/* * Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies * * This file contains the architecture-dependent parts of process handling. * */ #include <linux/errno.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/user.h> #include <linux/reboot.h> #include <linux/elfcore.h> #include <linux/fs.h> #include <linux/tick.h> #include <linux/slab.h> #include <linux/mman.h> #include <linux/pm.h> #include <linux/syscalls.h> #include <linux/uaccess.h> #include <linux/smp.h> #include <asm/core_reg.h> #include <asm/user_gateway.h> #include <asm/tcm.h> #include <asm/traps.h> #include <asm/switch_to.h> /* * Wait for the next interrupt and enable local interrupts */ void arch_cpu_idle(void) { int tmp; /* * Quickly jump straight into the interrupt entry point without actually * triggering an interrupt. When TXSTATI gets read the processor will * block until an interrupt is triggered. */ asm volatile (/* Switch into ISTAT mode */ "RTH\n\t" /* Enable local interrupts */ "MOV TXMASKI, %1\n\t" /* * We can't directly "SWAP PC, PCX", so we swap via a * temporary. Essentially we do: * PCX_new = 1f (the place to continue execution) * PC = PCX_old */ "ADD %0, CPC0, #(1f-.)\n\t" "SWAP PCX, %0\n\t" "MOV PC, %0\n" /* Continue execution here with interrupts enabled */ "1:" : "=a" (tmp) : "r" (get_trigger_mask())); } #ifdef CONFIG_HOTPLUG_CPU void arch_cpu_idle_dead(void) { cpu_die(); } #endif void (*pm_power_off)(void); EXPORT_SYMBOL(pm_power_off); void (*soc_restart)(char *cmd); void (*soc_halt)(void); void machine_restart(char *cmd) { if (soc_restart) soc_restart(cmd); hard_processor_halt(HALT_OK); } void machine_halt(void) { if (soc_halt) soc_halt(); smp_send_stop(); hard_processor_halt(HALT_OK); } void machine_power_off(void) { if (pm_power_off) pm_power_off(); smp_send_stop(); hard_processor_halt(HALT_OK); } #define FLAG_Z 0x8 #define FLAG_N 0x4 #define FLAG_O 0x2 #define FLAG_C 0x1 void show_regs(struct pt_regs *regs) { int i; const char *AX0_names[] = {"A0StP", "A0FrP"}; const char *AX1_names[] = {"A1GbP", "A1LbP"}; const char *DX0_names[] = { "D0Re0", "D0Ar6", "D0Ar4", "D0Ar2", "D0FrT", "D0.5 ", "D0.6 ", "D0.7 " }; const char *DX1_names[] = { "D1Re0", "D1Ar5", "D1Ar3", "D1Ar1", "D1RtP", "D1.5 ", "D1.6 ", "D1.7 " }; show_regs_print_info(KERN_INFO); pr_info(" pt_regs @ %p\n", regs); pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask); pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags, regs->ctx.Flags & FLAG_Z ? 'Z' : 'z', regs->ctx.Flags & FLAG_N ? 'N' : 'n', regs->ctx.Flags & FLAG_O ? 'O' : 'o', regs->ctx.Flags & FLAG_C ? 'C' : 'c'); pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT); pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC); /* AX regs */ for (i = 0; i < 2; i++) { pr_info(" %s = 0x%08x ", AX0_names[i], regs->ctx.AX[i].U0); printk(" %s = 0x%08x\n", AX1_names[i], regs->ctx.AX[i].U1); } if (regs->ctx.SaveMask & TBICTX_XEXT_BIT) pr_warn(" Extended state present - AX2.[01] will be WRONG\n"); /* Special place with AXx.2 */ pr_info(" A0.2 = 0x%08x ", regs->ctx.Ext.AX2.U0); printk(" A1.2 = 0x%08x\n", regs->ctx.Ext.AX2.U1); /* 'extended' AX regs (nominally, just AXx.3) */ for (i = 0; i < (TBICTX_AX_REGS - 3); i++) { pr_info(" A0.%d = 0x%08x ", i + 3, regs->ctx.AX3[i].U0); printk(" A1.%d = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1); } for (i = 0; i < 8; i++) { pr_info(" %s = 0x%08x ", DX0_names[i], regs->ctx.DX[i].U0); printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1); } show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs); } /* * Copy architecture-specific thread state */ int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long kthread_arg, struct task_struct *tsk) { struct pt_regs *childregs = task_pt_regs(tsk); void *kernel_context = ((void *) childregs + sizeof(struct pt_regs)); unsigned long global_base; BUG_ON(((unsigned long)childregs) & 0x7); BUG_ON(((unsigned long)kernel_context) & 0x7); memset(&tsk->thread.kernel_context, 0, sizeof(tsk->thread.kernel_context)); tsk->thread.kernel_context = __TBISwitchInit(kernel_context, ret_from_fork, 0, 0); if (unlikely(tsk->flags & PF_KTHREAD)) { /* * Make sure we don't leak any kernel data to child's regs * if kernel thread becomes a userspace thread in the future */ memset(childregs, 0 , sizeof(struct pt_regs)); global_base = __core_reg_get(A1GbP); childregs->ctx.AX[0].U1 = (unsigned long) global_base; childregs->ctx.AX[0].U0 = (unsigned long) kernel_context; /* Set D1Ar1=kthread_arg and D1RtP=usp (fn) */ childregs->ctx.DX[4].U1 = usp; childregs->ctx.DX[3].U1 = kthread_arg; tsk->thread.int_depth = 2; return 0; } /* * Get a pointer to where the new child's register block should have * been pushed. * The Meta's stack grows upwards, and the context is the the first * thing to be pushed by TBX (phew) */ *childregs = *current_pt_regs(); /* Set the correct stack for the clone mode */ if (usp) childregs->ctx.AX[0].U0 = ALIGN(usp, 8); tsk->thread.int_depth = 1; /* set return value for child process */ childregs->ctx.DX[0].U0 = 0; /* The TLS pointer is passed as an argument to sys_clone. */ if (clone_flags & CLONE_SETTLS) tsk->thread.tls_ptr = (__force void __user *)childregs->ctx.DX[1].U1; #ifdef CONFIG_METAG_FPU if (tsk->thread.fpu_context) { struct meta_fpu_context *ctx; ctx = kmemdup(tsk->thread.fpu_context, sizeof(struct meta_fpu_context), GFP_ATOMIC); tsk->thread.fpu_context = ctx; } #endif #ifdef CONFIG_METAG_DSP if (tsk->thread.dsp_context) { struct meta_ext_context *ctx; int i; ctx = kmemdup(tsk->thread.dsp_context, sizeof(struct meta_ext_context), GFP_ATOMIC); for (i = 0; i < 2; i++) ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i], GFP_ATOMIC); tsk->thread.dsp_context = ctx; } #endif return 0; } #ifdef CONFIG_METAG_FPU static void alloc_fpu_context(struct thread_struct *thread) { thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context), GFP_ATOMIC); } static void clear_fpu(struct thread_struct *thread) { thread->user_flags &= ~TBICTX_FPAC_BIT; kfree(thread->fpu_context); thread->fpu_context = NULL; } #else static void clear_fpu(struct thread_struct *thread) { } #endif #ifdef CONFIG_METAG_DSP static void clear_dsp(struct thread_struct *thread) { if (thread->dsp_context) { kfree(thread->dsp_context->ram[0]); kfree(thread->dsp_context->ram[1]); kfree(thread->dsp_context); thread->dsp_context = NULL; } __core_reg_set(D0.8, 0); } #else static void clear_dsp(struct thread_struct *thread) { } #endif struct task_struct *__sched __switch_to(struct task_struct *prev, struct task_struct *next) { TBIRES to, from; to.Switch.pCtx = next->thread.kernel_context; to.Switch.pPara = prev; #ifdef CONFIG_METAG_FPU if (prev->thread.user_flags & TBICTX_FPAC_BIT) { struct pt_regs *regs = task_pt_regs(prev); TBIRES state; state.Sig.SaveMask = prev->thread.user_flags; state.Sig.pCtx = ®s->ctx; if (!prev->thread.fpu_context) alloc_fpu_context(&prev->thread); if (prev->thread.fpu_context) __TBICtxFPUSave(state, prev->thread.fpu_context); } /* * Force a restore of the FPU context next time this process is * scheduled. */ if (prev->thread.fpu_context) prev->thread.fpu_context->needs_restore = true; #endif from = __TBISwitch(to, &prev->thread.kernel_context); /* Restore TLS pointer for this process. */ set_gateway_tls(current->thread.tls_ptr); return (struct task_struct *) from.Switch.pPara; } void flush_thread(void) { clear_fpu(¤t->thread); clear_dsp(¤t->thread); } /* * Free current thread data structures etc. */ void exit_thread(void) { clear_fpu(¤t->thread); clear_dsp(¤t->thread); } /* TODO: figure out how to unwind the kernel stack here to figure out * where we went to sleep. */ unsigned long get_wchan(struct task_struct *p) { return 0; } int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu) { /* Returning 0 indicates that the FPU state was not stored (as it was * not in use) */ return 0; } #ifdef CONFIG_METAG_USER_TCM #define ELF_MIN_ALIGN PAGE_SIZE #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) unsigned long __metag_elf_map(struct file *filep, unsigned long addr, struct elf_phdr *eppnt, int prot, int type, unsigned long total_size) { unsigned long map_addr, size; unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr); unsigned long raw_size = eppnt->p_filesz + page_off; unsigned long off = eppnt->p_offset - page_off; unsigned int tcm_tag; addr = ELF_PAGESTART(addr); size = ELF_PAGEALIGN(raw_size); /* mmap() will return -EINVAL if given a zero size, but a * segment with zero filesize is perfectly valid */ if (!size) return addr; tcm_tag = tcm_lookup_tag(addr); if (tcm_tag != TCM_INVALID_TAG) type &= ~MAP_FIXED; /* * total_size is the size of the ELF (interpreter) image. * The _first_ mmap needs to know the full size, otherwise * randomization might put this image into an overlapping * position with the ELF binary image. (since size < total_size) * So we first map the 'big' image - and unmap the remainder at * the end. (which unmap is needed for ELF images with holes.) */ if (total_size) { total_size = ELF_PAGEALIGN(total_size); map_addr = vm_mmap(filep, addr, total_size, prot, type, off); if (!BAD_ADDR(map_addr)) vm_munmap(map_addr+size, total_size-size); } else map_addr = vm_mmap(filep, addr, size, prot, type, off); if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) { struct tcm_allocation *tcm; unsigned long tcm_addr; tcm = kmalloc(sizeof(*tcm), GFP_KERNEL); if (!tcm) return -ENOMEM; tcm_addr = tcm_alloc(tcm_tag, raw_size); if (tcm_addr != addr) { kfree(tcm); return -ENOMEM; } tcm->tag = tcm_tag; tcm->addr = tcm_addr; tcm->size = raw_size; list_add(&tcm->list, ¤t->mm->context.tcm); eppnt->p_vaddr = map_addr; if (copy_from_user((void *) addr, (void __user *) map_addr, raw_size)) return -EFAULT; } return map_addr; } #endif