/* * linux/arch/arm/mm/nommu.c * * ARM uCLinux supporting functions. */ #include <linux/module.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/io.h> #include <linux/memblock.h> #include <linux/kernel.h> #include <asm/cacheflush.h> #include <asm/sections.h> #include <asm/page.h> #include <asm/setup.h> #include <asm/traps.h> #include <asm/mach/arch.h> #include <asm/cputype.h> #include <asm/mpu.h> #include <asm/procinfo.h> #include "mm.h" #ifdef CONFIG_ARM_MPU struct mpu_rgn_info mpu_rgn_info; /* Region number */ static void rgnr_write(u32 v) { asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v)); } /* Data-side / unified region attributes */ /* Region access control register */ static void dracr_write(u32 v) { asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v)); } /* Region size register */ static void drsr_write(u32 v) { asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v)); } /* Region base address register */ static void drbar_write(u32 v) { asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v)); } static u32 drbar_read(void) { u32 v; asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v)); return v; } /* Optional instruction-side region attributes */ /* I-side Region access control register */ static void iracr_write(u32 v) { asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v)); } /* I-side Region size register */ static void irsr_write(u32 v) { asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v)); } /* I-side Region base address register */ static void irbar_write(u32 v) { asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v)); } static unsigned long irbar_read(void) { unsigned long v; asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v)); return v; } /* MPU initialisation functions */ void __init sanity_check_meminfo_mpu(void) { int i; phys_addr_t phys_offset = PHYS_OFFSET; phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size; struct memblock_region *reg; bool first = true; phys_addr_t mem_start; phys_addr_t mem_end; for_each_memblock(memory, reg) { if (first) { /* * Initially only use memory continuous from * PHYS_OFFSET */ if (reg->base != phys_offset) panic("First memory bank must be contiguous from PHYS_OFFSET"); mem_start = reg->base; mem_end = reg->base + reg->size; specified_mem_size = reg->size; first = false; } else { /* * memblock auto merges contiguous blocks, remove * all blocks afterwards */ pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n", &mem_start, ®->base); memblock_remove(reg->base, reg->size); } } /* * MPU has curious alignment requirements: Size must be power of 2, and * region start must be aligned to the region size */ if (phys_offset != 0) pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n"); /* * Maximum aligned region might overflow phys_addr_t if phys_offset is * 0. Hence we keep everything below 4G until we take the smaller of * the aligned_region_size and rounded_mem_size, one of which is * guaranteed to be smaller than the maximum physical address. */ aligned_region_size = (phys_offset - 1) ^ (phys_offset); /* Find the max power-of-two sized region that fits inside our bank */ rounded_mem_size = (1 << __fls(specified_mem_size)) - 1; /* The actual region size is the smaller of the two */ aligned_region_size = aligned_region_size < rounded_mem_size ? aligned_region_size + 1 : rounded_mem_size + 1; if (aligned_region_size != specified_mem_size) { pr_warn("Truncating memory from %pa to %pa (MPU region constraints)", &specified_mem_size, &aligned_region_size); memblock_remove(mem_start + aligned_region_size, specified_mem_size - aligned_round_size); mem_end = mem_start + aligned_region_size; } pr_debug("MPU Region from %pa size %pa (end %pa))\n", &phys_offset, &aligned_region_size, &mem_end); } static int mpu_present(void) { return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); } static int mpu_max_regions(void) { /* * We don't support a different number of I/D side regions so if we * have separate instruction and data memory maps then return * whichever side has a smaller number of supported regions. */ u32 dregions, iregions, mpuir; mpuir = read_cpuid(CPUID_MPUIR); dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; /* Check for separate d-side and i-side memory maps */ if (mpuir & MPUIR_nU) iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; /* Use the smallest of the two maxima */ return min(dregions, iregions); } static int mpu_iside_independent(void) { /* MPUIR.nU specifies whether there is *not* a unified memory map */ return read_cpuid(CPUID_MPUIR) & MPUIR_nU; } static int mpu_min_region_order(void) { u32 drbar_result, irbar_result; /* We've kept a region free for this probing */ rgnr_write(MPU_PROBE_REGION); isb(); /* * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum * region order */ drbar_write(0xFFFFFFFC); drbar_result = irbar_result = drbar_read(); drbar_write(0x0); /* If the MPU is non-unified, we use the larger of the two minima*/ if (mpu_iside_independent()) { irbar_write(0xFFFFFFFC); irbar_result = irbar_read(); irbar_write(0x0); } isb(); /* Ensure that MPU region operations have completed */ /* Return whichever result is larger */ return __ffs(max(drbar_result, irbar_result)); } static int mpu_setup_region(unsigned int number, phys_addr_t start, unsigned int size_order, unsigned int properties) { u32 size_data; /* We kept a region free for probing resolution of MPU regions*/ if (number > mpu_max_regions() || number == MPU_PROBE_REGION) return -ENOENT; if (size_order > 32) return -ENOMEM; if (size_order < mpu_min_region_order()) return -ENOMEM; /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */ size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; dsb(); /* Ensure all previous data accesses occur with old mappings */ rgnr_write(number); isb(); drbar_write(start); dracr_write(properties); isb(); /* Propagate properties before enabling region */ drsr_write(size_data); /* Check for independent I-side registers */ if (mpu_iside_independent()) { irbar_write(start); iracr_write(properties); isb(); irsr_write(size_data); } isb(); /* Store region info (we treat i/d side the same, so only store d) */ mpu_rgn_info.rgns[number].dracr = properties; mpu_rgn_info.rgns[number].drbar = start; mpu_rgn_info.rgns[number].drsr = size_data; return 0; } /* * Set up default MPU regions, doing nothing if there is no MPU */ void __init mpu_setup(void) { int region_err; if (!mpu_present()) return; region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET, ilog2(meminfo.bank[0].size), MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL); if (region_err) { panic("MPU region initialization failure! %d", region_err); } else { pr_info("Using ARMv7 PMSA Compliant MPU. " "Region independence: %s, Max regions: %d\n", mpu_iside_independent() ? "Yes" : "No", mpu_max_regions()); } } #else static void sanity_check_meminfo_mpu(void) {} static void __init mpu_setup(void) {} #endif /* CONFIG_ARM_MPU */ void __init arm_mm_memblock_reserve(void) { #ifndef CONFIG_CPU_V7M /* * Register the exception vector page. * some architectures which the DRAM is the exception vector to trap, * alloc_page breaks with error, although it is not NULL, but "0." */ memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE); #else /* ifndef CONFIG_CPU_V7M */ /* * There is no dedicated vector page on V7-M. So nothing needs to be * reserved here. */ #endif } void __init sanity_check_meminfo(void) { phys_addr_t end; sanity_check_meminfo_mpu(); end = memblock_end_of_DRAM(); high_memory = __va(end - 1) + 1; memblock_set_current_limit(end); } /* * paging_init() sets up the page tables, initialises the zone memory * maps, and sets up the zero page, bad page and bad page tables. */ void __init paging_init(const struct machine_desc *mdesc) { early_trap_init((void *)CONFIG_VECTORS_BASE); mpu_setup(); bootmem_init(); } /* * We don't need to do anything here for nommu machines. */ void setup_mm_for_reboot(void) { } void flush_dcache_page(struct page *page) { __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); } EXPORT_SYMBOL(flush_dcache_page); void flush_kernel_dcache_page(struct page *page) { __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); } EXPORT_SYMBOL(flush_kernel_dcache_page); void copy_to_user_page(struct vm_area_struct *vma, struct page *page, unsigned long uaddr, void *dst, const void *src, unsigned long len) { memcpy(dst, src, len); if (vma->vm_flags & VM_EXEC) __cpuc_coherent_user_range(uaddr, uaddr + len); } void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size, unsigned int mtype) { if (pfn >= (0x100000000ULL >> PAGE_SHIFT)) return NULL; return (void __iomem *) (offset + (pfn << PAGE_SHIFT)); } EXPORT_SYMBOL(__arm_ioremap_pfn); void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, unsigned int mtype, void *caller) { return (void __iomem *)phys_addr; } void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); void __iomem *ioremap(resource_size_t res_cookie, size_t size) { return __arm_ioremap_caller(res_cookie, size, MT_DEVICE, __builtin_return_address(0)); } EXPORT_SYMBOL(ioremap); void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size) { return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED, __builtin_return_address(0)); } EXPORT_SYMBOL(ioremap_cache); void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size) { return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC, __builtin_return_address(0)); } EXPORT_SYMBOL(ioremap_wc); void __iounmap(volatile void __iomem *addr) { } EXPORT_SYMBOL(__iounmap); void (*arch_iounmap)(volatile void __iomem *); void iounmap(volatile void __iomem *addr) { } EXPORT_SYMBOL(iounmap);