/* * Copyright (C) 2006-2007 PA Semi, Inc * * Common functions for DMA access on PA Semi PWRficient * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/sched.h> #include <asm/pasemi_dma.h> #define MAX_TXCH 64 #define MAX_RXCH 64 #define MAX_FLAGS 64 #define MAX_FUN 8 static struct pasdma_status *dma_status; static void __iomem *iob_regs; static void __iomem *mac_regs[6]; static void __iomem *dma_regs; static int base_hw_irq; static int num_txch, num_rxch; static struct pci_dev *dma_pdev; /* Bitmaps to handle allocation of channels */ static DECLARE_BITMAP(txch_free, MAX_TXCH); static DECLARE_BITMAP(rxch_free, MAX_RXCH); static DECLARE_BITMAP(flags_free, MAX_FLAGS); static DECLARE_BITMAP(fun_free, MAX_FUN); /* pasemi_read_iob_reg - read IOB register * @reg: Register to read (offset into PCI CFG space) */ unsigned int pasemi_read_iob_reg(unsigned int reg) { return in_le32(iob_regs+reg); } EXPORT_SYMBOL(pasemi_read_iob_reg); /* pasemi_write_iob_reg - write IOB register * @reg: Register to write to (offset into PCI CFG space) * @val: Value to write */ void pasemi_write_iob_reg(unsigned int reg, unsigned int val) { out_le32(iob_regs+reg, val); } EXPORT_SYMBOL(pasemi_write_iob_reg); /* pasemi_read_mac_reg - read MAC register * @intf: MAC interface * @reg: Register to read (offset into PCI CFG space) */ unsigned int pasemi_read_mac_reg(int intf, unsigned int reg) { return in_le32(mac_regs[intf]+reg); } EXPORT_SYMBOL(pasemi_read_mac_reg); /* pasemi_write_mac_reg - write MAC register * @intf: MAC interface * @reg: Register to write to (offset into PCI CFG space) * @val: Value to write */ void pasemi_write_mac_reg(int intf, unsigned int reg, unsigned int val) { out_le32(mac_regs[intf]+reg, val); } EXPORT_SYMBOL(pasemi_write_mac_reg); /* pasemi_read_dma_reg - read DMA register * @reg: Register to read (offset into PCI CFG space) */ unsigned int pasemi_read_dma_reg(unsigned int reg) { return in_le32(dma_regs+reg); } EXPORT_SYMBOL(pasemi_read_dma_reg); /* pasemi_write_dma_reg - write DMA register * @reg: Register to write to (offset into PCI CFG space) * @val: Value to write */ void pasemi_write_dma_reg(unsigned int reg, unsigned int val) { out_le32(dma_regs+reg, val); } EXPORT_SYMBOL(pasemi_write_dma_reg); static int pasemi_alloc_tx_chan(enum pasemi_dmachan_type type) { int bit; int start, limit; switch (type & (TXCHAN_EVT0|TXCHAN_EVT1)) { case TXCHAN_EVT0: start = 0; limit = 10; break; case TXCHAN_EVT1: start = 10; limit = MAX_TXCH; break; default: start = 0; limit = MAX_TXCH; break; } retry: bit = find_next_bit(txch_free, MAX_TXCH, start); if (bit >= limit) return -ENOSPC; if (!test_and_clear_bit(bit, txch_free)) goto retry; return bit; } static void pasemi_free_tx_chan(int chan) { BUG_ON(test_bit(chan, txch_free)); set_bit(chan, txch_free); } static int pasemi_alloc_rx_chan(void) { int bit; retry: bit = find_first_bit(rxch_free, MAX_RXCH); if (bit >= MAX_TXCH) return -ENOSPC; if (!test_and_clear_bit(bit, rxch_free)) goto retry; return bit; } static void pasemi_free_rx_chan(int chan) { BUG_ON(test_bit(chan, rxch_free)); set_bit(chan, rxch_free); } /* pasemi_dma_alloc_chan - Allocate a DMA channel * @type: Type of channel to allocate * @total_size: Total size of structure to allocate (to allow for more * room behind the structure to be used by the client) * @offset: Offset in bytes from start of the total structure to the beginning * of struct pasemi_dmachan. Needed when struct pasemi_dmachan is * not the first member of the client structure. * * pasemi_dma_alloc_chan allocates a DMA channel for use by a client. The * type argument specifies whether it's a RX or TX channel, and in the case * of TX channels which group it needs to belong to (if any). * * Returns a pointer to the total structure allocated on success, NULL * on failure. */ void *pasemi_dma_alloc_chan(enum pasemi_dmachan_type type, int total_size, int offset) { void *buf; struct pasemi_dmachan *chan; int chno; BUG_ON(total_size < sizeof(struct pasemi_dmachan)); buf = kzalloc(total_size, GFP_KERNEL); if (!buf) return NULL; chan = buf + offset; chan->priv = buf; switch (type & (TXCHAN|RXCHAN)) { case RXCHAN: chno = pasemi_alloc_rx_chan(); chan->chno = chno; chan->irq = irq_create_mapping(NULL, base_hw_irq + num_txch + chno); chan->status = &dma_status->rx_sta[chno]; break; case TXCHAN: chno = pasemi_alloc_tx_chan(type); chan->chno = chno; chan->irq = irq_create_mapping(NULL, base_hw_irq + chno); chan->status = &dma_status->tx_sta[chno]; break; } chan->chan_type = type; return chan; } EXPORT_SYMBOL(pasemi_dma_alloc_chan); /* pasemi_dma_free_chan - Free a previously allocated channel * @chan: Channel to free * * Frees a previously allocated channel. It will also deallocate any * descriptor ring associated with the channel, if allocated. */ void pasemi_dma_free_chan(struct pasemi_dmachan *chan) { if (chan->ring_virt) pasemi_dma_free_ring(chan); switch (chan->chan_type & (RXCHAN|TXCHAN)) { case RXCHAN: pasemi_free_rx_chan(chan->chno); break; case TXCHAN: pasemi_free_tx_chan(chan->chno); break; } kfree(chan->priv); } EXPORT_SYMBOL(pasemi_dma_free_chan); /* pasemi_dma_alloc_ring - Allocate descriptor ring for a channel * @chan: Channel for which to allocate * @ring_size: Ring size in 64-bit (8-byte) words * * Allocate a descriptor ring for a channel. Returns 0 on success, errno * on failure. The passed in struct pasemi_dmachan is updated with the * virtual and DMA addresses of the ring. */ int pasemi_dma_alloc_ring(struct pasemi_dmachan *chan, int ring_size) { BUG_ON(chan->ring_virt); chan->ring_size = ring_size; chan->ring_virt = dma_alloc_coherent(&dma_pdev->dev, ring_size * sizeof(u64), &chan->ring_dma, GFP_KERNEL); if (!chan->ring_virt) return -ENOMEM; memset(chan->ring_virt, 0, ring_size * sizeof(u64)); return 0; } EXPORT_SYMBOL(pasemi_dma_alloc_ring); /* pasemi_dma_free_ring - Free an allocated descriptor ring for a channel * @chan: Channel for which to free the descriptor ring * * Frees a previously allocated descriptor ring for a channel. */ void pasemi_dma_free_ring(struct pasemi_dmachan *chan) { BUG_ON(!chan->ring_virt); dma_free_coherent(&dma_pdev->dev, chan->ring_size * sizeof(u64), chan->ring_virt, chan->ring_dma); chan->ring_virt = NULL; chan->ring_size = 0; chan->ring_dma = 0; } EXPORT_SYMBOL(pasemi_dma_free_ring); /* pasemi_dma_start_chan - Start a DMA channel * @chan: Channel to start * @cmdsta: Additional CCMDSTA/TCMDSTA bits to write * * Enables (starts) a DMA channel with optional additional arguments. */ void pasemi_dma_start_chan(const struct pasemi_dmachan *chan, const u32 cmdsta) { if (chan->chan_type == RXCHAN) pasemi_write_dma_reg(PAS_DMA_RXCHAN_CCMDSTA(chan->chno), cmdsta | PAS_DMA_RXCHAN_CCMDSTA_EN); else pasemi_write_dma_reg(PAS_DMA_TXCHAN_TCMDSTA(chan->chno), cmdsta | PAS_DMA_TXCHAN_TCMDSTA_EN); } EXPORT_SYMBOL(pasemi_dma_start_chan); /* pasemi_dma_stop_chan - Stop a DMA channel * @chan: Channel to stop * * Stops (disables) a DMA channel. This is done by setting the ST bit in the * CMDSTA register and waiting on the ACT (active) bit to clear, then * finally disabling the whole channel. * * This function will only try for a short while for the channel to stop, if * it doesn't it will return failure. * * Returns 1 on success, 0 on failure. */ #define MAX_RETRIES 5000 int pasemi_dma_stop_chan(const struct pasemi_dmachan *chan) { int reg, retries; u32 sta; if (chan->chan_type == RXCHAN) { reg = PAS_DMA_RXCHAN_CCMDSTA(chan->chno); pasemi_write_dma_reg(reg, PAS_DMA_RXCHAN_CCMDSTA_ST); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = pasemi_read_dma_reg(reg); if (!(sta & PAS_DMA_RXCHAN_CCMDSTA_ACT)) { pasemi_write_dma_reg(reg, 0); return 1; } cond_resched(); } } else { reg = PAS_DMA_TXCHAN_TCMDSTA(chan->chno); pasemi_write_dma_reg(reg, PAS_DMA_TXCHAN_TCMDSTA_ST); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = pasemi_read_dma_reg(reg); if (!(sta & PAS_DMA_TXCHAN_TCMDSTA_ACT)) { pasemi_write_dma_reg(reg, 0); return 1; } cond_resched(); } } return 0; } EXPORT_SYMBOL(pasemi_dma_stop_chan); /* pasemi_dma_alloc_buf - Allocate a buffer to use for DMA * @chan: Channel to allocate for * @size: Size of buffer in bytes * @handle: DMA handle * * Allocate a buffer to be used by the DMA engine for read/write, * similar to dma_alloc_coherent(). * * Returns the virtual address of the buffer, or NULL in case of failure. */ void *pasemi_dma_alloc_buf(struct pasemi_dmachan *chan, int size, dma_addr_t *handle) { return dma_alloc_coherent(&dma_pdev->dev, size, handle, GFP_KERNEL); } EXPORT_SYMBOL(pasemi_dma_alloc_buf); /* pasemi_dma_free_buf - Free a buffer used for DMA * @chan: Channel the buffer was allocated for * @size: Size of buffer in bytes * @handle: DMA handle * * Frees a previously allocated buffer. */ void pasemi_dma_free_buf(struct pasemi_dmachan *chan, int size, dma_addr_t *handle) { dma_free_coherent(&dma_pdev->dev, size, handle, GFP_KERNEL); } EXPORT_SYMBOL(pasemi_dma_free_buf); /* pasemi_dma_alloc_flag - Allocate a flag (event) for channel synchronization * * Allocates a flag for use with channel synchronization (event descriptors). * Returns allocated flag (0-63), < 0 on error. */ int pasemi_dma_alloc_flag(void) { int bit; retry: bit = find_next_bit(flags_free, MAX_FLAGS, 0); if (bit >= MAX_FLAGS) return -ENOSPC; if (!test_and_clear_bit(bit, flags_free)) goto retry; return bit; } EXPORT_SYMBOL(pasemi_dma_alloc_flag); /* pasemi_dma_free_flag - Deallocates a flag (event) * @flag: Flag number to deallocate * * Frees up a flag so it can be reused for other purposes. */ void pasemi_dma_free_flag(int flag) { BUG_ON(test_bit(flag, flags_free)); BUG_ON(flag >= MAX_FLAGS); set_bit(flag, flags_free); } EXPORT_SYMBOL(pasemi_dma_free_flag); /* pasemi_dma_set_flag - Sets a flag (event) to 1 * @flag: Flag number to set active * * Sets the flag provided to 1. */ void pasemi_dma_set_flag(int flag) { BUG_ON(flag >= MAX_FLAGS); if (flag < 32) pasemi_write_dma_reg(PAS_DMA_TXF_SFLG0, 1 << flag); else pasemi_write_dma_reg(PAS_DMA_TXF_SFLG1, 1 << flag); } EXPORT_SYMBOL(pasemi_dma_set_flag); /* pasemi_dma_clear_flag - Sets a flag (event) to 0 * @flag: Flag number to set inactive * * Sets the flag provided to 0. */ void pasemi_dma_clear_flag(int flag) { BUG_ON(flag >= MAX_FLAGS); if (flag < 32) pasemi_write_dma_reg(PAS_DMA_TXF_CFLG0, 1 << flag); else pasemi_write_dma_reg(PAS_DMA_TXF_CFLG1, 1 << flag); } EXPORT_SYMBOL(pasemi_dma_clear_flag); /* pasemi_dma_alloc_fun - Allocate a function engine * * Allocates a function engine to use for crypto/checksum offload * Returns allocated engine (0-8), < 0 on error. */ int pasemi_dma_alloc_fun(void) { int bit; retry: bit = find_next_bit(fun_free, MAX_FLAGS, 0); if (bit >= MAX_FLAGS) return -ENOSPC; if (!test_and_clear_bit(bit, fun_free)) goto retry; return bit; } EXPORT_SYMBOL(pasemi_dma_alloc_fun); /* pasemi_dma_free_fun - Deallocates a function engine * @flag: Engine number to deallocate * * Frees up a function engine so it can be used for other purposes. */ void pasemi_dma_free_fun(int fun) { BUG_ON(test_bit(fun, fun_free)); BUG_ON(fun >= MAX_FLAGS); set_bit(fun, fun_free); } EXPORT_SYMBOL(pasemi_dma_free_fun); static void *map_onedev(struct pci_dev *p, int index) { struct device_node *dn; void __iomem *ret; dn = pci_device_to_OF_node(p); if (!dn) goto fallback; ret = of_iomap(dn, index); if (!ret) goto fallback; return ret; fallback: /* This is hardcoded and ugly, but we have some firmware versions * that don't provide the register space in the device tree. Luckily * they are at well-known locations so we can just do the math here. */ return ioremap(0xe0000000 + (p->devfn << 12), 0x2000); } /* pasemi_dma_init - Initialize the PA Semi DMA library * * This function initializes the DMA library. It must be called before * any other function in the library. * * Returns 0 on success, errno on failure. */ int pasemi_dma_init(void) { static DEFINE_SPINLOCK(init_lock); struct pci_dev *iob_pdev; struct pci_dev *pdev; struct resource res; struct device_node *dn; int i, intf, err = 0; unsigned long timeout; u32 tmp; if (!machine_is(pasemi)) return -ENODEV; spin_lock(&init_lock); /* Make sure we haven't already initialized */ if (dma_pdev) goto out; iob_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa001, NULL); if (!iob_pdev) { BUG(); printk(KERN_WARNING "Can't find I/O Bridge\n"); err = -ENODEV; goto out; } iob_regs = map_onedev(iob_pdev, 0); dma_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa007, NULL); if (!dma_pdev) { BUG(); printk(KERN_WARNING "Can't find DMA controller\n"); err = -ENODEV; goto out; } dma_regs = map_onedev(dma_pdev, 0); base_hw_irq = virq_to_hw(dma_pdev->irq); pci_read_config_dword(dma_pdev, PAS_DMA_CAP_TXCH, &tmp); num_txch = (tmp & PAS_DMA_CAP_TXCH_TCHN_M) >> PAS_DMA_CAP_TXCH_TCHN_S; pci_read_config_dword(dma_pdev, PAS_DMA_CAP_RXCH, &tmp); num_rxch = (tmp & PAS_DMA_CAP_RXCH_RCHN_M) >> PAS_DMA_CAP_RXCH_RCHN_S; intf = 0; for (pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa006, NULL); pdev; pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa006, pdev)) mac_regs[intf++] = map_onedev(pdev, 0); pci_dev_put(pdev); for (pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa005, NULL); pdev; pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa005, pdev)) mac_regs[intf++] = map_onedev(pdev, 0); pci_dev_put(pdev); dn = pci_device_to_OF_node(iob_pdev); if (dn) err = of_address_to_resource(dn, 1, &res); if (!dn || err) { /* Fallback for old firmware */ res.start = 0xfd800000; res.end = res.start + 0x1000; } dma_status = __ioremap(res.start, resource_size(&res), 0); pci_dev_put(iob_pdev); for (i = 0; i < MAX_TXCH; i++) __set_bit(i, txch_free); for (i = 0; i < MAX_RXCH; i++) __set_bit(i, rxch_free); timeout = jiffies + HZ; pasemi_write_dma_reg(PAS_DMA_COM_RXCMD, 0); while (pasemi_read_dma_reg(PAS_DMA_COM_RXSTA) & 1) { if (time_after(jiffies, timeout)) { pr_warning("Warning: Could not disable RX section\n"); break; } } timeout = jiffies + HZ; pasemi_write_dma_reg(PAS_DMA_COM_TXCMD, 0); while (pasemi_read_dma_reg(PAS_DMA_COM_TXSTA) & 1) { if (time_after(jiffies, timeout)) { pr_warning("Warning: Could not disable TX section\n"); break; } } /* setup resource allocations for the different DMA sections */ tmp = pasemi_read_dma_reg(PAS_DMA_COM_CFG); pasemi_write_dma_reg(PAS_DMA_COM_CFG, tmp | 0x18000000); /* enable tx section */ pasemi_write_dma_reg(PAS_DMA_COM_TXCMD, PAS_DMA_COM_TXCMD_EN); /* enable rx section */ pasemi_write_dma_reg(PAS_DMA_COM_RXCMD, PAS_DMA_COM_RXCMD_EN); for (i = 0; i < MAX_FLAGS; i++) __set_bit(i, flags_free); for (i = 0; i < MAX_FUN; i++) __set_bit(i, fun_free); /* clear all status flags */ pasemi_write_dma_reg(PAS_DMA_TXF_CFLG0, 0xffffffff); pasemi_write_dma_reg(PAS_DMA_TXF_CFLG1, 0xffffffff); printk(KERN_INFO "PA Semi PWRficient DMA library initialized " "(%d tx, %d rx channels)\n", num_txch, num_rxch); out: spin_unlock(&init_lock); return err; } EXPORT_SYMBOL(pasemi_dma_init);