/* * Copyright (C) 2013 Imagination Technologies * Author: Paul Burton <paul.burton@imgtec.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/delay.h> #include <linux/io.h> #include <linux/irqchip/mips-gic.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/types.h> #include <asm/bcache.h> #include <asm/mips-cm.h> #include <asm/mips-cpc.h> #include <asm/mips_mt.h> #include <asm/mipsregs.h> #include <asm/pm-cps.h> #include <asm/r4kcache.h> #include <asm/smp-cps.h> #include <asm/time.h> #include <asm/uasm.h> static DECLARE_BITMAP(core_power, NR_CPUS); struct core_boot_config *mips_cps_core_bootcfg; static unsigned core_vpe_count(unsigned core) { unsigned cfg; if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt) return 1; mips_cm_lock_other(core, 0); cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK; mips_cm_unlock_other(); return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1; } static void __init cps_smp_setup(void) { unsigned int ncores, nvpes, core_vpes; int c, v; /* Detect & record VPE topology */ ncores = mips_cm_numcores(); pr_info("VPE topology "); for (c = nvpes = 0; c < ncores; c++) { core_vpes = core_vpe_count(c); pr_cont("%c%u", c ? ',' : '{', core_vpes); /* Use the number of VPEs in core 0 for smp_num_siblings */ if (!c) smp_num_siblings = core_vpes; for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) { cpu_data[nvpes + v].core = c; #ifdef CONFIG_MIPS_MT_SMP cpu_data[nvpes + v].vpe_id = v; #endif } nvpes += core_vpes; } pr_cont("} total %u\n", nvpes); /* Indicate present CPUs (CPU being synonymous with VPE) */ for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) { set_cpu_possible(v, true); set_cpu_present(v, true); __cpu_number_map[v] = v; __cpu_logical_map[v] = v; } /* Set a coherent default CCA (CWB) */ change_c0_config(CONF_CM_CMASK, 0x5); /* Core 0 is powered up (we're running on it) */ bitmap_set(core_power, 0, 1); /* Initialise core 0 */ mips_cps_core_init(); /* Make core 0 coherent with everything */ write_gcr_cl_coherence(0xff); #ifdef CONFIG_MIPS_MT_FPAFF /* If we have an FPU, enroll ourselves in the FPU-full mask */ if (cpu_has_fpu) cpumask_set_cpu(0, &mt_fpu_cpumask); #endif /* CONFIG_MIPS_MT_FPAFF */ } static void __init cps_prepare_cpus(unsigned int max_cpus) { unsigned ncores, core_vpes, c, cca; bool cca_unsuitable; u32 *entry_code; mips_mt_set_cpuoptions(); /* Detect whether the CCA is unsuited to multi-core SMP */ cca = read_c0_config() & CONF_CM_CMASK; switch (cca) { case 0x4: /* CWBE */ case 0x5: /* CWB */ /* The CCA is coherent, multi-core is fine */ cca_unsuitable = false; break; default: /* CCA is not coherent, multi-core is not usable */ cca_unsuitable = true; } /* Warn the user if the CCA prevents multi-core */ ncores = mips_cm_numcores(); if (cca_unsuitable && ncores > 1) { pr_warn("Using only one core due to unsuitable CCA 0x%x\n", cca); for_each_present_cpu(c) { if (cpu_data[c].core) set_cpu_present(c, false); } } /* * Patch the start of mips_cps_core_entry to provide: * * s0 = kseg0 CCA */ entry_code = (u32 *)&mips_cps_core_entry; uasm_i_addiu(&entry_code, 16, 0, cca); blast_dcache_range((unsigned long)&mips_cps_core_entry, (unsigned long)entry_code); bc_wback_inv((unsigned long)&mips_cps_core_entry, (void *)entry_code - (void *)&mips_cps_core_entry); __sync(); /* Allocate core boot configuration structs */ mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg), GFP_KERNEL); if (!mips_cps_core_bootcfg) { pr_err("Failed to allocate boot config for %u cores\n", ncores); goto err_out; } /* Allocate VPE boot configuration structs */ for (c = 0; c < ncores; c++) { core_vpes = core_vpe_count(c); mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes, sizeof(*mips_cps_core_bootcfg[c].vpe_config), GFP_KERNEL); if (!mips_cps_core_bootcfg[c].vpe_config) { pr_err("Failed to allocate %u VPE boot configs\n", core_vpes); goto err_out; } } /* Mark this CPU as booted */ atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask, 1 << cpu_vpe_id(¤t_cpu_data)); return; err_out: /* Clean up allocations */ if (mips_cps_core_bootcfg) { for (c = 0; c < ncores; c++) kfree(mips_cps_core_bootcfg[c].vpe_config); kfree(mips_cps_core_bootcfg); mips_cps_core_bootcfg = NULL; } /* Effectively disable SMP by declaring CPUs not present */ for_each_possible_cpu(c) { if (c == 0) continue; set_cpu_present(c, false); } } static void boot_core(unsigned core) { u32 access, stat, seq_state; unsigned timeout; /* Select the appropriate core */ mips_cm_lock_other(core, 0); /* Set its reset vector */ write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry)); /* Ensure its coherency is disabled */ write_gcr_co_coherence(0); /* Ensure the core can access the GCRs */ access = read_gcr_access(); access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core); write_gcr_access(access); if (mips_cpc_present()) { /* Reset the core */ mips_cpc_lock_other(core); write_cpc_co_cmd(CPC_Cx_CMD_RESET); timeout = 100; while (true) { stat = read_cpc_co_stat_conf(); seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK; /* U6 == coherent execution, ie. the core is up */ if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6) break; /* Delay a little while before we start warning */ if (timeout) { timeout--; mdelay(10); continue; } pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n", core, stat); mdelay(1000); } mips_cpc_unlock_other(); } else { /* Take the core out of reset */ write_gcr_co_reset_release(0); } mips_cm_unlock_other(); /* The core is now powered up */ bitmap_set(core_power, core, 1); } static void remote_vpe_boot(void *dummy) { mips_cps_boot_vpes(); } static void cps_boot_secondary(int cpu, struct task_struct *idle) { unsigned core = cpu_data[cpu].core; unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id]; unsigned int remote; int err; vpe_cfg->pc = (unsigned long)&smp_bootstrap; vpe_cfg->sp = __KSTK_TOS(idle); vpe_cfg->gp = (unsigned long)task_thread_info(idle); atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask); preempt_disable(); if (!test_bit(core, core_power)) { /* Boot a VPE on a powered down core */ boot_core(core); goto out; } if (core != current_cpu_data.core) { /* Boot a VPE on another powered up core */ for (remote = 0; remote < NR_CPUS; remote++) { if (cpu_data[remote].core != core) continue; if (cpu_online(remote)) break; } BUG_ON(remote >= NR_CPUS); err = smp_call_function_single(remote, remote_vpe_boot, NULL, 1); if (err) panic("Failed to call remote CPU\n"); goto out; } BUG_ON(!cpu_has_mipsmt); /* Boot a VPE on this core */ mips_cps_boot_vpes(); out: preempt_enable(); } static void cps_init_secondary(void) { /* Disable MT - we only want to run 1 TC per VPE */ if (cpu_has_mipsmt) dmt(); change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 | STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7); } static void cps_smp_finish(void) { write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ)); #ifdef CONFIG_MIPS_MT_FPAFF /* If we have an FPU, enroll ourselves in the FPU-full mask */ if (cpu_has_fpu) cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask); #endif /* CONFIG_MIPS_MT_FPAFF */ local_irq_enable(); } #ifdef CONFIG_HOTPLUG_CPU static int cps_cpu_disable(void) { unsigned cpu = smp_processor_id(); struct core_boot_config *core_cfg; if (!cpu) return -EBUSY; if (!cps_pm_support_state(CPS_PM_POWER_GATED)) return -EINVAL; core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core]; atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask); smp_mb__after_atomic(); set_cpu_online(cpu, false); cpumask_clear_cpu(cpu, &cpu_callin_map); return 0; } static DECLARE_COMPLETION(cpu_death_chosen); static unsigned cpu_death_sibling; static enum { CPU_DEATH_HALT, CPU_DEATH_POWER, } cpu_death; void play_dead(void) { unsigned cpu, core; local_irq_disable(); idle_task_exit(); cpu = smp_processor_id(); cpu_death = CPU_DEATH_POWER; if (cpu_has_mipsmt) { core = cpu_data[cpu].core; /* Look for another online VPE within the core */ for_each_online_cpu(cpu_death_sibling) { if (cpu_data[cpu_death_sibling].core != core) continue; /* * There is an online VPE within the core. Just halt * this TC and leave the core alone. */ cpu_death = CPU_DEATH_HALT; break; } } /* This CPU has chosen its way out */ complete(&cpu_death_chosen); if (cpu_death == CPU_DEATH_HALT) { /* Halt this TC */ write_c0_tchalt(TCHALT_H); instruction_hazard(); } else { /* Power down the core */ cps_pm_enter_state(CPS_PM_POWER_GATED); } /* This should never be reached */ panic("Failed to offline CPU %u", cpu); } static void wait_for_sibling_halt(void *ptr_cpu) { unsigned cpu = (unsigned long)ptr_cpu; unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); unsigned halted; unsigned long flags; do { local_irq_save(flags); settc(vpe_id); halted = read_tc_c0_tchalt(); local_irq_restore(flags); } while (!(halted & TCHALT_H)); } static void cps_cpu_die(unsigned int cpu) { unsigned core = cpu_data[cpu].core; unsigned stat; int err; /* Wait for the cpu to choose its way out */ if (!wait_for_completion_timeout(&cpu_death_chosen, msecs_to_jiffies(5000))) { pr_err("CPU%u: didn't offline\n", cpu); return; } /* * Now wait for the CPU to actually offline. Without doing this that * offlining may race with one or more of: * * - Onlining the CPU again. * - Powering down the core if another VPE within it is offlined. * - A sibling VPE entering a non-coherent state. * * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing * with which we could race, so do nothing. */ if (cpu_death == CPU_DEATH_POWER) { /* * Wait for the core to enter a powered down or clock gated * state, the latter happening when a JTAG probe is connected * in which case the CPC will refuse to power down the core. */ do { mips_cpc_lock_other(core); stat = read_cpc_co_stat_conf(); stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK; mips_cpc_unlock_other(); } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 && stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 && stat != CPC_Cx_STAT_CONF_SEQSTATE_U2); /* Indicate the core is powered off */ bitmap_clear(core_power, core, 1); } else if (cpu_has_mipsmt) { /* * Have a CPU with access to the offlined CPUs registers wait * for its TC to halt. */ err = smp_call_function_single(cpu_death_sibling, wait_for_sibling_halt, (void *)(unsigned long)cpu, 1); if (err) panic("Failed to call remote sibling CPU\n"); } } #endif /* CONFIG_HOTPLUG_CPU */ static struct plat_smp_ops cps_smp_ops = { .smp_setup = cps_smp_setup, .prepare_cpus = cps_prepare_cpus, .boot_secondary = cps_boot_secondary, .init_secondary = cps_init_secondary, .smp_finish = cps_smp_finish, .send_ipi_single = gic_send_ipi_single, .send_ipi_mask = gic_send_ipi_mask, #ifdef CONFIG_HOTPLUG_CPU .cpu_disable = cps_cpu_disable, .cpu_die = cps_cpu_die, #endif }; bool mips_cps_smp_in_use(void) { extern struct plat_smp_ops *mp_ops; return mp_ops == &cps_smp_ops; } int register_cps_smp_ops(void) { if (!mips_cm_present()) { pr_warn("MIPS CPS SMP unable to proceed without a CM\n"); return -ENODEV; } /* check we have a GIC - we need one for IPIs */ if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) { pr_warn("MIPS CPS SMP unable to proceed without a GIC\n"); return -ENODEV; } register_smp_ops(&cps_smp_ops); return 0; }