/* * Kernel-based Virtual Machine -- Performance Monitoring Unit support * * Copyright 2015 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity <avi@redhat.com> * Gleb Natapov <gleb@redhat.com> * Wei Huang <wei@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include <linux/types.h> #include <linux/kvm_host.h> #include <linux/perf_event.h> #include <asm/perf_event.h> #include "x86.h" #include "cpuid.h" #include "lapic.h" #include "pmu.h" /* NOTE: * - Each perf counter is defined as "struct kvm_pmc"; * - There are two types of perf counters: general purpose (gp) and fixed. * gp counters are stored in gp_counters[] and fixed counters are stored * in fixed_counters[] respectively. Both of them are part of "struct * kvm_pmu"; * - pmu.c understands the difference between gp counters and fixed counters. * However AMD doesn't support fixed-counters; * - There are three types of index to access perf counters (PMC): * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD * has MSR_K7_PERFCTRn. * 2. MSR Index (named idx): This normally is used by RDPMC instruction. * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except * that it also supports fixed counters. idx can be used to as index to * gp and fixed counters. * 3. Global PMC Index (named pmc): pmc is an index specific to PMU * code. Each pmc, stored in kvm_pmc.idx field, is unique across * all perf counters (both gp and fixed). The mapping relationship * between pmc and perf counters is as the following: * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters */ static void kvm_pmi_trigger_fn(struct irq_work *irq_work) { struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); kvm_pmu_deliver_pmi(vcpu); } static void kvm_perf_overflow(struct perf_event *perf_event, struct perf_sample_data *data, struct pt_regs *regs) { struct kvm_pmc *pmc = perf_event->overflow_handler_context; struct kvm_pmu *pmu = pmc_to_pmu(pmc); if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) { __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); kvm_make_request(KVM_REQ_PMU, pmc->vcpu); } } static void kvm_perf_overflow_intr(struct perf_event *perf_event, struct perf_sample_data *data, struct pt_regs *regs) { struct kvm_pmc *pmc = perf_event->overflow_handler_context; struct kvm_pmu *pmu = pmc_to_pmu(pmc); if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) { __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); kvm_make_request(KVM_REQ_PMU, pmc->vcpu); /* * Inject PMI. If vcpu was in a guest mode during NMI PMI * can be ejected on a guest mode re-entry. Otherwise we can't * be sure that vcpu wasn't executing hlt instruction at the * time of vmexit and is not going to re-enter guest mode until * woken up. So we should wake it, but this is impossible from * NMI context. Do it from irq work instead. */ if (!kvm_is_in_guest()) irq_work_queue(&pmc_to_pmu(pmc)->irq_work); else kvm_make_request(KVM_REQ_PMI, pmc->vcpu); } } static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, unsigned config, bool exclude_user, bool exclude_kernel, bool intr, bool in_tx, bool in_tx_cp) { struct perf_event *event; struct perf_event_attr attr = { .type = type, .size = sizeof(attr), .pinned = true, .exclude_idle = true, .exclude_host = 1, .exclude_user = exclude_user, .exclude_kernel = exclude_kernel, .config = config, }; if (in_tx) attr.config |= HSW_IN_TX; if (in_tx_cp) attr.config |= HSW_IN_TX_CHECKPOINTED; attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc); event = perf_event_create_kernel_counter(&attr, -1, current, intr ? kvm_perf_overflow_intr : kvm_perf_overflow, pmc); if (IS_ERR(event)) { printk_once("kvm_pmu: event creation failed %ld\n", PTR_ERR(event)); return; } pmc->perf_event = event; clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi); } void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) { unsigned config, type = PERF_TYPE_RAW; u8 event_select, unit_mask; if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) printk_once("kvm pmu: pin control bit is ignored\n"); pmc->eventsel = eventsel; pmc_stop_counter(pmc); if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc)) return; event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT; unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | ARCH_PERFMON_EVENTSEL_INV | ARCH_PERFMON_EVENTSEL_CMASK | HSW_IN_TX | HSW_IN_TX_CHECKPOINTED))) { config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc), event_select, unit_mask); if (config != PERF_COUNT_HW_MAX) type = PERF_TYPE_HARDWARE; } if (type == PERF_TYPE_RAW) config = eventsel & X86_RAW_EVENT_MASK; pmc_reprogram_counter(pmc, type, config, !(eventsel & ARCH_PERFMON_EVENTSEL_USR), !(eventsel & ARCH_PERFMON_EVENTSEL_OS), eventsel & ARCH_PERFMON_EVENTSEL_INT, (eventsel & HSW_IN_TX), (eventsel & HSW_IN_TX_CHECKPOINTED)); } EXPORT_SYMBOL_GPL(reprogram_gp_counter); void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx) { unsigned en_field = ctrl & 0x3; bool pmi = ctrl & 0x8; pmc_stop_counter(pmc); if (!en_field || !pmc_is_enabled(pmc)) return; pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE, kvm_x86_ops->pmu_ops->find_fixed_event(idx), !(en_field & 0x2), /* exclude user */ !(en_field & 0x1), /* exclude kernel */ pmi, false, false); } EXPORT_SYMBOL_GPL(reprogram_fixed_counter); void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx) { struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx); if (!pmc) return; if (pmc_is_gp(pmc)) reprogram_gp_counter(pmc, pmc->eventsel); else { int idx = pmc_idx - INTEL_PMC_IDX_FIXED; u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx); reprogram_fixed_counter(pmc, ctrl, idx); } } EXPORT_SYMBOL_GPL(reprogram_counter); void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); u64 bitmask; int bit; bitmask = pmu->reprogram_pmi; for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) { struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit); if (unlikely(!pmc || !pmc->perf_event)) { clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi); continue; } reprogram_counter(pmu, bit); } } /* check if idx is a valid index to access PMU */ int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx) { return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx); } int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) { bool fast_mode = idx & (1u << 31); struct kvm_pmc *pmc; u64 ctr_val; pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx); if (!pmc) return 1; ctr_val = pmc_read_counter(pmc); if (fast_mode) ctr_val = (u32)ctr_val; *data = ctr_val; return 0; } void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) { if (vcpu->arch.apic) kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); } bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) { return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr); } int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data) { return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data); } int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info); } /* refresh PMU settings. This function generally is called when underlying * settings are changed (such as changes of PMU CPUID by guest VMs), which * should rarely happen. */ void kvm_pmu_refresh(struct kvm_vcpu *vcpu) { kvm_x86_ops->pmu_ops->refresh(vcpu); } void kvm_pmu_reset(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); irq_work_sync(&pmu->irq_work); kvm_x86_ops->pmu_ops->reset(vcpu); } void kvm_pmu_init(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); memset(pmu, 0, sizeof(*pmu)); kvm_x86_ops->pmu_ops->init(vcpu); init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); kvm_pmu_refresh(vcpu); } void kvm_pmu_destroy(struct kvm_vcpu *vcpu) { kvm_pmu_reset(vcpu); }