/* * Cryptographic API. * * Glue code for the SHA1 Secure Hash Algorithm assembler implementation using * Supplemental SSE3 instructions. * * This file is based on sha1_generic.c * * Copyright (c) Alan Smithee. * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> * Copyright (c) Jean-Francois Dive <jef@linuxbe.org> * Copyright (c) Mathias Krause <minipli@googlemail.com> * Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <crypto/internal/hash.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/cryptohash.h> #include <linux/types.h> #include <crypto/sha.h> #include <crypto/sha1_base.h> #include <asm/fpu/api.h> typedef void (sha1_transform_fn)(u32 *digest, const char *data, unsigned int rounds); static int sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len, sha1_transform_fn *sha1_xform) { struct sha1_state *sctx = shash_desc_ctx(desc); if (!irq_fpu_usable() || (sctx->count % SHA1_BLOCK_SIZE) + len < SHA1_BLOCK_SIZE) return crypto_sha1_update(desc, data, len); /* make sure casting to sha1_block_fn() is safe */ BUILD_BUG_ON(offsetof(struct sha1_state, state) != 0); kernel_fpu_begin(); sha1_base_do_update(desc, data, len, (sha1_block_fn *)sha1_xform); kernel_fpu_end(); return 0; } static int sha1_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out, sha1_transform_fn *sha1_xform) { if (!irq_fpu_usable()) return crypto_sha1_finup(desc, data, len, out); kernel_fpu_begin(); if (len) sha1_base_do_update(desc, data, len, (sha1_block_fn *)sha1_xform); sha1_base_do_finalize(desc, (sha1_block_fn *)sha1_xform); kernel_fpu_end(); return sha1_base_finish(desc, out); } asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data, unsigned int rounds); static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_transform_ssse3); } static int sha1_ssse3_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_transform_ssse3); } /* Add padding and return the message digest. */ static int sha1_ssse3_final(struct shash_desc *desc, u8 *out) { return sha1_ssse3_finup(desc, NULL, 0, out); } static struct shash_alg sha1_ssse3_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_ssse3_update, .final = sha1_ssse3_final, .finup = sha1_ssse3_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-ssse3", .cra_priority = 150, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_ssse3(void) { if (boot_cpu_has(X86_FEATURE_SSSE3)) return crypto_register_shash(&sha1_ssse3_alg); return 0; } static void unregister_sha1_ssse3(void) { if (boot_cpu_has(X86_FEATURE_SSSE3)) crypto_unregister_shash(&sha1_ssse3_alg); } #ifdef CONFIG_AS_AVX asmlinkage void sha1_transform_avx(u32 *digest, const char *data, unsigned int rounds); static int sha1_avx_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_transform_avx); } static int sha1_avx_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_transform_avx); } static int sha1_avx_final(struct shash_desc *desc, u8 *out) { return sha1_avx_finup(desc, NULL, 0, out); } static struct shash_alg sha1_avx_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_avx_update, .final = sha1_avx_final, .finup = sha1_avx_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-avx", .cra_priority = 160, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static bool avx_usable(void) { if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) { if (cpu_has_avx) pr_info("AVX detected but unusable.\n"); return false; } return true; } static int register_sha1_avx(void) { if (avx_usable()) return crypto_register_shash(&sha1_avx_alg); return 0; } static void unregister_sha1_avx(void) { if (avx_usable()) crypto_unregister_shash(&sha1_avx_alg); } #else /* CONFIG_AS_AVX */ static inline int register_sha1_avx(void) { return 0; } static inline void unregister_sha1_avx(void) { } #endif /* CONFIG_AS_AVX */ #if defined(CONFIG_AS_AVX2) && (CONFIG_AS_AVX) #define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */ asmlinkage void sha1_transform_avx2(u32 *digest, const char *data, unsigned int rounds); static bool avx2_usable(void) { if (avx_usable() && boot_cpu_has(X86_FEATURE_AVX2) && boot_cpu_has(X86_FEATURE_BMI1) && boot_cpu_has(X86_FEATURE_BMI2)) return true; return false; } static void sha1_apply_transform_avx2(u32 *digest, const char *data, unsigned int rounds) { /* Select the optimal transform based on data block size */ if (rounds >= SHA1_AVX2_BLOCK_OPTSIZE) sha1_transform_avx2(digest, data, rounds); else sha1_transform_avx(digest, data, rounds); } static int sha1_avx2_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_apply_transform_avx2); } static int sha1_avx2_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_apply_transform_avx2); } static int sha1_avx2_final(struct shash_desc *desc, u8 *out) { return sha1_avx2_finup(desc, NULL, 0, out); } static struct shash_alg sha1_avx2_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_avx2_update, .final = sha1_avx2_final, .finup = sha1_avx2_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-avx2", .cra_priority = 170, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_avx2(void) { if (avx2_usable()) return crypto_register_shash(&sha1_avx2_alg); return 0; } static void unregister_sha1_avx2(void) { if (avx2_usable()) crypto_unregister_shash(&sha1_avx2_alg); } #else static inline int register_sha1_avx2(void) { return 0; } static inline void unregister_sha1_avx2(void) { } #endif #ifdef CONFIG_AS_SHA1_NI asmlinkage void sha1_ni_transform(u32 *digest, const char *data, unsigned int rounds); static int sha1_ni_update(struct shash_desc *desc, const u8 *data, unsigned int len) { return sha1_update(desc, data, len, (sha1_transform_fn *) sha1_ni_transform); } static int sha1_ni_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return sha1_finup(desc, data, len, out, (sha1_transform_fn *) sha1_ni_transform); } static int sha1_ni_final(struct shash_desc *desc, u8 *out) { return sha1_ni_finup(desc, NULL, 0, out); } static struct shash_alg sha1_ni_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_base_init, .update = sha1_ni_update, .final = sha1_ni_final, .finup = sha1_ni_finup, .descsize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-ni", .cra_priority = 250, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; static int register_sha1_ni(void) { if (boot_cpu_has(X86_FEATURE_SHA_NI)) return crypto_register_shash(&sha1_ni_alg); return 0; } static void unregister_sha1_ni(void) { if (boot_cpu_has(X86_FEATURE_SHA_NI)) crypto_unregister_shash(&sha1_ni_alg); } #else static inline int register_sha1_ni(void) { return 0; } static inline void unregister_sha1_ni(void) { } #endif static int __init sha1_ssse3_mod_init(void) { if (register_sha1_ssse3()) goto fail; if (register_sha1_avx()) { unregister_sha1_ssse3(); goto fail; } if (register_sha1_avx2()) { unregister_sha1_avx(); unregister_sha1_ssse3(); goto fail; } if (register_sha1_ni()) { unregister_sha1_avx2(); unregister_sha1_avx(); unregister_sha1_ssse3(); goto fail; } return 0; fail: return -ENODEV; } static void __exit sha1_ssse3_mod_fini(void) { unregister_sha1_ni(); unregister_sha1_avx2(); unregister_sha1_avx(); unregister_sha1_ssse3(); } module_init(sha1_ssse3_mod_init); module_exit(sha1_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated"); MODULE_ALIAS_CRYPTO("sha1");