/* * Split spinlock implementation out into its own file, so it can be * compiled in a FTRACE-compatible way. */ #include <linux/kernel_stat.h> #include <linux/spinlock.h> #include <linux/debugfs.h> #include <linux/log2.h> #include <linux/gfp.h> #include <linux/slab.h> #include <asm/paravirt.h> #include <xen/interface/xen.h> #include <xen/events.h> #include "xen-ops.h" #include "debugfs.h" static DEFINE_PER_CPU(int, lock_kicker_irq) = -1; static DEFINE_PER_CPU(char *, irq_name); static bool xen_pvspin = true; #ifdef CONFIG_QUEUED_SPINLOCKS #include <asm/qspinlock.h> static void xen_qlock_kick(int cpu) { xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR); } /* * Halt the current CPU & release it back to the host */ static void xen_qlock_wait(u8 *byte, u8 val) { int irq = __this_cpu_read(lock_kicker_irq); /* If kicker interrupts not initialized yet, just spin */ if (irq == -1) return; /* clear pending */ xen_clear_irq_pending(irq); barrier(); /* * We check the byte value after clearing pending IRQ to make sure * that we won't miss a wakeup event because of the clearing. * * The sync_clear_bit() call in xen_clear_irq_pending() is atomic. * So it is effectively a memory barrier for x86. */ if (READ_ONCE(*byte) != val) return; /* * If an interrupt happens here, it will leave the wakeup irq * pending, which will cause xen_poll_irq() to return * immediately. */ /* Block until irq becomes pending (or perhaps a spurious wakeup) */ xen_poll_irq(irq); } #else /* CONFIG_QUEUED_SPINLOCKS */ enum xen_contention_stat { TAKEN_SLOW, TAKEN_SLOW_PICKUP, TAKEN_SLOW_SPURIOUS, RELEASED_SLOW, RELEASED_SLOW_KICKED, NR_CONTENTION_STATS }; #ifdef CONFIG_XEN_DEBUG_FS #define HISTO_BUCKETS 30 static struct xen_spinlock_stats { u32 contention_stats[NR_CONTENTION_STATS]; u32 histo_spin_blocked[HISTO_BUCKETS+1]; u64 time_blocked; } spinlock_stats; static u8 zero_stats; static inline void check_zero(void) { u8 ret; u8 old = READ_ONCE(zero_stats); if (unlikely(old)) { ret = cmpxchg(&zero_stats, old, 0); /* This ensures only one fellow resets the stat */ if (ret == old) memset(&spinlock_stats, 0, sizeof(spinlock_stats)); } } static inline void add_stats(enum xen_contention_stat var, u32 val) { check_zero(); spinlock_stats.contention_stats[var] += val; } static inline u64 spin_time_start(void) { return xen_clocksource_read(); } static void __spin_time_accum(u64 delta, u32 *array) { unsigned index = ilog2(delta); check_zero(); if (index < HISTO_BUCKETS) array[index]++; else array[HISTO_BUCKETS]++; } static inline void spin_time_accum_blocked(u64 start) { u32 delta = xen_clocksource_read() - start; __spin_time_accum(delta, spinlock_stats.histo_spin_blocked); spinlock_stats.time_blocked += delta; } #else /* !CONFIG_XEN_DEBUG_FS */ static inline void add_stats(enum xen_contention_stat var, u32 val) { } static inline u64 spin_time_start(void) { return 0; } static inline void spin_time_accum_blocked(u64 start) { } #endif /* CONFIG_XEN_DEBUG_FS */ struct xen_lock_waiting { struct arch_spinlock *lock; __ticket_t want; }; static DEFINE_PER_CPU(struct xen_lock_waiting, lock_waiting); static cpumask_t waiting_cpus; __visible void xen_lock_spinning(struct arch_spinlock *lock, __ticket_t want) { int irq = __this_cpu_read(lock_kicker_irq); struct xen_lock_waiting *w = this_cpu_ptr(&lock_waiting); int cpu = smp_processor_id(); u64 start; __ticket_t head; unsigned long flags; /* If kicker interrupts not initialized yet, just spin */ if (irq == -1) return; start = spin_time_start(); /* * Make sure an interrupt handler can't upset things in a * partially setup state. */ local_irq_save(flags); /* * We don't really care if we're overwriting some other * (lock,want) pair, as that would mean that we're currently * in an interrupt context, and the outer context had * interrupts enabled. That has already kicked the VCPU out * of xen_poll_irq(), so it will just return spuriously and * retry with newly setup (lock,want). * * The ordering protocol on this is that the "lock" pointer * may only be set non-NULL if the "want" ticket is correct. * If we're updating "want", we must first clear "lock". */ w->lock = NULL; smp_wmb(); w->want = want; smp_wmb(); w->lock = lock; /* This uses set_bit, which atomic and therefore a barrier */ cpumask_set_cpu(cpu, &waiting_cpus); add_stats(TAKEN_SLOW, 1); /* clear pending */ xen_clear_irq_pending(irq); /* Only check lock once pending cleared */ barrier(); /* * Mark entry to slowpath before doing the pickup test to make * sure we don't deadlock with an unlocker. */ __ticket_enter_slowpath(lock); /* make sure enter_slowpath, which is atomic does not cross the read */ smp_mb__after_atomic(); /* * check again make sure it didn't become free while * we weren't looking */ head = READ_ONCE(lock->tickets.head); if (__tickets_equal(head, want)) { add_stats(TAKEN_SLOW_PICKUP, 1); goto out; } /* Allow interrupts while blocked */ local_irq_restore(flags); /* * If an interrupt happens here, it will leave the wakeup irq * pending, which will cause xen_poll_irq() to return * immediately. */ /* Block until irq becomes pending (or perhaps a spurious wakeup) */ xen_poll_irq(irq); add_stats(TAKEN_SLOW_SPURIOUS, !xen_test_irq_pending(irq)); local_irq_save(flags); kstat_incr_irq_this_cpu(irq); out: cpumask_clear_cpu(cpu, &waiting_cpus); w->lock = NULL; local_irq_restore(flags); spin_time_accum_blocked(start); } PV_CALLEE_SAVE_REGS_THUNK(xen_lock_spinning); static void xen_unlock_kick(struct arch_spinlock *lock, __ticket_t next) { int cpu; add_stats(RELEASED_SLOW, 1); for_each_cpu(cpu, &waiting_cpus) { const struct xen_lock_waiting *w = &per_cpu(lock_waiting, cpu); /* Make sure we read lock before want */ if (READ_ONCE(w->lock) == lock && READ_ONCE(w->want) == next) { add_stats(RELEASED_SLOW_KICKED, 1); xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR); break; } } } #endif /* CONFIG_QUEUED_SPINLOCKS */ static irqreturn_t dummy_handler(int irq, void *dev_id) { BUG(); return IRQ_HANDLED; } void xen_init_lock_cpu(int cpu) { int irq; char *name; if (!xen_pvspin) return; WARN(per_cpu(lock_kicker_irq, cpu) >= 0, "spinlock on CPU%d exists on IRQ%d!\n", cpu, per_cpu(lock_kicker_irq, cpu)); name = kasprintf(GFP_KERNEL, "spinlock%d", cpu); irq = bind_ipi_to_irqhandler(XEN_SPIN_UNLOCK_VECTOR, cpu, dummy_handler, IRQF_PERCPU|IRQF_NOBALANCING, name, NULL); if (irq >= 0) { disable_irq(irq); /* make sure it's never delivered */ per_cpu(lock_kicker_irq, cpu) = irq; per_cpu(irq_name, cpu) = name; } printk("cpu %d spinlock event irq %d\n", cpu, irq); } void xen_uninit_lock_cpu(int cpu) { if (!xen_pvspin) return; unbind_from_irqhandler(per_cpu(lock_kicker_irq, cpu), NULL); per_cpu(lock_kicker_irq, cpu) = -1; kfree(per_cpu(irq_name, cpu)); per_cpu(irq_name, cpu) = NULL; } /* * Our init of PV spinlocks is split in two init functions due to us * using paravirt patching and jump labels patching and having to do * all of this before SMP code is invoked. * * The paravirt patching needs to be done _before_ the alternative asm code * is started, otherwise we would not patch the core kernel code. */ void __init xen_init_spinlocks(void) { if (!xen_pvspin) { printk(KERN_DEBUG "xen: PV spinlocks disabled\n"); return; } printk(KERN_DEBUG "xen: PV spinlocks enabled\n"); #ifdef CONFIG_QUEUED_SPINLOCKS __pv_init_lock_hash(); pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock); pv_lock_ops.wait = xen_qlock_wait; pv_lock_ops.kick = xen_qlock_kick; #else pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(xen_lock_spinning); pv_lock_ops.unlock_kick = xen_unlock_kick; #endif } /* * While the jump_label init code needs to happend _after_ the jump labels are * enabled and before SMP is started. Hence we use pre-SMP initcall level * init. We cannot do it in xen_init_spinlocks as that is done before * jump labels are activated. */ static __init int xen_init_spinlocks_jump(void) { if (!xen_pvspin) return 0; if (!xen_domain()) return 0; static_key_slow_inc(¶virt_ticketlocks_enabled); return 0; } early_initcall(xen_init_spinlocks_jump); static __init int xen_parse_nopvspin(char *arg) { xen_pvspin = false; return 0; } early_param("xen_nopvspin", xen_parse_nopvspin); #if defined(CONFIG_XEN_DEBUG_FS) && !defined(CONFIG_QUEUED_SPINLOCKS) static struct dentry *d_spin_debug; static int __init xen_spinlock_debugfs(void) { struct dentry *d_xen = xen_init_debugfs(); if (d_xen == NULL) return -ENOMEM; if (!xen_pvspin) return 0; d_spin_debug = debugfs_create_dir("spinlocks", d_xen); debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats); debugfs_create_u32("taken_slow", 0444, d_spin_debug, &spinlock_stats.contention_stats[TAKEN_SLOW]); debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug, &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]); debugfs_create_u32("taken_slow_spurious", 0444, d_spin_debug, &spinlock_stats.contention_stats[TAKEN_SLOW_SPURIOUS]); debugfs_create_u32("released_slow", 0444, d_spin_debug, &spinlock_stats.contention_stats[RELEASED_SLOW]); debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug, &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]); debugfs_create_u64("time_blocked", 0444, d_spin_debug, &spinlock_stats.time_blocked); debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug, spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1); return 0; } fs_initcall(xen_spinlock_debugfs); #endif /* CONFIG_XEN_DEBUG_FS */