #define PECR_IS(n) ((1 << ((n) * 2)) << 29) extern void __init pxa_dt_irq_init(int (*fn)(struct irq_data *, unsigned int)); /* * NAND NFC: DFI bus arbitration subset */ #define NDCR (*(volatile u32 __iomem*)(NAND_VIRT + 0)) #define NDCR_ND_ARB_EN (1 << 12) #define NDCR_ND_ARB_CNTL (1 << 19) #ifdef CONFIG_PM #define ISRAM_START 0x5c000000 #define ISRAM_SIZE SZ_256K static void __iomem *sram; static unsigned long wakeup_src; /* * Enter a standby mode (S0D1C2 or S0D2C2). Upon wakeup, the dynamic * memory controller has to be reinitialised, so we place some code * in the SRAM to perform this function. * * We disable FIQs across the standby - otherwise, we might receive a * FIQ while the SDRAM is unavailable. */ static void pxa3xx_cpu_standby(unsigned int pwrmode) { extern const char pm_enter_standby_start[], pm_enter_standby_end[]; void (*fn)(unsigned int) = (void __force *)(sram + 0x8000); memcpy_toio(sram + 0x8000, pm_enter_standby_start, pm_enter_standby_end - pm_enter_standby_start); AD2D0SR = ~0; AD2D1SR = ~0; AD2D0ER = wakeup_src; AD2D1ER = 0; ASCR = ASCR; ARSR = ARSR; local_fiq_disable(); fn(pwrmode); local_fiq_enable(); AD2D0ER = 0; AD2D1ER = 0; } /* * NOTE: currently, the OBM (OEM Boot Module) binary comes along with * PXA3xx development kits assumes that the resuming process continues * with the address stored within the first 4 bytes of SDRAM. The PSPR * register is used privately by BootROM and OBM, and _must_ be set to * 0x5c014000 for the moment. */ static void pxa3xx_cpu_pm_suspend(void) { volatile unsigned long *p = (volatile void *)0xc0000000; unsigned long saved_data = *p; #ifndef CONFIG_IWMMXT u64 acc0; asm volatile("mra %Q0, %R0, acc0" : "=r" (acc0)); #endif extern int pxa3xx_finish_suspend(unsigned long); /* resuming from D2 requires the HSIO2/BOOT/TPM clocks enabled */ CKENA |= (1 << CKEN_BOOT) | (1 << CKEN_TPM); CKENB |= 1 << (CKEN_HSIO2 & 0x1f); /* clear and setup wakeup source */ AD3SR = ~0; AD3ER = wakeup_src; ASCR = ASCR; ARSR = ARSR; PCFR |= (1u << 13); /* L1_DIS */ PCFR &= ~((1u << 12) | (1u << 1)); /* L0_EN | SL_ROD */ PSPR = 0x5c014000; /* overwrite with the resume address */ *p = virt_to_phys(cpu_resume); cpu_suspend(0, pxa3xx_finish_suspend); *p = saved_data; AD3ER = 0; #ifndef CONFIG_IWMMXT asm volatile("mar acc0, %Q0, %R0" : "=r" (acc0)); #endif } static void pxa3xx_cpu_pm_enter(suspend_state_t state) { /* * Don't sleep if no wakeup sources are defined */ if (wakeup_src == 0) { printk(KERN_ERR "Not suspending: no wakeup sources\n"); return; } switch (state) { case PM_SUSPEND_STANDBY: pxa3xx_cpu_standby(PXA3xx_PM_S0D2C2); break; case PM_SUSPEND_MEM: pxa3xx_cpu_pm_suspend(); break; } } static int pxa3xx_cpu_pm_valid(suspend_state_t state) { return state == PM_SUSPEND_MEM || state == PM_SUSPEND_STANDBY; } static struct pxa_cpu_pm_fns pxa3xx_cpu_pm_fns = { .valid = pxa3xx_cpu_pm_valid, .enter = pxa3xx_cpu_pm_enter, }; static void __init pxa3xx_init_pm(void) { sram = ioremap(ISRAM_START, ISRAM_SIZE); if (!sram) { printk(KERN_ERR "Unable to map ISRAM: disabling standby/suspend\n"); return; } /* * Since we copy wakeup code into the SRAM, we need to ensure * that it is preserved over the low power modes. Note: bit 8 * is undocumented in the developer manual, but must be set. */ AD1R |= ADXR_L2 | ADXR_R0; AD2R |= ADXR_L2 | ADXR_R0; AD3R |= ADXR_L2 | ADXR_R0; /* * Clear the resume enable registers. */ AD1D0ER = 0; AD2D0ER = 0; AD2D1ER = 0; AD3ER = 0; pxa_cpu_pm_fns = &pxa3xx_cpu_pm_fns; } static int pxa3xx_set_wake(struct irq_data *d, unsigned int on) { unsigned long flags, mask = 0; switch (d->irq) { case IRQ_SSP3: mask = ADXER_MFP_WSSP3; break; case IRQ_MSL: mask = ADXER_WMSL0; break; case IRQ_USBH2: case IRQ_USBH1: mask = ADXER_WUSBH; break; case IRQ_KEYPAD: mask = ADXER_WKP; break; case IRQ_AC97: mask = ADXER_MFP_WAC97; break; case IRQ_USIM: mask = ADXER_WUSIM0; break; case IRQ_SSP2: mask = ADXER_MFP_WSSP2; break; case IRQ_I2C: mask = ADXER_MFP_WI2C; break; case IRQ_STUART: mask = ADXER_MFP_WUART3; break; case IRQ_BTUART: mask = ADXER_MFP_WUART2; break; case IRQ_FFUART: mask = ADXER_MFP_WUART1; break; case IRQ_MMC: mask = ADXER_MFP_WMMC1; break; case IRQ_SSP: mask = ADXER_MFP_WSSP1; break; case IRQ_RTCAlrm: mask = ADXER_WRTC; break; case IRQ_SSP4: mask = ADXER_MFP_WSSP4; break; case IRQ_TSI: mask = ADXER_WTSI; break; case IRQ_USIM2: mask = ADXER_WUSIM1; break; case IRQ_MMC2: mask = ADXER_MFP_WMMC2; break; case IRQ_NAND: mask = ADXER_MFP_WFLASH; break; case IRQ_USB2: mask = ADXER_WUSB2; break; case IRQ_WAKEUP0: mask = ADXER_WEXTWAKE0; break; case IRQ_WAKEUP1: mask = ADXER_WEXTWAKE1; break; case IRQ_MMC3: mask = ADXER_MFP_GEN12; break; default: return -EINVAL; } local_irq_save(flags); if (on) wakeup_src |= mask; else wakeup_src &= ~mask; local_irq_restore(flags); return 0; } #else static inline void pxa3xx_init_pm(void) {} #define pxa3xx_set_wake NULL #endif static void pxa_ack_ext_wakeup(struct irq_data *d) { PECR |= PECR_IS(d->irq - IRQ_WAKEUP0); } static void pxa_mask_ext_wakeup(struct irq_data *d) { pxa_mask_irq(d); PECR &= ~PECR_IE(d->irq - IRQ_WAKEUP0); } static void pxa_unmask_ext_wakeup(struct irq_data *d) { pxa_unmask_irq(d); PECR |= PECR_IE(d->irq - IRQ_WAKEUP0); } static int pxa_set_ext_wakeup_type(struct irq_data *d, unsigned int flow_type) { if (flow_type & IRQ_TYPE_EDGE_RISING) PWER |= 1 << (d->irq - IRQ_WAKEUP0); if (flow_type & IRQ_TYPE_EDGE_FALLING) PWER |= 1 << (d->irq - IRQ_WAKEUP0 + 2); return 0; } static struct irq_chip pxa_ext_wakeup_chip = { .name = "WAKEUP", .irq_ack = pxa_ack_ext_wakeup, .irq_mask = pxa_mask_ext_wakeup, .irq_unmask = pxa_unmask_ext_wakeup, .irq_set_type = pxa_set_ext_wakeup_type, }; static void __init pxa_init_ext_wakeup_irq(int (*fn)(struct irq_data *, unsigned int)) { int irq; for (irq = IRQ_WAKEUP0; irq <= IRQ_WAKEUP1; irq++) { irq_set_chip_and_handler(irq, &pxa_ext_wakeup_chip, handle_edge_irq); irq_clear_status_flags(irq, IRQ_NOREQUEST); } pxa_ext_wakeup_chip.irq_set_wake = fn; } static void __init __pxa3xx_init_irq(void) { /* enable CP6 access */ u32 value; __asm__ __volatile__("mrc p15, 0, %0, c15, c1, 0\n": "=r"(value)); value |= (1 << 6); __asm__ __volatile__("mcr p15, 0, %0, c15, c1, 0\n": :"r"(value)); pxa_init_ext_wakeup_irq(pxa3xx_set_wake); } void __init pxa3xx_init_irq(void) { __pxa3xx_init_irq(); pxa_init_irq(56, pxa3xx_set_wake); } #ifdef CONFIG_OF void __init pxa3xx_dt_init_irq(void) { __pxa3xx_init_irq(); pxa_dt_irq_init(pxa3xx_set_wake); } #endif /* CONFIG_OF */ static struct map_desc pxa3xx_io_desc[] __initdata = { { /* Mem Ctl */ .virtual = (unsigned long)SMEMC_VIRT, .pfn = __phys_to_pfn(PXA3XX_SMEMC_BASE), .length = SMEMC_SIZE, .type = MT_DEVICE }, { .virtual = (unsigned long)NAND_VIRT, .pfn = __phys_to_pfn(NAND_PHYS), .length = NAND_SIZE, .type = MT_DEVICE }, }; void __init pxa3xx_map_io(void) { pxa_map_io(); iotable_init(ARRAY_AND_SIZE(pxa3xx_io_desc)); pxa3xx_get_clk_frequency_khz(1); } /* * device registration specific to PXA3xx. */ void __init pxa3xx_set_i2c_power_info(struct i2c_pxa_platform_data *info) { pxa_register_device(&pxa3xx_device_i2c_power, info); } static struct pxa_gpio_platform_data pxa3xx_gpio_pdata = { .irq_base = PXA_GPIO_TO_IRQ(0), }; static struct platform_device *devices[] __initdata = { &pxa27x_device_udc, &pxa_device_pmu, &pxa_device_i2s, &pxa_device_asoc_ssp1, &pxa_device_asoc_ssp2, &pxa_device_asoc_ssp3, &pxa_device_asoc_ssp4, &pxa_device_asoc_platform, &pxa_device_rtc, &pxa3xx_device_ssp1, &pxa3xx_device_ssp2, &pxa3xx_device_ssp3, &pxa3xx_device_ssp4, &pxa27x_device_pwm0, &pxa27x_device_pwm1, }; static int __init pxa3xx_init(void) { int ret = 0; if (cpu_is_pxa3xx()) { reset_status = ARSR; /* * clear RDH bit every time after reset * * Note: the last 3 bits DxS are write-1-to-clear so carefully * preserve them here in case they will be referenced later */ ASCR &= ~(ASCR_RDH | ASCR_D1S | ASCR_D2S | ASCR_D3S); /* * Disable DFI bus arbitration, to prevent a system bus lock if * somebody disables the NAND clock (unused clock) while this * bit remains set. */ NDCR = (NDCR & ~NDCR_ND_ARB_EN) | NDCR_ND_ARB_CNTL; if ((ret = pxa_init_dma(IRQ_DMA, 32))) return ret; pxa3xx_init_pm(); register_syscore_ops(&pxa_irq_syscore_ops); register_syscore_ops(&pxa3xx_mfp_syscore_ops); if (of_have_populated_dt()) return 0; pxa2xx_set_dmac_info(32); ret = platform_add_devices(devices, ARRAY_SIZE(devices)); if (ret) return ret; if (cpu_is_pxa300() || cpu_is_pxa310() || cpu_is_pxa320()) { platform_device_add_data(&pxa3xx_device_gpio, &pxa3xx_gpio_pdata, sizeof(pxa3xx_gpio_pdata)); ret = platform_device_register(&pxa3xx_device_gpio); } } return ret; } postcore_initcall(pxa3xx_init);