/* MN10300 I/O port emulation and memory-mapped I/O * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #ifndef _ASM_IO_H #define _ASM_IO_H #include <asm/page.h> /* I/O is all done through memory accesses */ #include <asm/cpu-regs.h> #include <asm/cacheflush.h> #include <asm-generic/pci_iomap.h> #define mmiowb() do {} while (0) /*****************************************************************************/ /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. */ static inline u8 readb(const volatile void __iomem *addr) { return *(const volatile u8 *) addr; } static inline u16 readw(const volatile void __iomem *addr) { return *(const volatile u16 *) addr; } static inline u32 readl(const volatile void __iomem *addr) { return *(const volatile u32 *) addr; } #define __raw_readb readb #define __raw_readw readw #define __raw_readl readl #define readb_relaxed readb #define readw_relaxed readw #define readl_relaxed readl static inline void writeb(u8 b, volatile void __iomem *addr) { *(volatile u8 *) addr = b; } static inline void writew(u16 b, volatile void __iomem *addr) { *(volatile u16 *) addr = b; } static inline void writel(u32 b, volatile void __iomem *addr) { *(volatile u32 *) addr = b; } #define __raw_writeb writeb #define __raw_writew writew #define __raw_writel writel #define writeb_relaxed writeb #define writew_relaxed writew #define writel_relaxed writel /*****************************************************************************/ /* * traditional input/output functions */ static inline u8 inb_local(unsigned long addr) { return readb((volatile void __iomem *) addr); } static inline void outb_local(u8 b, unsigned long addr) { return writeb(b, (volatile void __iomem *) addr); } static inline u8 inb(unsigned long addr) { return readb((volatile void __iomem *) addr); } static inline u16 inw(unsigned long addr) { return readw((volatile void __iomem *) addr); } static inline u32 inl(unsigned long addr) { return readl((volatile void __iomem *) addr); } static inline void outb(u8 b, unsigned long addr) { return writeb(b, (volatile void __iomem *) addr); } static inline void outw(u16 b, unsigned long addr) { return writew(b, (volatile void __iomem *) addr); } static inline void outl(u32 b, unsigned long addr) { return writel(b, (volatile void __iomem *) addr); } #define inb_p(addr) inb(addr) #define inw_p(addr) inw(addr) #define inl_p(addr) inl(addr) #define outb_p(x, addr) outb((x), (addr)) #define outw_p(x, addr) outw((x), (addr)) #define outl_p(x, addr) outl((x), (addr)) static inline void insb(unsigned long addr, void *buffer, int count) { if (count) { u8 *buf = buffer; do { u8 x = inb(addr); *buf++ = x; } while (--count); } } static inline void insw(unsigned long addr, void *buffer, int count) { if (count) { u16 *buf = buffer; do { u16 x = inw(addr); *buf++ = x; } while (--count); } } static inline void insl(unsigned long addr, void *buffer, int count) { if (count) { u32 *buf = buffer; do { u32 x = inl(addr); *buf++ = x; } while (--count); } } static inline void outsb(unsigned long addr, const void *buffer, int count) { if (count) { const u8 *buf = buffer; do { outb(*buf++, addr); } while (--count); } } static inline void outsw(unsigned long addr, const void *buffer, int count) { if (count) { const u16 *buf = buffer; do { outw(*buf++, addr); } while (--count); } } extern void __outsl(unsigned long addr, const void *buffer, int count); static inline void outsl(unsigned long addr, const void *buffer, int count) { if ((unsigned long) buffer & 0x3) return __outsl(addr, buffer, count); if (count) { const u32 *buf = buffer; do { outl(*buf++, addr); } while (--count); } } #define ioread8(addr) readb(addr) #define ioread16(addr) readw(addr) #define ioread32(addr) readl(addr) #define iowrite8(v, addr) writeb((v), (addr)) #define iowrite16(v, addr) writew((v), (addr)) #define iowrite32(v, addr) writel((v), (addr)) #define ioread16be(addr) be16_to_cpu(readw(addr)) #define ioread32be(addr) be32_to_cpu(readl(addr)) #define iowrite16be(v, addr) writew(cpu_to_be16(v), (addr)) #define iowrite32be(v, addr) writel(cpu_to_be32(v), (addr)) #define ioread8_rep(p, dst, count) \ insb((unsigned long) (p), (dst), (count)) #define ioread16_rep(p, dst, count) \ insw((unsigned long) (p), (dst), (count)) #define ioread32_rep(p, dst, count) \ insl((unsigned long) (p), (dst), (count)) #define iowrite8_rep(p, src, count) \ outsb((unsigned long) (p), (src), (count)) #define iowrite16_rep(p, src, count) \ outsw((unsigned long) (p), (src), (count)) #define iowrite32_rep(p, src, count) \ outsl((unsigned long) (p), (src), (count)) #define readsb(p, dst, count) \ insb((unsigned long) (p), (dst), (count)) #define readsw(p, dst, count) \ insw((unsigned long) (p), (dst), (count)) #define readsl(p, dst, count) \ insl((unsigned long) (p), (dst), (count)) #define writesb(p, src, count) \ outsb((unsigned long) (p), (src), (count)) #define writesw(p, src, count) \ outsw((unsigned long) (p), (src), (count)) #define writesl(p, src, count) \ outsl((unsigned long) (p), (src), (count)) #define IO_SPACE_LIMIT 0xffffffff #ifdef __KERNEL__ #include <linux/vmalloc.h> #define __io_virt(x) ((void *) (x)) /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ struct pci_dev; static inline void pci_iounmap(struct pci_dev *dev, void __iomem *p) { } /* * Change virtual addresses to physical addresses and vv. * These are pretty trivial */ static inline unsigned long virt_to_phys(volatile void *address) { return __pa(address); } static inline void *phys_to_virt(unsigned long address) { return __va(address); } /* * Change "struct page" to physical address. */ static inline void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags) { return (void __iomem *) offset; } static inline void __iomem *ioremap(unsigned long offset, unsigned long size) { return (void __iomem *)(offset & ~0x20000000); } /* * This one maps high address device memory and turns off caching for that * area. it's useful if some control registers are in such an area and write * combining or read caching is not desirable: */ static inline void __iomem *ioremap_nocache(unsigned long offset, unsigned long size) { return (void __iomem *) (offset | 0x20000000); } #define ioremap_wc ioremap_nocache #define ioremap_wt ioremap_nocache #define ioremap_uc ioremap_nocache static inline void iounmap(void __iomem *addr) { } static inline void __iomem *ioport_map(unsigned long port, unsigned int nr) { return (void __iomem *) port; } static inline void ioport_unmap(void __iomem *p) { } #define xlate_dev_kmem_ptr(p) ((void *) (p)) #define xlate_dev_mem_ptr(p) ((void *) (p)) /* * PCI bus iomem addresses must be in the region 0x80000000-0x9fffffff */ static inline unsigned long virt_to_bus(volatile void *address) { return ((unsigned long) address) & ~0x20000000; } static inline void *bus_to_virt(unsigned long address) { return (void *) address; } #define page_to_bus page_to_phys #define memset_io(a, b, c) memset(__io_virt(a), (b), (c)) #define memcpy_fromio(a, b, c) memcpy((a), __io_virt(b), (c)) #define memcpy_toio(a, b, c) memcpy(__io_virt(a), (b), (c)) #endif /* __KERNEL__ */ #endif /* _ASM_IO_H */