/* * Copyright (C) 2011-2013 Renesas Electronics Corporation * Copyright (C) 2013 Cogent Embedded, Inc. * * This file is based on the drivers/dma/sh/shdma.c * * Renesas SuperH DMA Engine support * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * - DMA of SuperH does not have Hardware DMA chain mode. * - max DMA size is 16MB. * */ #include <linux/dmaengine.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/platform_data/dma-rcar-hpbdma.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/shdma-base.h> #include <linux/slab.h> /* DMA channel registers */ #define HPB_DMAE_DSAR0 0x00 #define HPB_DMAE_DDAR0 0x04 #define HPB_DMAE_DTCR0 0x08 #define HPB_DMAE_DSAR1 0x0C #define HPB_DMAE_DDAR1 0x10 #define HPB_DMAE_DTCR1 0x14 #define HPB_DMAE_DSASR 0x18 #define HPB_DMAE_DDASR 0x1C #define HPB_DMAE_DTCSR 0x20 #define HPB_DMAE_DPTR 0x24 #define HPB_DMAE_DCR 0x28 #define HPB_DMAE_DCMDR 0x2C #define HPB_DMAE_DSTPR 0x30 #define HPB_DMAE_DSTSR 0x34 #define HPB_DMAE_DDBGR 0x38 #define HPB_DMAE_DDBGR2 0x3C #define HPB_DMAE_CHAN(n) (0x40 * (n)) /* DMA command register (DCMDR) bits */ #define HPB_DMAE_DCMDR_BDOUT BIT(7) #define HPB_DMAE_DCMDR_DQSPD BIT(6) #define HPB_DMAE_DCMDR_DQSPC BIT(5) #define HPB_DMAE_DCMDR_DMSPD BIT(4) #define HPB_DMAE_DCMDR_DMSPC BIT(3) #define HPB_DMAE_DCMDR_DQEND BIT(2) #define HPB_DMAE_DCMDR_DNXT BIT(1) #define HPB_DMAE_DCMDR_DMEN BIT(0) /* DMA forced stop register (DSTPR) bits */ #define HPB_DMAE_DSTPR_DMSTP BIT(0) /* DMA status register (DSTSR) bits */ #define HPB_DMAE_DSTSR_DQSTS BIT(2) #define HPB_DMAE_DSTSR_DMSTS BIT(0) /* DMA common registers */ #define HPB_DMAE_DTIMR 0x00 #define HPB_DMAE_DINTSR0 0x0C #define HPB_DMAE_DINTSR1 0x10 #define HPB_DMAE_DINTCR0 0x14 #define HPB_DMAE_DINTCR1 0x18 #define HPB_DMAE_DINTMR0 0x1C #define HPB_DMAE_DINTMR1 0x20 #define HPB_DMAE_DACTSR0 0x24 #define HPB_DMAE_DACTSR1 0x28 #define HPB_DMAE_HSRSTR(n) (0x40 + (n) * 4) #define HPB_DMAE_HPB_DMASPR(n) (0x140 + (n) * 4) #define HPB_DMAE_HPB_DMLVLR0 0x160 #define HPB_DMAE_HPB_DMLVLR1 0x164 #define HPB_DMAE_HPB_DMSHPT0 0x168 #define HPB_DMAE_HPB_DMSHPT1 0x16C #define HPB_DMA_SLAVE_NUMBER 256 #define HPB_DMA_TCR_MAX 0x01000000 /* 16 MiB */ struct hpb_dmae_chan { struct shdma_chan shdma_chan; int xfer_mode; /* DMA transfer mode */ #define XFER_SINGLE 1 #define XFER_DOUBLE 2 unsigned plane_idx; /* current DMA information set */ bool first_desc; /* first/next transfer */ int xmit_shift; /* log_2(bytes_per_xfer) */ void __iomem *base; const struct hpb_dmae_slave_config *cfg; char dev_id[16]; /* unique name per DMAC of channel */ dma_addr_t slave_addr; }; struct hpb_dmae_device { struct shdma_dev shdma_dev; spinlock_t reg_lock; /* comm_reg operation lock */ struct hpb_dmae_pdata *pdata; void __iomem *chan_reg; void __iomem *comm_reg; void __iomem *reset_reg; void __iomem *mode_reg; }; struct hpb_dmae_regs { u32 sar; /* SAR / source address */ u32 dar; /* DAR / destination address */ u32 tcr; /* TCR / transfer count */ }; struct hpb_desc { struct shdma_desc shdma_desc; struct hpb_dmae_regs hw; unsigned plane_idx; }; #define to_chan(schan) container_of(schan, struct hpb_dmae_chan, shdma_chan) #define to_desc(sdesc) container_of(sdesc, struct hpb_desc, shdma_desc) #define to_dev(sc) container_of(sc->shdma_chan.dma_chan.device, \ struct hpb_dmae_device, shdma_dev.dma_dev) static void ch_reg_write(struct hpb_dmae_chan *hpb_dc, u32 data, u32 reg) { iowrite32(data, hpb_dc->base + reg); } static u32 ch_reg_read(struct hpb_dmae_chan *hpb_dc, u32 reg) { return ioread32(hpb_dc->base + reg); } static void dcmdr_write(struct hpb_dmae_device *hpbdev, u32 data) { iowrite32(data, hpbdev->chan_reg + HPB_DMAE_DCMDR); } static void hsrstr_write(struct hpb_dmae_device *hpbdev, u32 ch) { iowrite32(0x1, hpbdev->comm_reg + HPB_DMAE_HSRSTR(ch)); } static u32 dintsr_read(struct hpb_dmae_device *hpbdev, u32 ch) { u32 v; if (ch < 32) v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR0) >> ch; else v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR1) >> (ch - 32); return v & 0x1; } static void dintcr_write(struct hpb_dmae_device *hpbdev, u32 ch) { if (ch < 32) iowrite32((0x1 << ch), hpbdev->comm_reg + HPB_DMAE_DINTCR0); else iowrite32((0x1 << (ch - 32)), hpbdev->comm_reg + HPB_DMAE_DINTCR1); } static void asyncmdr_write(struct hpb_dmae_device *hpbdev, u32 data) { iowrite32(data, hpbdev->mode_reg); } static u32 asyncmdr_read(struct hpb_dmae_device *hpbdev) { return ioread32(hpbdev->mode_reg); } static void hpb_dmae_enable_int(struct hpb_dmae_device *hpbdev, u32 ch) { u32 intreg; spin_lock_irq(&hpbdev->reg_lock); if (ch < 32) { intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR0); iowrite32(BIT(ch) | intreg, hpbdev->comm_reg + HPB_DMAE_DINTMR0); } else { intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR1); iowrite32(BIT(ch - 32) | intreg, hpbdev->comm_reg + HPB_DMAE_DINTMR1); } spin_unlock_irq(&hpbdev->reg_lock); } static void hpb_dmae_async_reset(struct hpb_dmae_device *hpbdev, u32 data) { u32 rstr; int timeout = 10000; /* 100 ms */ spin_lock(&hpbdev->reg_lock); rstr = ioread32(hpbdev->reset_reg); rstr |= data; iowrite32(rstr, hpbdev->reset_reg); do { rstr = ioread32(hpbdev->reset_reg); if ((rstr & data) == data) break; udelay(10); } while (timeout--); if (timeout < 0) dev_err(hpbdev->shdma_dev.dma_dev.dev, "%s timeout\n", __func__); rstr &= ~data; iowrite32(rstr, hpbdev->reset_reg); spin_unlock(&hpbdev->reg_lock); } static void hpb_dmae_set_async_mode(struct hpb_dmae_device *hpbdev, u32 mask, u32 data) { u32 mode; spin_lock_irq(&hpbdev->reg_lock); mode = asyncmdr_read(hpbdev); mode &= ~mask; mode |= data; asyncmdr_write(hpbdev, mode); spin_unlock_irq(&hpbdev->reg_lock); } static void hpb_dmae_ctl_stop(struct hpb_dmae_device *hpbdev) { dcmdr_write(hpbdev, HPB_DMAE_DCMDR_DQSPD); } static void hpb_dmae_reset(struct hpb_dmae_device *hpbdev) { u32 ch; for (ch = 0; ch < hpbdev->pdata->num_hw_channels; ch++) hsrstr_write(hpbdev, ch); } static unsigned int calc_xmit_shift(struct hpb_dmae_chan *hpb_chan) { struct hpb_dmae_device *hpbdev = to_dev(hpb_chan); struct hpb_dmae_pdata *pdata = hpbdev->pdata; int width = ch_reg_read(hpb_chan, HPB_DMAE_DCR); int i; switch (width & (HPB_DMAE_DCR_SPDS_MASK | HPB_DMAE_DCR_DPDS_MASK)) { case HPB_DMAE_DCR_SPDS_8BIT | HPB_DMAE_DCR_DPDS_8BIT: default: i = XMIT_SZ_8BIT; break; case HPB_DMAE_DCR_SPDS_16BIT | HPB_DMAE_DCR_DPDS_16BIT: i = XMIT_SZ_16BIT; break; case HPB_DMAE_DCR_SPDS_32BIT | HPB_DMAE_DCR_DPDS_32BIT: i = XMIT_SZ_32BIT; break; } return pdata->ts_shift[i]; } static void hpb_dmae_set_reg(struct hpb_dmae_chan *hpb_chan, struct hpb_dmae_regs *hw, unsigned plane) { ch_reg_write(hpb_chan, hw->sar, plane ? HPB_DMAE_DSAR1 : HPB_DMAE_DSAR0); ch_reg_write(hpb_chan, hw->dar, plane ? HPB_DMAE_DDAR1 : HPB_DMAE_DDAR0); ch_reg_write(hpb_chan, hw->tcr >> hpb_chan->xmit_shift, plane ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0); } static void hpb_dmae_start(struct hpb_dmae_chan *hpb_chan, bool next) { ch_reg_write(hpb_chan, (next ? HPB_DMAE_DCMDR_DNXT : 0) | HPB_DMAE_DCMDR_DMEN, HPB_DMAE_DCMDR); } static void hpb_dmae_halt(struct shdma_chan *schan) { struct hpb_dmae_chan *chan = to_chan(schan); ch_reg_write(chan, HPB_DMAE_DCMDR_DQEND, HPB_DMAE_DCMDR); ch_reg_write(chan, HPB_DMAE_DSTPR_DMSTP, HPB_DMAE_DSTPR); chan->plane_idx = 0; chan->first_desc = true; } static const struct hpb_dmae_slave_config * hpb_dmae_find_slave(struct hpb_dmae_chan *hpb_chan, int slave_id) { struct hpb_dmae_device *hpbdev = to_dev(hpb_chan); struct hpb_dmae_pdata *pdata = hpbdev->pdata; int i; if (slave_id >= HPB_DMA_SLAVE_NUMBER) return NULL; for (i = 0; i < pdata->num_slaves; i++) if (pdata->slaves[i].id == slave_id) return pdata->slaves + i; return NULL; } static void hpb_dmae_start_xfer(struct shdma_chan *schan, struct shdma_desc *sdesc) { struct hpb_dmae_chan *chan = to_chan(schan); struct hpb_dmae_device *hpbdev = to_dev(chan); struct hpb_desc *desc = to_desc(sdesc); if (chan->cfg->flags & HPB_DMAE_SET_ASYNC_RESET) hpb_dmae_async_reset(hpbdev, chan->cfg->rstr); desc->plane_idx = chan->plane_idx; hpb_dmae_set_reg(chan, &desc->hw, chan->plane_idx); hpb_dmae_start(chan, !chan->first_desc); if (chan->xfer_mode == XFER_DOUBLE) { chan->plane_idx ^= 1; chan->first_desc = false; } } static bool hpb_dmae_desc_completed(struct shdma_chan *schan, struct shdma_desc *sdesc) { /* * This is correct since we always have at most single * outstanding DMA transfer per channel, and by the time * we get completion interrupt the transfer is completed. * This will change if we ever use alternating DMA * information sets and submit two descriptors at once. */ return true; } static bool hpb_dmae_chan_irq(struct shdma_chan *schan, int irq) { struct hpb_dmae_chan *chan = to_chan(schan); struct hpb_dmae_device *hpbdev = to_dev(chan); int ch = chan->cfg->dma_ch; /* Check Complete DMA Transfer */ if (dintsr_read(hpbdev, ch)) { /* Clear Interrupt status */ dintcr_write(hpbdev, ch); return true; } return false; } static int hpb_dmae_desc_setup(struct shdma_chan *schan, struct shdma_desc *sdesc, dma_addr_t src, dma_addr_t dst, size_t *len) { struct hpb_desc *desc = to_desc(sdesc); if (*len > (size_t)HPB_DMA_TCR_MAX) *len = (size_t)HPB_DMA_TCR_MAX; desc->hw.sar = src; desc->hw.dar = dst; desc->hw.tcr = *len; return 0; } static size_t hpb_dmae_get_partial(struct shdma_chan *schan, struct shdma_desc *sdesc) { struct hpb_desc *desc = to_desc(sdesc); struct hpb_dmae_chan *chan = to_chan(schan); u32 tcr = ch_reg_read(chan, desc->plane_idx ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0); return (desc->hw.tcr - tcr) << chan->xmit_shift; } static bool hpb_dmae_channel_busy(struct shdma_chan *schan) { struct hpb_dmae_chan *chan = to_chan(schan); u32 dstsr = ch_reg_read(chan, HPB_DMAE_DSTSR); if (chan->xfer_mode == XFER_DOUBLE) return dstsr & HPB_DMAE_DSTSR_DQSTS; else return dstsr & HPB_DMAE_DSTSR_DMSTS; } static int hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan *hpb_chan, const struct hpb_dmae_slave_config *cfg) { struct hpb_dmae_device *hpbdev = to_dev(hpb_chan); struct hpb_dmae_pdata *pdata = hpbdev->pdata; const struct hpb_dmae_channel *channel = pdata->channels; int slave_id = cfg->id; int i, err; for (i = 0; i < pdata->num_channels; i++, channel++) { if (channel->s_id == slave_id) { struct device *dev = hpb_chan->shdma_chan.dev; hpb_chan->base = hpbdev->chan_reg + HPB_DMAE_CHAN(cfg->dma_ch); dev_dbg(dev, "Detected Slave device\n"); dev_dbg(dev, " -- slave_id : 0x%x\n", slave_id); dev_dbg(dev, " -- cfg->dma_ch : %d\n", cfg->dma_ch); dev_dbg(dev, " -- channel->ch_irq: %d\n", channel->ch_irq); break; } } err = shdma_request_irq(&hpb_chan->shdma_chan, channel->ch_irq, IRQF_SHARED, hpb_chan->dev_id); if (err) { dev_err(hpb_chan->shdma_chan.dev, "DMA channel request_irq %d failed with error %d\n", channel->ch_irq, err); return err; } hpb_chan->plane_idx = 0; hpb_chan->first_desc = true; if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == 0) { hpb_chan->xfer_mode = XFER_SINGLE; } else if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) { hpb_chan->xfer_mode = XFER_DOUBLE; } else { dev_err(hpb_chan->shdma_chan.dev, "DCR setting error"); return -EINVAL; } if (cfg->flags & HPB_DMAE_SET_ASYNC_MODE) hpb_dmae_set_async_mode(hpbdev, cfg->mdm, cfg->mdr); ch_reg_write(hpb_chan, cfg->dcr, HPB_DMAE_DCR); ch_reg_write(hpb_chan, cfg->port, HPB_DMAE_DPTR); hpb_chan->xmit_shift = calc_xmit_shift(hpb_chan); hpb_dmae_enable_int(hpbdev, cfg->dma_ch); return 0; } static int hpb_dmae_set_slave(struct shdma_chan *schan, int slave_id, dma_addr_t slave_addr, bool try) { struct hpb_dmae_chan *chan = to_chan(schan); const struct hpb_dmae_slave_config *sc = hpb_dmae_find_slave(chan, slave_id); if (!sc) return -ENODEV; if (try) return 0; chan->cfg = sc; chan->slave_addr = slave_addr ? : sc->addr; return hpb_dmae_alloc_chan_resources(chan, sc); } static void hpb_dmae_setup_xfer(struct shdma_chan *schan, int slave_id) { } static dma_addr_t hpb_dmae_slave_addr(struct shdma_chan *schan) { struct hpb_dmae_chan *chan = to_chan(schan); return chan->slave_addr; } static struct shdma_desc *hpb_dmae_embedded_desc(void *buf, int i) { return &((struct hpb_desc *)buf)[i].shdma_desc; } static const struct shdma_ops hpb_dmae_ops = { .desc_completed = hpb_dmae_desc_completed, .halt_channel = hpb_dmae_halt, .channel_busy = hpb_dmae_channel_busy, .slave_addr = hpb_dmae_slave_addr, .desc_setup = hpb_dmae_desc_setup, .set_slave = hpb_dmae_set_slave, .setup_xfer = hpb_dmae_setup_xfer, .start_xfer = hpb_dmae_start_xfer, .embedded_desc = hpb_dmae_embedded_desc, .chan_irq = hpb_dmae_chan_irq, .get_partial = hpb_dmae_get_partial, }; static int hpb_dmae_chan_probe(struct hpb_dmae_device *hpbdev, int id) { struct shdma_dev *sdev = &hpbdev->shdma_dev; struct platform_device *pdev = to_platform_device(hpbdev->shdma_dev.dma_dev.dev); struct hpb_dmae_chan *new_hpb_chan; struct shdma_chan *schan; /* Alloc channel */ new_hpb_chan = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_chan), GFP_KERNEL); if (!new_hpb_chan) { dev_err(hpbdev->shdma_dev.dma_dev.dev, "No free memory for allocating DMA channels!\n"); return -ENOMEM; } schan = &new_hpb_chan->shdma_chan; schan->max_xfer_len = HPB_DMA_TCR_MAX; shdma_chan_probe(sdev, schan, id); if (pdev->id >= 0) snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id), "hpb-dmae%d.%d", pdev->id, id); else snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id), "hpb-dma.%d", id); return 0; } static int hpb_dmae_probe(struct platform_device *pdev) { const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES; struct hpb_dmae_pdata *pdata = pdev->dev.platform_data; struct hpb_dmae_device *hpbdev; struct dma_device *dma_dev; struct resource *chan, *comm, *rest, *mode, *irq_res; int err, i; /* Get platform data */ if (!pdata || !pdata->num_channels) return -ENODEV; chan = platform_get_resource(pdev, IORESOURCE_MEM, 0); comm = platform_get_resource(pdev, IORESOURCE_MEM, 1); rest = platform_get_resource(pdev, IORESOURCE_MEM, 2); mode = platform_get_resource(pdev, IORESOURCE_MEM, 3); irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!irq_res) return -ENODEV; hpbdev = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_device), GFP_KERNEL); if (!hpbdev) { dev_err(&pdev->dev, "Not enough memory\n"); return -ENOMEM; } hpbdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan); if (IS_ERR(hpbdev->chan_reg)) return PTR_ERR(hpbdev->chan_reg); hpbdev->comm_reg = devm_ioremap_resource(&pdev->dev, comm); if (IS_ERR(hpbdev->comm_reg)) return PTR_ERR(hpbdev->comm_reg); hpbdev->reset_reg = devm_ioremap_resource(&pdev->dev, rest); if (IS_ERR(hpbdev->reset_reg)) return PTR_ERR(hpbdev->reset_reg); hpbdev->mode_reg = devm_ioremap_resource(&pdev->dev, mode); if (IS_ERR(hpbdev->mode_reg)) return PTR_ERR(hpbdev->mode_reg); dma_dev = &hpbdev->shdma_dev.dma_dev; spin_lock_init(&hpbdev->reg_lock); /* Platform data */ hpbdev->pdata = pdata; pm_runtime_enable(&pdev->dev); err = pm_runtime_get_sync(&pdev->dev); if (err < 0) dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err); /* Reset DMA controller */ hpb_dmae_reset(hpbdev); pm_runtime_put(&pdev->dev); dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); dma_dev->src_addr_widths = widths; dma_dev->dst_addr_widths = widths; dma_dev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; hpbdev->shdma_dev.ops = &hpb_dmae_ops; hpbdev->shdma_dev.desc_size = sizeof(struct hpb_desc); err = shdma_init(&pdev->dev, &hpbdev->shdma_dev, pdata->num_channels); if (err < 0) goto error; /* Create DMA channels */ for (i = 0; i < pdata->num_channels; i++) hpb_dmae_chan_probe(hpbdev, i); platform_set_drvdata(pdev, hpbdev); err = dma_async_device_register(dma_dev); if (!err) return 0; shdma_cleanup(&hpbdev->shdma_dev); error: pm_runtime_disable(&pdev->dev); return err; } static void hpb_dmae_chan_remove(struct hpb_dmae_device *hpbdev) { struct shdma_chan *schan; int i; shdma_for_each_chan(schan, &hpbdev->shdma_dev, i) { BUG_ON(!schan); shdma_chan_remove(schan); } } static int hpb_dmae_remove(struct platform_device *pdev) { struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev); dma_async_device_unregister(&hpbdev->shdma_dev.dma_dev); pm_runtime_disable(&pdev->dev); hpb_dmae_chan_remove(hpbdev); return 0; } static void hpb_dmae_shutdown(struct platform_device *pdev) { struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev); hpb_dmae_ctl_stop(hpbdev); } static struct platform_driver hpb_dmae_driver = { .probe = hpb_dmae_probe, .remove = hpb_dmae_remove, .shutdown = hpb_dmae_shutdown, .driver = { .name = "hpb-dma-engine", }, }; module_platform_driver(hpb_dmae_driver); MODULE_AUTHOR("Max Filippov <max.filippov@cogentembedded.com>"); MODULE_DESCRIPTION("Renesas HPB DMA Engine driver"); MODULE_LICENSE("GPL");