/* * Just-In-Time compiler for BPF filters on MIPS * * Copyright (c) 2014 Imagination Technologies Ltd. * Author: Markos Chandras <markos.chandras@imgtec.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; version 2 of the License. */ #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/errno.h> #include <linux/filter.h> #include <linux/if_vlan.h> #include <linux/kconfig.h> #include <linux/moduleloader.h> #include <linux/netdevice.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/types.h> #include <asm/asm.h> #include <asm/bitops.h> #include <asm/cacheflush.h> #include <asm/cpu-features.h> #include <asm/uasm.h> #include "bpf_jit.h" /* ABI * r_skb_hl SKB header length * r_data SKB data pointer * r_off Offset * r_A BPF register A * r_X BPF register X * r_skb *skb * r_M *scratch memory * r_skb_len SKB length * * On entry (*bpf_func)(*skb, *filter) * a0 = MIPS_R_A0 = skb; * a1 = MIPS_R_A1 = filter; * * Stack * ... * M[15] * M[14] * M[13] * ... * M[0] <-- r_M * saved reg k-1 * saved reg k-2 * ... * saved reg 0 <-- r_sp * <no argument area> * * Packet layout * * <--------------------- len ------------------------> * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------> * ---------------------------------------------------- * | skb->data | * ---------------------------------------------------- */ #define ptr typeof(unsigned long) #define SCRATCH_OFF(k) (4 * (k)) /* JIT flags */ #define SEEN_CALL (1 << BPF_MEMWORDS) #define SEEN_SREG_SFT (BPF_MEMWORDS + 1) #define SEEN_SREG_BASE (1 << SEEN_SREG_SFT) #define SEEN_SREG(x) (SEEN_SREG_BASE << (x)) #define SEEN_OFF SEEN_SREG(2) #define SEEN_A SEEN_SREG(3) #define SEEN_X SEEN_SREG(4) #define SEEN_SKB SEEN_SREG(5) #define SEEN_MEM SEEN_SREG(6) /* SEEN_SK_DATA also implies skb_hl an skb_len */ #define SEEN_SKB_DATA (SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0)) /* Arguments used by JIT */ #define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */ #define SBIT(x) (1 << (x)) /* Signed version of BIT() */ /** * struct jit_ctx - JIT context * @skf: The sk_filter * @prologue_bytes: Number of bytes for prologue * @idx: Instruction index * @flags: JIT flags * @offsets: Instruction offsets * @target: Memory location for the compiled filter */ struct jit_ctx { const struct bpf_prog *skf; unsigned int prologue_bytes; u32 idx; u32 flags; u32 *offsets; u32 *target; }; static inline int optimize_div(u32 *k) { /* power of 2 divides can be implemented with right shift */ if (!(*k & (*k-1))) { *k = ilog2(*k); return 1; } return 0; } static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx); /* Simply emit the instruction if the JIT memory space has been allocated */ #define emit_instr(ctx, func, ...) \ do { \ if ((ctx)->target != NULL) { \ u32 *p = &(ctx)->target[ctx->idx]; \ uasm_i_##func(&p, ##__VA_ARGS__); \ } \ (ctx)->idx++; \ } while (0) /* * Similar to emit_instr but it must be used when we need to emit * 32-bit or 64-bit instructions */ #define emit_long_instr(ctx, func, ...) \ do { \ if ((ctx)->target != NULL) { \ u32 *p = &(ctx)->target[ctx->idx]; \ UASM_i_##func(&p, ##__VA_ARGS__); \ } \ (ctx)->idx++; \ } while (0) /* Determine if immediate is within the 16-bit signed range */ static inline bool is_range16(s32 imm) { return !(imm >= SBIT(15) || imm < -SBIT(15)); } static inline void emit_addu(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, addu, dst, src1, src2); } static inline void emit_nop(struct jit_ctx *ctx) { emit_instr(ctx, nop); } /* Load a u32 immediate to a register */ static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx) { if (ctx->target != NULL) { /* addiu can only handle s16 */ if (!is_range16(imm)) { u32 *p = &ctx->target[ctx->idx]; uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16); p = &ctx->target[ctx->idx + 1]; uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff); } else { u32 *p = &ctx->target[ctx->idx]; uasm_i_addiu(&p, dst, r_zero, imm); } } ctx->idx++; if (!is_range16(imm)) ctx->idx++; } static inline void emit_or(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, or, dst, src1, src2); } static inline void emit_ori(unsigned int dst, unsigned src, u32 imm, struct jit_ctx *ctx) { if (imm >= BIT(16)) { emit_load_imm(r_tmp, imm, ctx); emit_or(dst, src, r_tmp, ctx); } else { emit_instr(ctx, ori, dst, src, imm); } } static inline void emit_daddiu(unsigned int dst, unsigned int src, int imm, struct jit_ctx *ctx) { /* * Only used for stack, so the imm is relatively small * and it fits in 15-bits */ emit_instr(ctx, daddiu, dst, src, imm); } static inline void emit_addiu(unsigned int dst, unsigned int src, u32 imm, struct jit_ctx *ctx) { if (!is_range16(imm)) { emit_load_imm(r_tmp, imm, ctx); emit_addu(dst, r_tmp, src, ctx); } else { emit_instr(ctx, addiu, dst, src, imm); } } static inline void emit_and(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, and, dst, src1, src2); } static inline void emit_andi(unsigned int dst, unsigned int src, u32 imm, struct jit_ctx *ctx) { /* If imm does not fit in u16 then load it to register */ if (imm >= BIT(16)) { emit_load_imm(r_tmp, imm, ctx); emit_and(dst, src, r_tmp, ctx); } else { emit_instr(ctx, andi, dst, src, imm); } } static inline void emit_xor(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, xor, dst, src1, src2); } static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx) { /* If imm does not fit in u16 then load it to register */ if (imm >= BIT(16)) { emit_load_imm(r_tmp, imm, ctx); emit_xor(dst, src, r_tmp, ctx); } else { emit_instr(ctx, xori, dst, src, imm); } } static inline void emit_stack_offset(int offset, struct jit_ctx *ctx) { emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset); } static inline void emit_subu(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, subu, dst, src1, src2); } static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx) { emit_subu(reg, r_zero, reg, ctx); } static inline void emit_sllv(unsigned int dst, unsigned int src, unsigned int sa, struct jit_ctx *ctx) { emit_instr(ctx, sllv, dst, src, sa); } static inline void emit_sll(unsigned int dst, unsigned int src, unsigned int sa, struct jit_ctx *ctx) { /* sa is 5-bits long */ if (sa >= BIT(5)) /* Shifting >= 32 results in zero */ emit_jit_reg_move(dst, r_zero, ctx); else emit_instr(ctx, sll, dst, src, sa); } static inline void emit_srlv(unsigned int dst, unsigned int src, unsigned int sa, struct jit_ctx *ctx) { emit_instr(ctx, srlv, dst, src, sa); } static inline void emit_srl(unsigned int dst, unsigned int src, unsigned int sa, struct jit_ctx *ctx) { /* sa is 5-bits long */ if (sa >= BIT(5)) /* Shifting >= 32 results in zero */ emit_jit_reg_move(dst, r_zero, ctx); else emit_instr(ctx, srl, dst, src, sa); } static inline void emit_slt(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, slt, dst, src1, src2); } static inline void emit_sltu(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, sltu, dst, src1, src2); } static inline void emit_sltiu(unsigned dst, unsigned int src, unsigned int imm, struct jit_ctx *ctx) { /* 16 bit immediate */ if (!is_range16((s32)imm)) { emit_load_imm(r_tmp, imm, ctx); emit_sltu(dst, src, r_tmp, ctx); } else { emit_instr(ctx, sltiu, dst, src, imm); } } /* Store register on the stack */ static inline void emit_store_stack_reg(ptr reg, ptr base, unsigned int offset, struct jit_ctx *ctx) { emit_long_instr(ctx, SW, reg, offset, base); } static inline void emit_store(ptr reg, ptr base, unsigned int offset, struct jit_ctx *ctx) { emit_instr(ctx, sw, reg, offset, base); } static inline void emit_load_stack_reg(ptr reg, ptr base, unsigned int offset, struct jit_ctx *ctx) { emit_long_instr(ctx, LW, reg, offset, base); } static inline void emit_load(unsigned int reg, unsigned int base, unsigned int offset, struct jit_ctx *ctx) { emit_instr(ctx, lw, reg, offset, base); } static inline void emit_load_byte(unsigned int reg, unsigned int base, unsigned int offset, struct jit_ctx *ctx) { emit_instr(ctx, lb, reg, offset, base); } static inline void emit_half_load(unsigned int reg, unsigned int base, unsigned int offset, struct jit_ctx *ctx) { emit_instr(ctx, lh, reg, offset, base); } static inline void emit_mul(unsigned int dst, unsigned int src1, unsigned int src2, struct jit_ctx *ctx) { emit_instr(ctx, mul, dst, src1, src2); } static inline void emit_div(unsigned int dst, unsigned int src, struct jit_ctx *ctx) { if (ctx->target != NULL) { u32 *p = &ctx->target[ctx->idx]; uasm_i_divu(&p, dst, src); p = &ctx->target[ctx->idx + 1]; uasm_i_mflo(&p, dst); } ctx->idx += 2; /* 2 insts */ } static inline void emit_mod(unsigned int dst, unsigned int src, struct jit_ctx *ctx) { if (ctx->target != NULL) { u32 *p = &ctx->target[ctx->idx]; uasm_i_divu(&p, dst, src); p = &ctx->target[ctx->idx + 1]; uasm_i_mfhi(&p, dst); } ctx->idx += 2; /* 2 insts */ } static inline void emit_dsll(unsigned int dst, unsigned int src, unsigned int sa, struct jit_ctx *ctx) { emit_instr(ctx, dsll, dst, src, sa); } static inline void emit_dsrl32(unsigned int dst, unsigned int src, unsigned int sa, struct jit_ctx *ctx) { emit_instr(ctx, dsrl32, dst, src, sa); } static inline void emit_wsbh(unsigned int dst, unsigned int src, struct jit_ctx *ctx) { emit_instr(ctx, wsbh, dst, src); } /* load pointer to register */ static inline void emit_load_ptr(unsigned int dst, unsigned int src, int imm, struct jit_ctx *ctx) { /* src contains the base addr of the 32/64-pointer */ emit_long_instr(ctx, LW, dst, imm, src); } /* load a function pointer to register */ static inline void emit_load_func(unsigned int reg, ptr imm, struct jit_ctx *ctx) { if (config_enabled(CONFIG_64BIT)) { /* At this point imm is always 64-bit */ emit_load_imm(r_tmp, (u64)imm >> 32, ctx); emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */ emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx); emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */ emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx); } else { emit_load_imm(reg, imm, ctx); } } /* Move to real MIPS register */ static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx) { emit_long_instr(ctx, ADDU, dst, src, r_zero); } /* Move to JIT (32-bit) register */ static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx) { emit_addu(dst, src, r_zero, ctx); } /* Compute the immediate value for PC-relative branches. */ static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx) { if (ctx->target == NULL) return 0; /* * We want a pc-relative branch. We only do forward branches * so tgt is always after pc. tgt is the instruction offset * we want to jump to. * Branch on MIPS: * I: target_offset <- sign_extend(offset) * I+1: PC += target_offset (delay slot) * * ctx->idx currently points to the branch instruction * but the offset is added to the delay slot so we need * to subtract 4. */ return ctx->offsets[tgt] - (ctx->idx * 4 - ctx->prologue_bytes) - 4; } static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2, unsigned int imm, struct jit_ctx *ctx) { if (ctx->target != NULL) { u32 *p = &ctx->target[ctx->idx]; switch (cond) { case MIPS_COND_EQ: uasm_i_beq(&p, reg1, reg2, imm); break; case MIPS_COND_NE: uasm_i_bne(&p, reg1, reg2, imm); break; case MIPS_COND_ALL: uasm_i_b(&p, imm); break; default: pr_warn("%s: Unhandled branch conditional: %d\n", __func__, cond); } } ctx->idx++; } static inline void emit_b(unsigned int imm, struct jit_ctx *ctx) { emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx); } static inline void emit_jalr(unsigned int link, unsigned int reg, struct jit_ctx *ctx) { emit_instr(ctx, jalr, link, reg); } static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx) { emit_instr(ctx, jr, reg); } static inline u16 align_sp(unsigned int num) { /* Double word alignment for 32-bit, quadword for 64-bit */ unsigned int align = config_enabled(CONFIG_64BIT) ? 16 : 8; num = (num + (align - 1)) & -align; return num; } static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset) { int i = 0, real_off = 0; u32 sflags, tmp_flags; /* Adjust the stack pointer */ emit_stack_offset(-align_sp(offset), ctx); tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT; /* sflags is essentially a bitmap */ while (tmp_flags) { if ((sflags >> i) & 0x1) { emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off, ctx); real_off += SZREG; } i++; tmp_flags >>= 1; } /* save return address */ if (ctx->flags & SEEN_CALL) { emit_store_stack_reg(r_ra, r_sp, real_off, ctx); real_off += SZREG; } /* Setup r_M leaving the alignment gap if necessary */ if (ctx->flags & SEEN_MEM) { if (real_off % (SZREG * 2)) real_off += SZREG; emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off); } } static void restore_bpf_jit_regs(struct jit_ctx *ctx, unsigned int offset) { int i, real_off = 0; u32 sflags, tmp_flags; tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT; /* sflags is a bitmap */ i = 0; while (tmp_flags) { if ((sflags >> i) & 0x1) { emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off, ctx); real_off += SZREG; } i++; tmp_flags >>= 1; } /* restore return address */ if (ctx->flags & SEEN_CALL) emit_load_stack_reg(r_ra, r_sp, real_off, ctx); /* Restore the sp and discard the scrach memory */ emit_stack_offset(align_sp(offset), ctx); } static unsigned int get_stack_depth(struct jit_ctx *ctx) { int sp_off = 0; /* How may s* regs do we need to preserved? */ sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG; if (ctx->flags & SEEN_MEM) sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */ if (ctx->flags & SEEN_CALL) sp_off += SZREG; /* Space for our ra register */ return sp_off; } static void build_prologue(struct jit_ctx *ctx) { int sp_off; /* Calculate the total offset for the stack pointer */ sp_off = get_stack_depth(ctx); save_bpf_jit_regs(ctx, sp_off); if (ctx->flags & SEEN_SKB) emit_reg_move(r_skb, MIPS_R_A0, ctx); if (ctx->flags & SEEN_SKB_DATA) { /* Load packet length */ emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len), ctx); emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len), ctx); /* Load the data pointer */ emit_load_ptr(r_skb_data, r_skb, offsetof(struct sk_buff, data), ctx); /* Load the header length */ emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx); } if (ctx->flags & SEEN_X) emit_jit_reg_move(r_X, r_zero, ctx); /* Do not leak kernel data to userspace */ if (bpf_needs_clear_a(&ctx->skf->insns[0])) emit_jit_reg_move(r_A, r_zero, ctx); } static void build_epilogue(struct jit_ctx *ctx) { unsigned int sp_off; /* Calculate the total offset for the stack pointer */ sp_off = get_stack_depth(ctx); restore_bpf_jit_regs(ctx, sp_off); /* Return */ emit_jr(r_ra, ctx); emit_nop(ctx); } #define CHOOSE_LOAD_FUNC(K, func) \ ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \ func##_positive) static int build_body(struct jit_ctx *ctx) { const struct bpf_prog *prog = ctx->skf; const struct sock_filter *inst; unsigned int i, off, condt; u32 k, b_off __maybe_unused; u8 (*sk_load_func)(unsigned long *skb, int offset); for (i = 0; i < prog->len; i++) { u16 code; inst = &(prog->insns[i]); pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n", __func__, inst->code, inst->jt, inst->jf, inst->k); k = inst->k; code = bpf_anc_helper(inst); if (ctx->target == NULL) ctx->offsets[i] = ctx->idx * 4; switch (code) { case BPF_LD | BPF_IMM: /* A <- k ==> li r_A, k */ ctx->flags |= SEEN_A; emit_load_imm(r_A, k, ctx); break; case BPF_LD | BPF_W | BPF_LEN: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); /* A <- len ==> lw r_A, offset(skb) */ ctx->flags |= SEEN_SKB | SEEN_A; off = offsetof(struct sk_buff, len); emit_load(r_A, r_skb, off, ctx); break; case BPF_LD | BPF_MEM: /* A <- M[k] ==> lw r_A, offset(M) */ ctx->flags |= SEEN_MEM | SEEN_A; emit_load(r_A, r_M, SCRATCH_OFF(k), ctx); break; case BPF_LD | BPF_W | BPF_ABS: /* A <- P[k:4] */ sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word); goto load; case BPF_LD | BPF_H | BPF_ABS: /* A <- P[k:2] */ sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half); goto load; case BPF_LD | BPF_B | BPF_ABS: /* A <- P[k:1] */ sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte); load: emit_load_imm(r_off, k, ctx); load_common: ctx->flags |= SEEN_CALL | SEEN_OFF | SEEN_SKB | SEEN_A | SEEN_SKB_DATA; emit_load_func(r_s0, (ptr)sk_load_func, ctx); emit_reg_move(MIPS_R_A0, r_skb, ctx); emit_jalr(MIPS_R_RA, r_s0, ctx); /* Load second argument to delay slot */ emit_reg_move(MIPS_R_A1, r_off, ctx); /* Check the error value */ emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx), ctx); /* Load return register on DS for failures */ emit_reg_move(r_ret, r_zero, ctx); /* Return with error */ emit_b(b_imm(prog->len, ctx), ctx); emit_nop(ctx); break; case BPF_LD | BPF_W | BPF_IND: /* A <- P[X + k:4] */ sk_load_func = sk_load_word; goto load_ind; case BPF_LD | BPF_H | BPF_IND: /* A <- P[X + k:2] */ sk_load_func = sk_load_half; goto load_ind; case BPF_LD | BPF_B | BPF_IND: /* A <- P[X + k:1] */ sk_load_func = sk_load_byte; load_ind: ctx->flags |= SEEN_OFF | SEEN_X; emit_addiu(r_off, r_X, k, ctx); goto load_common; case BPF_LDX | BPF_IMM: /* X <- k */ ctx->flags |= SEEN_X; emit_load_imm(r_X, k, ctx); break; case BPF_LDX | BPF_MEM: /* X <- M[k] */ ctx->flags |= SEEN_X | SEEN_MEM; emit_load(r_X, r_M, SCRATCH_OFF(k), ctx); break; case BPF_LDX | BPF_W | BPF_LEN: /* X <- len */ ctx->flags |= SEEN_X | SEEN_SKB; off = offsetof(struct sk_buff, len); emit_load(r_X, r_skb, off, ctx); break; case BPF_LDX | BPF_B | BPF_MSH: /* X <- 4 * (P[k:1] & 0xf) */ ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB; /* Load offset to a1 */ emit_load_func(r_s0, (ptr)sk_load_byte, ctx); /* * This may emit two instructions so it may not fit * in the delay slot. So use a0 in the delay slot. */ emit_load_imm(MIPS_R_A1, k, ctx); emit_jalr(MIPS_R_RA, r_s0, ctx); emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */ /* Check the error value */ emit_bcond(MIPS_COND_NE, r_ret, 0, b_imm(prog->len, ctx), ctx); emit_reg_move(r_ret, r_zero, ctx); /* We are good */ /* X <- P[1:K] & 0xf */ emit_andi(r_X, r_A, 0xf, ctx); /* X << 2 */ emit_b(b_imm(i + 1, ctx), ctx); emit_sll(r_X, r_X, 2, ctx); /* delay slot */ break; case BPF_ST: /* M[k] <- A */ ctx->flags |= SEEN_MEM | SEEN_A; emit_store(r_A, r_M, SCRATCH_OFF(k), ctx); break; case BPF_STX: /* M[k] <- X */ ctx->flags |= SEEN_MEM | SEEN_X; emit_store(r_X, r_M, SCRATCH_OFF(k), ctx); break; case BPF_ALU | BPF_ADD | BPF_K: /* A += K */ ctx->flags |= SEEN_A; emit_addiu(r_A, r_A, k, ctx); break; case BPF_ALU | BPF_ADD | BPF_X: /* A += X */ ctx->flags |= SEEN_A | SEEN_X; emit_addu(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ ctx->flags |= SEEN_A; emit_addiu(r_A, r_A, -k, ctx); break; case BPF_ALU | BPF_SUB | BPF_X: /* A -= X */ ctx->flags |= SEEN_A | SEEN_X; emit_subu(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ /* Load K to scratch register before MUL */ ctx->flags |= SEEN_A; emit_load_imm(r_s0, k, ctx); emit_mul(r_A, r_A, r_s0, ctx); break; case BPF_ALU | BPF_MUL | BPF_X: /* A *= X */ ctx->flags |= SEEN_A | SEEN_X; emit_mul(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_DIV | BPF_K: /* A /= k */ if (k == 1) break; if (optimize_div(&k)) { ctx->flags |= SEEN_A; emit_srl(r_A, r_A, k, ctx); break; } ctx->flags |= SEEN_A; emit_load_imm(r_s0, k, ctx); emit_div(r_A, r_s0, ctx); break; case BPF_ALU | BPF_MOD | BPF_K: /* A %= k */ if (k == 1) { ctx->flags |= SEEN_A; emit_jit_reg_move(r_A, r_zero, ctx); } else { ctx->flags |= SEEN_A; emit_load_imm(r_s0, k, ctx); emit_mod(r_A, r_s0, ctx); } break; case BPF_ALU | BPF_DIV | BPF_X: /* A /= X */ ctx->flags |= SEEN_X | SEEN_A; /* Check if r_X is zero */ emit_bcond(MIPS_COND_EQ, r_X, r_zero, b_imm(prog->len, ctx), ctx); emit_load_imm(r_ret, 0, ctx); /* delay slot */ emit_div(r_A, r_X, ctx); break; case BPF_ALU | BPF_MOD | BPF_X: /* A %= X */ ctx->flags |= SEEN_X | SEEN_A; /* Check if r_X is zero */ emit_bcond(MIPS_COND_EQ, r_X, r_zero, b_imm(prog->len, ctx), ctx); emit_load_imm(r_ret, 0, ctx); /* delay slot */ emit_mod(r_A, r_X, ctx); break; case BPF_ALU | BPF_OR | BPF_K: /* A |= K */ ctx->flags |= SEEN_A; emit_ori(r_A, r_A, k, ctx); break; case BPF_ALU | BPF_OR | BPF_X: /* A |= X */ ctx->flags |= SEEN_A; emit_ori(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_XOR | BPF_K: /* A ^= k */ ctx->flags |= SEEN_A; emit_xori(r_A, r_A, k, ctx); break; case BPF_ANC | SKF_AD_ALU_XOR_X: case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */ ctx->flags |= SEEN_A; emit_xor(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_AND | BPF_K: /* A &= K */ ctx->flags |= SEEN_A; emit_andi(r_A, r_A, k, ctx); break; case BPF_ALU | BPF_AND | BPF_X: /* A &= X */ ctx->flags |= SEEN_A | SEEN_X; emit_and(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */ ctx->flags |= SEEN_A; emit_sll(r_A, r_A, k, ctx); break; case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */ ctx->flags |= SEEN_A | SEEN_X; emit_sllv(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */ ctx->flags |= SEEN_A; emit_srl(r_A, r_A, k, ctx); break; case BPF_ALU | BPF_RSH | BPF_X: ctx->flags |= SEEN_A | SEEN_X; emit_srlv(r_A, r_A, r_X, ctx); break; case BPF_ALU | BPF_NEG: /* A = -A */ ctx->flags |= SEEN_A; emit_neg(r_A, ctx); break; case BPF_JMP | BPF_JA: /* pc += K */ emit_b(b_imm(i + k + 1, ctx), ctx); emit_nop(ctx); break; case BPF_JMP | BPF_JEQ | BPF_K: /* pc += ( A == K ) ? pc->jt : pc->jf */ condt = MIPS_COND_EQ | MIPS_COND_K; goto jmp_cmp; case BPF_JMP | BPF_JEQ | BPF_X: ctx->flags |= SEEN_X; /* pc += ( A == X ) ? pc->jt : pc->jf */ condt = MIPS_COND_EQ | MIPS_COND_X; goto jmp_cmp; case BPF_JMP | BPF_JGE | BPF_K: /* pc += ( A >= K ) ? pc->jt : pc->jf */ condt = MIPS_COND_GE | MIPS_COND_K; goto jmp_cmp; case BPF_JMP | BPF_JGE | BPF_X: ctx->flags |= SEEN_X; /* pc += ( A >= X ) ? pc->jt : pc->jf */ condt = MIPS_COND_GE | MIPS_COND_X; goto jmp_cmp; case BPF_JMP | BPF_JGT | BPF_K: /* pc += ( A > K ) ? pc->jt : pc->jf */ condt = MIPS_COND_GT | MIPS_COND_K; goto jmp_cmp; case BPF_JMP | BPF_JGT | BPF_X: ctx->flags |= SEEN_X; /* pc += ( A > X ) ? pc->jt : pc->jf */ condt = MIPS_COND_GT | MIPS_COND_X; jmp_cmp: /* Greater or Equal */ if ((condt & MIPS_COND_GE) || (condt & MIPS_COND_GT)) { if (condt & MIPS_COND_K) { /* K */ ctx->flags |= SEEN_A; emit_sltiu(r_s0, r_A, k, ctx); } else { /* X */ ctx->flags |= SEEN_A | SEEN_X; emit_sltu(r_s0, r_A, r_X, ctx); } /* A < (K|X) ? r_scrach = 1 */ b_off = b_imm(i + inst->jf + 1, ctx); emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx); emit_nop(ctx); /* A > (K|X) ? scratch = 0 */ if (condt & MIPS_COND_GT) { /* Checking for equality */ ctx->flags |= SEEN_A | SEEN_X; if (condt & MIPS_COND_K) emit_load_imm(r_s0, k, ctx); else emit_jit_reg_move(r_s0, r_X, ctx); b_off = b_imm(i + inst->jf + 1, ctx); emit_bcond(MIPS_COND_EQ, r_A, r_s0, b_off, ctx); emit_nop(ctx); /* Finally, A > K|X */ b_off = b_imm(i + inst->jt + 1, ctx); emit_b(b_off, ctx); emit_nop(ctx); } else { /* A >= (K|X) so jump */ b_off = b_imm(i + inst->jt + 1, ctx); emit_b(b_off, ctx); emit_nop(ctx); } } else { /* A == K|X */ if (condt & MIPS_COND_K) { /* K */ ctx->flags |= SEEN_A; emit_load_imm(r_s0, k, ctx); /* jump true */ b_off = b_imm(i + inst->jt + 1, ctx); emit_bcond(MIPS_COND_EQ, r_A, r_s0, b_off, ctx); emit_nop(ctx); /* jump false */ b_off = b_imm(i + inst->jf + 1, ctx); emit_bcond(MIPS_COND_NE, r_A, r_s0, b_off, ctx); emit_nop(ctx); } else { /* X */ /* jump true */ ctx->flags |= SEEN_A | SEEN_X; b_off = b_imm(i + inst->jt + 1, ctx); emit_bcond(MIPS_COND_EQ, r_A, r_X, b_off, ctx); emit_nop(ctx); /* jump false */ b_off = b_imm(i + inst->jf + 1, ctx); emit_bcond(MIPS_COND_NE, r_A, r_X, b_off, ctx); emit_nop(ctx); } } break; case BPF_JMP | BPF_JSET | BPF_K: ctx->flags |= SEEN_A; /* pc += (A & K) ? pc -> jt : pc -> jf */ emit_load_imm(r_s1, k, ctx); emit_and(r_s0, r_A, r_s1, ctx); /* jump true */ b_off = b_imm(i + inst->jt + 1, ctx); emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx); emit_nop(ctx); /* jump false */ b_off = b_imm(i + inst->jf + 1, ctx); emit_b(b_off, ctx); emit_nop(ctx); break; case BPF_JMP | BPF_JSET | BPF_X: ctx->flags |= SEEN_X | SEEN_A; /* pc += (A & X) ? pc -> jt : pc -> jf */ emit_and(r_s0, r_A, r_X, ctx); /* jump true */ b_off = b_imm(i + inst->jt + 1, ctx); emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx); emit_nop(ctx); /* jump false */ b_off = b_imm(i + inst->jf + 1, ctx); emit_b(b_off, ctx); emit_nop(ctx); break; case BPF_RET | BPF_A: ctx->flags |= SEEN_A; if (i != prog->len - 1) /* * If this is not the last instruction * then jump to the epilogue */ emit_b(b_imm(prog->len, ctx), ctx); emit_reg_move(r_ret, r_A, ctx); /* delay slot */ break; case BPF_RET | BPF_K: /* * It can emit two instructions so it does not fit on * the delay slot. */ emit_load_imm(r_ret, k, ctx); if (i != prog->len - 1) { /* * If this is not the last instruction * then jump to the epilogue */ emit_b(b_imm(prog->len, ctx), ctx); emit_nop(ctx); } break; case BPF_MISC | BPF_TAX: /* X = A */ ctx->flags |= SEEN_X | SEEN_A; emit_jit_reg_move(r_X, r_A, ctx); break; case BPF_MISC | BPF_TXA: /* A = X */ ctx->flags |= SEEN_A | SEEN_X; emit_jit_reg_move(r_A, r_X, ctx); break; /* AUX */ case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol */ ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2); off = offsetof(struct sk_buff, protocol); emit_half_load(r_A, r_skb, off, ctx); #ifdef CONFIG_CPU_LITTLE_ENDIAN /* This needs little endian fixup */ if (cpu_has_wsbh) { /* R2 and later have the wsbh instruction */ emit_wsbh(r_A, r_A, ctx); } else { /* Get first byte */ emit_andi(r_tmp_imm, r_A, 0xff, ctx); /* Shift it */ emit_sll(r_tmp, r_tmp_imm, 8, ctx); /* Get second byte */ emit_srl(r_tmp_imm, r_A, 8, ctx); emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx); /* Put everyting together in r_A */ emit_or(r_A, r_tmp, r_tmp_imm, ctx); } #endif break; case BPF_ANC | SKF_AD_CPU: ctx->flags |= SEEN_A | SEEN_OFF; /* A = current_thread_info()->cpu */ BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4); off = offsetof(struct thread_info, cpu); /* $28/gp points to the thread_info struct */ emit_load(r_A, 28, off, ctx); break; case BPF_ANC | SKF_AD_IFINDEX: /* A = skb->dev->ifindex */ ctx->flags |= SEEN_SKB | SEEN_A; off = offsetof(struct sk_buff, dev); /* Load *dev pointer */ emit_load_ptr(r_s0, r_skb, off, ctx); /* error (0) in the delay slot */ emit_bcond(MIPS_COND_EQ, r_s0, r_zero, b_imm(prog->len, ctx), ctx); emit_reg_move(r_ret, r_zero, ctx); BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4); off = offsetof(struct net_device, ifindex); emit_load(r_A, r_s0, off, ctx); break; case BPF_ANC | SKF_AD_MARK: ctx->flags |= SEEN_SKB | SEEN_A; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); off = offsetof(struct sk_buff, mark); emit_load(r_A, r_skb, off, ctx); break; case BPF_ANC | SKF_AD_RXHASH: ctx->flags |= SEEN_SKB | SEEN_A; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); off = offsetof(struct sk_buff, hash); emit_load(r_A, r_skb, off, ctx); break; case BPF_ANC | SKF_AD_VLAN_TAG: case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: ctx->flags |= SEEN_SKB | SEEN_A; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); off = offsetof(struct sk_buff, vlan_tci); emit_half_load(r_s0, r_skb, off, ctx); if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) { emit_andi(r_A, r_s0, (u16)~VLAN_TAG_PRESENT, ctx); } else { emit_andi(r_A, r_s0, VLAN_TAG_PRESENT, ctx); /* return 1 if present */ emit_sltu(r_A, r_zero, r_A, ctx); } break; case BPF_ANC | SKF_AD_PKTTYPE: ctx->flags |= SEEN_SKB; emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx); /* Keep only the last 3 bits */ emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx); #ifdef __BIG_ENDIAN_BITFIELD /* Get the actual packet type to the lower 3 bits */ emit_srl(r_A, r_A, 5, ctx); #endif break; case BPF_ANC | SKF_AD_QUEUE: ctx->flags |= SEEN_SKB | SEEN_A; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2); BUILD_BUG_ON(offsetof(struct sk_buff, queue_mapping) > 0xff); off = offsetof(struct sk_buff, queue_mapping); emit_half_load(r_A, r_skb, off, ctx); break; default: pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__, inst->code); return -1; } } /* compute offsets only during the first pass */ if (ctx->target == NULL) ctx->offsets[i] = ctx->idx * 4; return 0; } int bpf_jit_enable __read_mostly; void bpf_jit_compile(struct bpf_prog *fp) { struct jit_ctx ctx; unsigned int alloc_size, tmp_idx; if (!bpf_jit_enable) return; memset(&ctx, 0, sizeof(ctx)); ctx.offsets = kcalloc(fp->len, sizeof(*ctx.offsets), GFP_KERNEL); if (ctx.offsets == NULL) return; ctx.skf = fp; if (build_body(&ctx)) goto out; tmp_idx = ctx.idx; build_prologue(&ctx); ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; /* just to complete the ctx.idx count */ build_epilogue(&ctx); alloc_size = 4 * ctx.idx; ctx.target = module_alloc(alloc_size); if (ctx.target == NULL) goto out; /* Clean it */ memset(ctx.target, 0, alloc_size); ctx.idx = 0; /* Generate the actual JIT code */ build_prologue(&ctx); build_body(&ctx); build_epilogue(&ctx); /* Update the icache */ flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx)); if (bpf_jit_enable > 1) /* Dump JIT code */ bpf_jit_dump(fp->len, alloc_size, 2, ctx.target); fp->bpf_func = (void *)ctx.target; fp->jited = 1; out: kfree(ctx.offsets); } void bpf_jit_free(struct bpf_prog *fp) { if (fp->jited) module_memfree(fp->bpf_func); bpf_prog_unlock_free(fp); }