/* * linux/arch/unicore32/kernel/irq.c * * Code specific to PKUnity SoC and UniCore ISA * * Copyright (C) 2001-2010 GUAN Xue-tao * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/signal.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/random.h> #include <linux/smp.h> #include <linux/init.h> #include <linux/seq_file.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/kallsyms.h> #include <linux/proc_fs.h> #include <linux/syscore_ops.h> #include <linux/gpio.h> #include <mach/hardware.h> #include "setup.h" /* * PKUnity GPIO edge detection for IRQs: * IRQs are generated on Falling-Edge, Rising-Edge, or both. * Use this instead of directly setting GRER/GFER. */ static int GPIO_IRQ_rising_edge; static int GPIO_IRQ_falling_edge; static int GPIO_IRQ_mask = 0; #define GPIO_MASK(irq) (1 << (irq - IRQ_GPIO0)) static int puv3_gpio_type(struct irq_data *d, unsigned int type) { unsigned int mask; if (d->irq < IRQ_GPIOHIGH) mask = 1 << d->irq; else mask = GPIO_MASK(d->irq); if (type == IRQ_TYPE_PROBE) { if ((GPIO_IRQ_rising_edge | GPIO_IRQ_falling_edge) & mask) return 0; type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; } if (type & IRQ_TYPE_EDGE_RISING) GPIO_IRQ_rising_edge |= mask; else GPIO_IRQ_rising_edge &= ~mask; if (type & IRQ_TYPE_EDGE_FALLING) GPIO_IRQ_falling_edge |= mask; else GPIO_IRQ_falling_edge &= ~mask; writel(GPIO_IRQ_rising_edge & GPIO_IRQ_mask, GPIO_GRER); writel(GPIO_IRQ_falling_edge & GPIO_IRQ_mask, GPIO_GFER); return 0; } /* * GPIO IRQs must be acknowledged. This is for IRQs from 0 to 7. */ static void puv3_low_gpio_ack(struct irq_data *d) { writel((1 << d->irq), GPIO_GEDR); } static void puv3_low_gpio_mask(struct irq_data *d) { writel(readl(INTC_ICMR) & ~(1 << d->irq), INTC_ICMR); } static void puv3_low_gpio_unmask(struct irq_data *d) { writel(readl(INTC_ICMR) | (1 << d->irq), INTC_ICMR); } static int puv3_low_gpio_wake(struct irq_data *d, unsigned int on) { if (on) writel(readl(PM_PWER) | (1 << d->irq), PM_PWER); else writel(readl(PM_PWER) & ~(1 << d->irq), PM_PWER); return 0; } static struct irq_chip puv3_low_gpio_chip = { .name = "GPIO-low", .irq_ack = puv3_low_gpio_ack, .irq_mask = puv3_low_gpio_mask, .irq_unmask = puv3_low_gpio_unmask, .irq_set_type = puv3_gpio_type, .irq_set_wake = puv3_low_gpio_wake, }; /* * IRQ8 (GPIO0 through 27) handler. We enter here with the * irq_controller_lock held, and IRQs disabled. Decode the IRQ * and call the handler. */ static void puv3_gpio_handler(struct irq_desc *desc) { unsigned int mask, irq; mask = readl(GPIO_GEDR); do { /* * clear down all currently active IRQ sources. * We will be processing them all. */ writel(mask, GPIO_GEDR); irq = IRQ_GPIO0; do { if (mask & 1) generic_handle_irq(irq); mask >>= 1; irq++; } while (mask); mask = readl(GPIO_GEDR); } while (mask); } /* * GPIO0-27 edge IRQs need to be handled specially. * In addition, the IRQs are all collected up into one bit in the * interrupt controller registers. */ static void puv3_high_gpio_ack(struct irq_data *d) { unsigned int mask = GPIO_MASK(d->irq); writel(mask, GPIO_GEDR); } static void puv3_high_gpio_mask(struct irq_data *d) { unsigned int mask = GPIO_MASK(d->irq); GPIO_IRQ_mask &= ~mask; writel(readl(GPIO_GRER) & ~mask, GPIO_GRER); writel(readl(GPIO_GFER) & ~mask, GPIO_GFER); } static void puv3_high_gpio_unmask(struct irq_data *d) { unsigned int mask = GPIO_MASK(d->irq); GPIO_IRQ_mask |= mask; writel(GPIO_IRQ_rising_edge & GPIO_IRQ_mask, GPIO_GRER); writel(GPIO_IRQ_falling_edge & GPIO_IRQ_mask, GPIO_GFER); } static int puv3_high_gpio_wake(struct irq_data *d, unsigned int on) { if (on) writel(readl(PM_PWER) | PM_PWER_GPIOHIGH, PM_PWER); else writel(readl(PM_PWER) & ~PM_PWER_GPIOHIGH, PM_PWER); return 0; } static struct irq_chip puv3_high_gpio_chip = { .name = "GPIO-high", .irq_ack = puv3_high_gpio_ack, .irq_mask = puv3_high_gpio_mask, .irq_unmask = puv3_high_gpio_unmask, .irq_set_type = puv3_gpio_type, .irq_set_wake = puv3_high_gpio_wake, }; /* * We don't need to ACK IRQs on the PKUnity unless they're GPIOs * this is for internal IRQs i.e. from 8 to 31. */ static void puv3_mask_irq(struct irq_data *d) { writel(readl(INTC_ICMR) & ~(1 << d->irq), INTC_ICMR); } static void puv3_unmask_irq(struct irq_data *d) { writel(readl(INTC_ICMR) | (1 << d->irq), INTC_ICMR); } /* * Apart form GPIOs, only the RTC alarm can be a wakeup event. */ static int puv3_set_wake(struct irq_data *d, unsigned int on) { if (d->irq == IRQ_RTCAlarm) { if (on) writel(readl(PM_PWER) | PM_PWER_RTC, PM_PWER); else writel(readl(PM_PWER) & ~PM_PWER_RTC, PM_PWER); return 0; } return -EINVAL; } static struct irq_chip puv3_normal_chip = { .name = "PKUnity-v3", .irq_ack = puv3_mask_irq, .irq_mask = puv3_mask_irq, .irq_unmask = puv3_unmask_irq, .irq_set_wake = puv3_set_wake, }; static struct resource irq_resource = { .name = "irqs", .start = io_v2p(PKUNITY_INTC_BASE), .end = io_v2p(PKUNITY_INTC_BASE) + 0xFFFFF, }; static struct puv3_irq_state { unsigned int saved; unsigned int icmr; unsigned int iclr; unsigned int iccr; } puv3_irq_state; static int puv3_irq_suspend(void) { struct puv3_irq_state *st = &puv3_irq_state; st->saved = 1; st->icmr = readl(INTC_ICMR); st->iclr = readl(INTC_ICLR); st->iccr = readl(INTC_ICCR); /* * Disable all GPIO-based interrupts. */ writel(readl(INTC_ICMR) & ~(0x1ff), INTC_ICMR); /* * Set the appropriate edges for wakeup. */ writel(readl(PM_PWER) & GPIO_IRQ_rising_edge, GPIO_GRER); writel(readl(PM_PWER) & GPIO_IRQ_falling_edge, GPIO_GFER); /* * Clear any pending GPIO interrupts. */ writel(readl(GPIO_GEDR), GPIO_GEDR); return 0; } static void puv3_irq_resume(void) { struct puv3_irq_state *st = &puv3_irq_state; if (st->saved) { writel(st->iccr, INTC_ICCR); writel(st->iclr, INTC_ICLR); writel(GPIO_IRQ_rising_edge & GPIO_IRQ_mask, GPIO_GRER); writel(GPIO_IRQ_falling_edge & GPIO_IRQ_mask, GPIO_GFER); writel(st->icmr, INTC_ICMR); } } static struct syscore_ops puv3_irq_syscore_ops = { .suspend = puv3_irq_suspend, .resume = puv3_irq_resume, }; static int __init puv3_irq_init_syscore(void) { register_syscore_ops(&puv3_irq_syscore_ops); return 0; } device_initcall(puv3_irq_init_syscore); void __init init_IRQ(void) { unsigned int irq; request_resource(&iomem_resource, &irq_resource); /* disable all IRQs */ writel(0, INTC_ICMR); /* all IRQs are IRQ, not REAL */ writel(0, INTC_ICLR); /* clear all GPIO edge detects */ writel(FMASK(8, 0) & ~FIELD(1, 1, GPI_SOFF_REQ), GPIO_GPIR); writel(0, GPIO_GFER); writel(0, GPIO_GRER); writel(0x0FFFFFFF, GPIO_GEDR); writel(1, INTC_ICCR); for (irq = 0; irq < IRQ_GPIOHIGH; irq++) { irq_set_chip(irq, &puv3_low_gpio_chip); irq_set_handler(irq, handle_edge_irq); irq_modify_status(irq, IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN, 0); } for (irq = IRQ_GPIOHIGH + 1; irq < IRQ_GPIO0; irq++) { irq_set_chip(irq, &puv3_normal_chip); irq_set_handler(irq, handle_level_irq); irq_modify_status(irq, IRQ_NOREQUEST | IRQ_NOAUTOEN, IRQ_NOPROBE); } for (irq = IRQ_GPIO0; irq <= IRQ_GPIO27; irq++) { irq_set_chip(irq, &puv3_high_gpio_chip); irq_set_handler(irq, handle_edge_irq); irq_modify_status(irq, IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN, 0); } /* * Install handler for GPIO 0-27 edge detect interrupts */ irq_set_chip(IRQ_GPIOHIGH, &puv3_normal_chip); irq_set_chained_handler(IRQ_GPIOHIGH, puv3_gpio_handler); #ifdef CONFIG_PUV3_GPIO puv3_init_gpio(); #endif } /* * do_IRQ handles all hardware IRQ's. Decoded IRQs should not * come via this function. Instead, they should provide their * own 'handler' */ asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); irq_enter(); /* * Some hardware gives randomly wrong interrupts. Rather * than crashing, do something sensible. */ if (unlikely(irq >= nr_irqs)) { if (printk_ratelimit()) printk(KERN_WARNING "Bad IRQ%u\n", irq); ack_bad_irq(irq); } else { generic_handle_irq(irq); } irq_exit(); set_irq_regs(old_regs); }