/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/device.h> #include <linux/io.h> #include <linux/err.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/smp.h> #include <linux/sysfs.h> #include <linux/stat.h> #include <linux/pm_runtime.h> #include <linux/cpu.h> #include <linux/of.h> #include <linux/coresight.h> #include <linux/amba/bus.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <linux/clk.h> #include <asm/sections.h> #include "coresight-etm.h" static int boot_enable; module_param_named(boot_enable, boot_enable, int, S_IRUGO); /* The number of ETM/PTM currently registered */ static int etm_count; static struct etm_drvdata *etmdrvdata[NR_CPUS]; static inline void etm_writel(struct etm_drvdata *drvdata, u32 val, u32 off) { if (drvdata->use_cp14) { if (etm_writel_cp14(off, val)) { dev_err(drvdata->dev, "invalid CP14 access to ETM reg: %#x", off); } } else { writel_relaxed(val, drvdata->base + off); } } static inline unsigned int etm_readl(struct etm_drvdata *drvdata, u32 off) { u32 val; if (drvdata->use_cp14) { if (etm_readl_cp14(off, &val)) { dev_err(drvdata->dev, "invalid CP14 access to ETM reg: %#x", off); } } else { val = readl_relaxed(drvdata->base + off); } return val; } /* * Memory mapped writes to clear os lock are not supported on some processors * and OS lock must be unlocked before any memory mapped access on such * processors, otherwise memory mapped reads/writes will be invalid. */ static void etm_os_unlock(void *info) { struct etm_drvdata *drvdata = (struct etm_drvdata *)info; /* Writing any value to ETMOSLAR unlocks the trace registers */ etm_writel(drvdata, 0x0, ETMOSLAR); isb(); } static void etm_set_pwrdwn(struct etm_drvdata *drvdata) { u32 etmcr; /* Ensure pending cp14 accesses complete before setting pwrdwn */ mb(); isb(); etmcr = etm_readl(drvdata, ETMCR); etmcr |= ETMCR_PWD_DWN; etm_writel(drvdata, etmcr, ETMCR); } static void etm_clr_pwrdwn(struct etm_drvdata *drvdata) { u32 etmcr; etmcr = etm_readl(drvdata, ETMCR); etmcr &= ~ETMCR_PWD_DWN; etm_writel(drvdata, etmcr, ETMCR); /* Ensure pwrup completes before subsequent cp14 accesses */ mb(); isb(); } static void etm_set_pwrup(struct etm_drvdata *drvdata) { u32 etmpdcr; etmpdcr = readl_relaxed(drvdata->base + ETMPDCR); etmpdcr |= ETMPDCR_PWD_UP; writel_relaxed(etmpdcr, drvdata->base + ETMPDCR); /* Ensure pwrup completes before subsequent cp14 accesses */ mb(); isb(); } static void etm_clr_pwrup(struct etm_drvdata *drvdata) { u32 etmpdcr; /* Ensure pending cp14 accesses complete before clearing pwrup */ mb(); isb(); etmpdcr = readl_relaxed(drvdata->base + ETMPDCR); etmpdcr &= ~ETMPDCR_PWD_UP; writel_relaxed(etmpdcr, drvdata->base + ETMPDCR); } /** * coresight_timeout_etm - loop until a bit has changed to a specific state. * @drvdata: etm's private data structure. * @offset: address of a register, starting from @addr. * @position: the position of the bit of interest. * @value: the value the bit should have. * * Basically the same as @coresight_timeout except for the register access * method where we have to account for CP14 configurations. * Return: 0 as soon as the bit has taken the desired state or -EAGAIN if * TIMEOUT_US has elapsed, which ever happens first. */ static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset, int position, int value) { int i; u32 val; for (i = TIMEOUT_US; i > 0; i--) { val = etm_readl(drvdata, offset); /* Waiting on the bit to go from 0 to 1 */ if (value) { if (val & BIT(position)) return 0; /* Waiting on the bit to go from 1 to 0 */ } else { if (!(val & BIT(position))) return 0; } /* * Delay is arbitrary - the specification doesn't say how long * we are expected to wait. Extra check required to make sure * we don't wait needlessly on the last iteration. */ if (i - 1) udelay(1); } return -EAGAIN; } static void etm_set_prog(struct etm_drvdata *drvdata) { u32 etmcr; etmcr = etm_readl(drvdata, ETMCR); etmcr |= ETMCR_ETM_PRG; etm_writel(drvdata, etmcr, ETMCR); /* * Recommended by spec for cp14 accesses to ensure etmcr write is * complete before polling etmsr */ isb(); if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) { dev_err(drvdata->dev, "%s: timeout observed when probing at offset %#x\n", __func__, ETMSR); } } static void etm_clr_prog(struct etm_drvdata *drvdata) { u32 etmcr; etmcr = etm_readl(drvdata, ETMCR); etmcr &= ~ETMCR_ETM_PRG; etm_writel(drvdata, etmcr, ETMCR); /* * Recommended by spec for cp14 accesses to ensure etmcr write is * complete before polling etmsr */ isb(); if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) { dev_err(drvdata->dev, "%s: timeout observed when probing at offset %#x\n", __func__, ETMSR); } } static void etm_set_default(struct etm_drvdata *drvdata) { int i; drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL; drvdata->enable_event = ETM_HARD_WIRE_RES_A; drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL; drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL; drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL; drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL; drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL; drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL; drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL; for (i = 0; i < drvdata->nr_cntr; i++) { drvdata->cntr_rld_val[i] = 0x0; drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL; drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL; drvdata->cntr_val[i] = 0x0; } drvdata->seq_curr_state = 0x0; drvdata->ctxid_idx = 0x0; for (i = 0; i < drvdata->nr_ctxid_cmp; i++) { drvdata->ctxid_pid[i] = 0x0; drvdata->ctxid_vpid[i] = 0x0; } drvdata->ctxid_mask = 0x0; } static void etm_enable_hw(void *info) { int i; u32 etmcr; struct etm_drvdata *drvdata = info; CS_UNLOCK(drvdata->base); /* Turn engine on */ etm_clr_pwrdwn(drvdata); /* Apply power to trace registers */ etm_set_pwrup(drvdata); /* Make sure all registers are accessible */ etm_os_unlock(drvdata); etm_set_prog(drvdata); etmcr = etm_readl(drvdata, ETMCR); etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG); etmcr |= drvdata->port_size; etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR); etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER); etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR); etm_writel(drvdata, drvdata->enable_event, ETMTEEVR); etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1); etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR); for (i = 0; i < drvdata->nr_addr_cmp; i++) { etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i)); etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i)); } for (i = 0; i < drvdata->nr_cntr; i++) { etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i)); etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i)); etm_writel(drvdata, drvdata->cntr_rld_event[i], ETMCNTRLDEVRn(i)); etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i)); } etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR); etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR); etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR); etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR); etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR); etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR); etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR); for (i = 0; i < drvdata->nr_ext_out; i++) etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i)); for (i = 0; i < drvdata->nr_ctxid_cmp; i++) etm_writel(drvdata, drvdata->ctxid_pid[i], ETMCIDCVRn(i)); etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR); etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR); /* No external input selected */ etm_writel(drvdata, 0x0, ETMEXTINSELR); etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR); /* No auxiliary control selected */ etm_writel(drvdata, 0x0, ETMAUXCR); etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR); /* No VMID comparator value selected */ etm_writel(drvdata, 0x0, ETMVMIDCVR); /* Ensures trace output is enabled from this ETM */ etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR); etm_clr_prog(drvdata); CS_LOCK(drvdata->base); dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu); } static int etm_trace_id(struct coresight_device *csdev) { struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); unsigned long flags; int trace_id = -1; if (!drvdata->enable) return drvdata->traceid; pm_runtime_get_sync(csdev->dev.parent); spin_lock_irqsave(&drvdata->spinlock, flags); CS_UNLOCK(drvdata->base); trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK); CS_LOCK(drvdata->base); spin_unlock_irqrestore(&drvdata->spinlock, flags); pm_runtime_put(csdev->dev.parent); return trace_id; } static int etm_enable(struct coresight_device *csdev) { struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); int ret; pm_runtime_get_sync(csdev->dev.parent); spin_lock(&drvdata->spinlock); /* * Configure the ETM only if the CPU is online. If it isn't online * hw configuration will take place when 'CPU_STARTING' is received * in @etm_cpu_callback. */ if (cpu_online(drvdata->cpu)) { ret = smp_call_function_single(drvdata->cpu, etm_enable_hw, drvdata, 1); if (ret) goto err; } drvdata->enable = true; drvdata->sticky_enable = true; spin_unlock(&drvdata->spinlock); dev_info(drvdata->dev, "ETM tracing enabled\n"); return 0; err: spin_unlock(&drvdata->spinlock); pm_runtime_put(csdev->dev.parent); return ret; } static void etm_disable_hw(void *info) { int i; struct etm_drvdata *drvdata = info; CS_UNLOCK(drvdata->base); etm_set_prog(drvdata); /* Program trace enable to low by using always false event */ etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR); /* Read back sequencer and counters for post trace analysis */ drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK); for (i = 0; i < drvdata->nr_cntr; i++) drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i)); etm_set_pwrdwn(drvdata); CS_LOCK(drvdata->base); dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu); } static void etm_disable(struct coresight_device *csdev) { struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); /* * Taking hotplug lock here protects from clocks getting disabled * with tracing being left on (crash scenario) if user disable occurs * after cpu online mask indicates the cpu is offline but before the * DYING hotplug callback is serviced by the ETM driver. */ get_online_cpus(); spin_lock(&drvdata->spinlock); /* * Executing etm_disable_hw on the cpu whose ETM is being disabled * ensures that register writes occur when cpu is powered. */ smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1); drvdata->enable = false; spin_unlock(&drvdata->spinlock); put_online_cpus(); pm_runtime_put(csdev->dev.parent); dev_info(drvdata->dev, "ETM tracing disabled\n"); } static const struct coresight_ops_source etm_source_ops = { .trace_id = etm_trace_id, .enable = etm_enable, .disable = etm_disable, }; static const struct coresight_ops etm_cs_ops = { .source_ops = &etm_source_ops, }; static ssize_t nr_addr_cmp_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_addr_cmp; return sprintf(buf, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_addr_cmp); static ssize_t nr_cntr_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_cntr; return sprintf(buf, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_cntr); static ssize_t nr_ctxid_cmp_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_ctxid_cmp; return sprintf(buf, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_ctxid_cmp); static ssize_t etmsr_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long flags, val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); pm_runtime_get_sync(drvdata->dev); spin_lock_irqsave(&drvdata->spinlock, flags); CS_UNLOCK(drvdata->base); val = etm_readl(drvdata, ETMSR); CS_LOCK(drvdata->base); spin_unlock_irqrestore(&drvdata->spinlock, flags); pm_runtime_put(drvdata->dev); return sprintf(buf, "%#lx\n", val); } static DEVICE_ATTR_RO(etmsr); static ssize_t reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int i, ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; if (val) { spin_lock(&drvdata->spinlock); drvdata->mode = ETM_MODE_EXCLUDE; drvdata->ctrl = 0x0; drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL; drvdata->startstop_ctrl = 0x0; drvdata->addr_idx = 0x0; for (i = 0; i < drvdata->nr_addr_cmp; i++) { drvdata->addr_val[i] = 0x0; drvdata->addr_acctype[i] = 0x0; drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE; } drvdata->cntr_idx = 0x0; etm_set_default(drvdata); spin_unlock(&drvdata->spinlock); } return size; } static DEVICE_ATTR_WO(reset); static ssize_t mode_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->mode; return sprintf(buf, "%#lx\n", val); } static ssize_t mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); drvdata->mode = val & ETM_MODE_ALL; if (drvdata->mode & ETM_MODE_EXCLUDE) drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC; else drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC; if (drvdata->mode & ETM_MODE_CYCACC) drvdata->ctrl |= ETMCR_CYC_ACC; else drvdata->ctrl &= ~ETMCR_CYC_ACC; if (drvdata->mode & ETM_MODE_STALL) { if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) { dev_warn(drvdata->dev, "stall mode not supported\n"); ret = -EINVAL; goto err_unlock; } drvdata->ctrl |= ETMCR_STALL_MODE; } else drvdata->ctrl &= ~ETMCR_STALL_MODE; if (drvdata->mode & ETM_MODE_TIMESTAMP) { if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) { dev_warn(drvdata->dev, "timestamp not supported\n"); ret = -EINVAL; goto err_unlock; } drvdata->ctrl |= ETMCR_TIMESTAMP_EN; } else drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN; if (drvdata->mode & ETM_MODE_CTXID) drvdata->ctrl |= ETMCR_CTXID_SIZE; else drvdata->ctrl &= ~ETMCR_CTXID_SIZE; spin_unlock(&drvdata->spinlock); return size; err_unlock: spin_unlock(&drvdata->spinlock); return ret; } static DEVICE_ATTR_RW(mode); static ssize_t trigger_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->trigger_event; return sprintf(buf, "%#lx\n", val); } static ssize_t trigger_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->trigger_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(trigger_event); static ssize_t enable_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->enable_event; return sprintf(buf, "%#lx\n", val); } static ssize_t enable_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->enable_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(enable_event); static ssize_t fifofull_level_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->fifofull_level; return sprintf(buf, "%#lx\n", val); } static ssize_t fifofull_level_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->fifofull_level = val; return size; } static DEVICE_ATTR_RW(fifofull_level); static ssize_t addr_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->addr_idx; return sprintf(buf, "%#lx\n", val); } static ssize_t addr_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; if (val >= drvdata->nr_addr_cmp) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->addr_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_idx); static ssize_t addr_single_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) { spin_unlock(&drvdata->spinlock); return -EINVAL; } val = drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t addr_single_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) { spin_unlock(&drvdata->spinlock); return -EINVAL; } drvdata->addr_val[idx] = val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_single); static ssize_t addr_range_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val1, val2; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) || (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) { spin_unlock(&drvdata->spinlock); return -EPERM; } val1 = drvdata->addr_val[idx]; val2 = drvdata->addr_val[idx + 1]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx %#lx\n", val1, val2); } static ssize_t addr_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val1, val2; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); if (sscanf(buf, "%lx %lx", &val1, &val2) != 2) return -EINVAL; /* Lower address comparator cannot have a higher address value */ if (val1 > val2) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) || (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = val1; drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE; drvdata->addr_val[idx + 1] = val2; drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE; drvdata->enable_ctrl1 |= (1 << (idx/2)); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_range); static ssize_t addr_start_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t addr_start_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_START; drvdata->startstop_ctrl |= (1 << idx); drvdata->enable_ctrl1 |= BIT(25); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_start); static ssize_t addr_stop_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t addr_stop_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP; drvdata->startstop_ctrl |= (1 << (idx + 16)); drvdata->enable_ctrl1 |= ETMTECR1_START_STOP; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_stop); static ssize_t addr_acctype_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); val = drvdata->addr_acctype[drvdata->addr_idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t addr_acctype_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); drvdata->addr_acctype[drvdata->addr_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_acctype); static ssize_t cntr_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->cntr_idx; return sprintf(buf, "%#lx\n", val); } static ssize_t cntr_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; if (val >= drvdata->nr_cntr) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->cntr_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_idx); static ssize_t cntr_rld_val_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); val = drvdata->cntr_rld_val[drvdata->cntr_idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t cntr_rld_val_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); drvdata->cntr_rld_val[drvdata->cntr_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_rld_val); static ssize_t cntr_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); val = drvdata->cntr_event[drvdata->cntr_idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t cntr_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_event); static ssize_t cntr_rld_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); val = drvdata->cntr_rld_event[drvdata->cntr_idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t cntr_rld_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_rld_event); static ssize_t cntr_val_show(struct device *dev, struct device_attribute *attr, char *buf) { int i, ret = 0; u32 val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); if (!drvdata->enable) { spin_lock(&drvdata->spinlock); for (i = 0; i < drvdata->nr_cntr; i++) ret += sprintf(buf, "counter %d: %x\n", i, drvdata->cntr_val[i]); spin_unlock(&drvdata->spinlock); return ret; } for (i = 0; i < drvdata->nr_cntr; i++) { val = etm_readl(drvdata, ETMCNTVRn(i)); ret += sprintf(buf, "counter %d: %x\n", i, val); } return ret; } static ssize_t cntr_val_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; spin_lock(&drvdata->spinlock); drvdata->cntr_val[drvdata->cntr_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_val); static ssize_t seq_12_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_12_event; return sprintf(buf, "%#lx\n", val); } static ssize_t seq_12_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->seq_12_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(seq_12_event); static ssize_t seq_21_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_21_event; return sprintf(buf, "%#lx\n", val); } static ssize_t seq_21_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->seq_21_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(seq_21_event); static ssize_t seq_23_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_23_event; return sprintf(buf, "%#lx\n", val); } static ssize_t seq_23_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->seq_23_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(seq_23_event); static ssize_t seq_31_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_31_event; return sprintf(buf, "%#lx\n", val); } static ssize_t seq_31_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->seq_31_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(seq_31_event); static ssize_t seq_32_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_32_event; return sprintf(buf, "%#lx\n", val); } static ssize_t seq_32_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->seq_32_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(seq_32_event); static ssize_t seq_13_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_13_event; return sprintf(buf, "%#lx\n", val); } static ssize_t seq_13_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->seq_13_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(seq_13_event); static ssize_t seq_curr_state_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val, flags; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); if (!drvdata->enable) { val = drvdata->seq_curr_state; goto out; } pm_runtime_get_sync(drvdata->dev); spin_lock_irqsave(&drvdata->spinlock, flags); CS_UNLOCK(drvdata->base); val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK); CS_LOCK(drvdata->base); spin_unlock_irqrestore(&drvdata->spinlock, flags); pm_runtime_put(drvdata->dev); out: return sprintf(buf, "%#lx\n", val); } static ssize_t seq_curr_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; if (val > ETM_SEQ_STATE_MAX_VAL) return -EINVAL; drvdata->seq_curr_state = val; return size; } static DEVICE_ATTR_RW(seq_curr_state); static ssize_t ctxid_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->ctxid_idx; return sprintf(buf, "%#lx\n", val); } static ssize_t ctxid_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; if (val >= drvdata->nr_ctxid_cmp) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->ctxid_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(ctxid_idx); static ssize_t ctxid_pid_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); val = drvdata->ctxid_vpid[drvdata->ctxid_idx]; spin_unlock(&drvdata->spinlock); return sprintf(buf, "%#lx\n", val); } static ssize_t ctxid_pid_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long vpid, pid; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &vpid); if (ret) return ret; pid = coresight_vpid_to_pid(vpid); spin_lock(&drvdata->spinlock); drvdata->ctxid_pid[drvdata->ctxid_idx] = pid; drvdata->ctxid_vpid[drvdata->ctxid_idx] = vpid; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(ctxid_pid); static ssize_t ctxid_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->ctxid_mask; return sprintf(buf, "%#lx\n", val); } static ssize_t ctxid_mask_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->ctxid_mask = val; return size; } static DEVICE_ATTR_RW(ctxid_mask); static ssize_t sync_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->sync_freq; return sprintf(buf, "%#lx\n", val); } static ssize_t sync_freq_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->sync_freq = val & ETM_SYNC_MASK; return size; } static DEVICE_ATTR_RW(sync_freq); static ssize_t timestamp_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->timestamp_event; return sprintf(buf, "%#lx\n", val); } static ssize_t timestamp_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->timestamp_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR_RW(timestamp_event); static ssize_t cpu_show(struct device *dev, struct device_attribute *attr, char *buf) { int val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->cpu; return scnprintf(buf, PAGE_SIZE, "%d\n", val); } static DEVICE_ATTR_RO(cpu); static ssize_t traceid_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val, flags; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); if (!drvdata->enable) { val = drvdata->traceid; goto out; } pm_runtime_get_sync(drvdata->dev); spin_lock_irqsave(&drvdata->spinlock, flags); CS_UNLOCK(drvdata->base); val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK); CS_LOCK(drvdata->base); spin_unlock_irqrestore(&drvdata->spinlock, flags); pm_runtime_put(drvdata->dev); out: return sprintf(buf, "%#lx\n", val); } static ssize_t traceid_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int ret; unsigned long val; struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); ret = kstrtoul(buf, 16, &val); if (ret) return ret; drvdata->traceid = val & ETM_TRACEID_MASK; return size; } static DEVICE_ATTR_RW(traceid); static struct attribute *coresight_etm_attrs[] = { &dev_attr_nr_addr_cmp.attr, &dev_attr_nr_cntr.attr, &dev_attr_nr_ctxid_cmp.attr, &dev_attr_etmsr.attr, &dev_attr_reset.attr, &dev_attr_mode.attr, &dev_attr_trigger_event.attr, &dev_attr_enable_event.attr, &dev_attr_fifofull_level.attr, &dev_attr_addr_idx.attr, &dev_attr_addr_single.attr, &dev_attr_addr_range.attr, &dev_attr_addr_start.attr, &dev_attr_addr_stop.attr, &dev_attr_addr_acctype.attr, &dev_attr_cntr_idx.attr, &dev_attr_cntr_rld_val.attr, &dev_attr_cntr_event.attr, &dev_attr_cntr_rld_event.attr, &dev_attr_cntr_val.attr, &dev_attr_seq_12_event.attr, &dev_attr_seq_21_event.attr, &dev_attr_seq_23_event.attr, &dev_attr_seq_31_event.attr, &dev_attr_seq_32_event.attr, &dev_attr_seq_13_event.attr, &dev_attr_seq_curr_state.attr, &dev_attr_ctxid_idx.attr, &dev_attr_ctxid_pid.attr, &dev_attr_ctxid_mask.attr, &dev_attr_sync_freq.attr, &dev_attr_timestamp_event.attr, &dev_attr_traceid.attr, &dev_attr_cpu.attr, NULL, }; #define coresight_simple_func(name, offset) \ static ssize_t name##_show(struct device *_dev, \ struct device_attribute *attr, char *buf) \ { \ struct etm_drvdata *drvdata = dev_get_drvdata(_dev->parent); \ return scnprintf(buf, PAGE_SIZE, "0x%x\n", \ readl_relaxed(drvdata->base + offset)); \ } \ DEVICE_ATTR_RO(name) coresight_simple_func(etmccr, ETMCCR); coresight_simple_func(etmccer, ETMCCER); coresight_simple_func(etmscr, ETMSCR); coresight_simple_func(etmidr, ETMIDR); coresight_simple_func(etmcr, ETMCR); coresight_simple_func(etmtraceidr, ETMTRACEIDR); coresight_simple_func(etmteevr, ETMTEEVR); coresight_simple_func(etmtssvr, ETMTSSCR); coresight_simple_func(etmtecr1, ETMTECR1); coresight_simple_func(etmtecr2, ETMTECR2); static struct attribute *coresight_etm_mgmt_attrs[] = { &dev_attr_etmccr.attr, &dev_attr_etmccer.attr, &dev_attr_etmscr.attr, &dev_attr_etmidr.attr, &dev_attr_etmcr.attr, &dev_attr_etmtraceidr.attr, &dev_attr_etmteevr.attr, &dev_attr_etmtssvr.attr, &dev_attr_etmtecr1.attr, &dev_attr_etmtecr2.attr, NULL, }; static const struct attribute_group coresight_etm_group = { .attrs = coresight_etm_attrs, }; static const struct attribute_group coresight_etm_mgmt_group = { .attrs = coresight_etm_mgmt_attrs, .name = "mgmt", }; static const struct attribute_group *coresight_etm_groups[] = { &coresight_etm_group, &coresight_etm_mgmt_group, NULL, }; static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; if (!etmdrvdata[cpu]) goto out; switch (action & (~CPU_TASKS_FROZEN)) { case CPU_STARTING: spin_lock(&etmdrvdata[cpu]->spinlock); if (!etmdrvdata[cpu]->os_unlock) { etm_os_unlock(etmdrvdata[cpu]); etmdrvdata[cpu]->os_unlock = true; } if (etmdrvdata[cpu]->enable) etm_enable_hw(etmdrvdata[cpu]); spin_unlock(&etmdrvdata[cpu]->spinlock); break; case CPU_ONLINE: if (etmdrvdata[cpu]->boot_enable && !etmdrvdata[cpu]->sticky_enable) coresight_enable(etmdrvdata[cpu]->csdev); break; case CPU_DYING: spin_lock(&etmdrvdata[cpu]->spinlock); if (etmdrvdata[cpu]->enable) etm_disable_hw(etmdrvdata[cpu]); spin_unlock(&etmdrvdata[cpu]->spinlock); break; } out: return NOTIFY_OK; } static struct notifier_block etm_cpu_notifier = { .notifier_call = etm_cpu_callback, }; static bool etm_arch_supported(u8 arch) { switch (arch) { case ETM_ARCH_V3_3: break; case ETM_ARCH_V3_5: break; case PFT_ARCH_V1_0: break; case PFT_ARCH_V1_1: break; default: return false; } return true; } static void etm_init_arch_data(void *info) { u32 etmidr; u32 etmccr; struct etm_drvdata *drvdata = info; CS_UNLOCK(drvdata->base); /* First dummy read */ (void)etm_readl(drvdata, ETMPDSR); /* Provide power to ETM: ETMPDCR[3] == 1 */ etm_set_pwrup(drvdata); /* * Clear power down bit since when this bit is set writes to * certain registers might be ignored. */ etm_clr_pwrdwn(drvdata); /* * Set prog bit. It will be set from reset but this is included to * ensure it is set */ etm_set_prog(drvdata); /* Find all capabilities */ etmidr = etm_readl(drvdata, ETMIDR); drvdata->arch = BMVAL(etmidr, 4, 11); drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK; drvdata->etmccer = etm_readl(drvdata, ETMCCER); etmccr = etm_readl(drvdata, ETMCCR); drvdata->etmccr = etmccr; drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2; drvdata->nr_cntr = BMVAL(etmccr, 13, 15); drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19); drvdata->nr_ext_out = BMVAL(etmccr, 20, 22); drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25); etm_set_pwrdwn(drvdata); etm_clr_pwrup(drvdata); CS_LOCK(drvdata->base); } static void etm_init_default_data(struct etm_drvdata *drvdata) { /* * A trace ID of value 0 is invalid, so let's start at some * random value that fits in 7 bits and will be just as good. */ static int etm3x_traceid = 0x10; u32 flags = (1 << 0 | /* instruction execute*/ 3 << 3 | /* ARM instruction */ 0 << 5 | /* No data value comparison */ 0 << 7 | /* No exact mach */ 0 << 8 | /* Ignore context ID */ 0 << 10); /* Security ignored */ /* * Initial configuration only - guarantees sources handled by * this driver have a unique ID at startup time but not between * all other types of sources. For that we lean on the core * framework. */ drvdata->traceid = etm3x_traceid++; drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN); drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1; if (drvdata->nr_addr_cmp >= 2) { drvdata->addr_val[0] = (u32) _stext; drvdata->addr_val[1] = (u32) _etext; drvdata->addr_acctype[0] = flags; drvdata->addr_acctype[1] = flags; drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE; drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE; } etm_set_default(drvdata); } static int etm_probe(struct amba_device *adev, const struct amba_id *id) { int ret; void __iomem *base; struct device *dev = &adev->dev; struct coresight_platform_data *pdata = NULL; struct etm_drvdata *drvdata; struct resource *res = &adev->res; struct coresight_desc *desc; struct device_node *np = adev->dev.of_node; desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL); if (!desc) return -ENOMEM; drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; if (np) { pdata = of_get_coresight_platform_data(dev, np); if (IS_ERR(pdata)) return PTR_ERR(pdata); adev->dev.platform_data = pdata; drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14"); } drvdata->dev = &adev->dev; dev_set_drvdata(dev, drvdata); /* Validity for the resource is already checked by the AMBA core */ base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); drvdata->base = base; spin_lock_init(&drvdata->spinlock); drvdata->atclk = devm_clk_get(&adev->dev, "atclk"); /* optional */ if (!IS_ERR(drvdata->atclk)) { ret = clk_prepare_enable(drvdata->atclk); if (ret) return ret; } drvdata->cpu = pdata ? pdata->cpu : 0; get_online_cpus(); etmdrvdata[drvdata->cpu] = drvdata; if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1)) drvdata->os_unlock = true; if (smp_call_function_single(drvdata->cpu, etm_init_arch_data, drvdata, 1)) dev_err(dev, "ETM arch init failed\n"); if (!etm_count++) register_hotcpu_notifier(&etm_cpu_notifier); put_online_cpus(); if (etm_arch_supported(drvdata->arch) == false) { ret = -EINVAL; goto err_arch_supported; } etm_init_default_data(drvdata); desc->type = CORESIGHT_DEV_TYPE_SOURCE; desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC; desc->ops = &etm_cs_ops; desc->pdata = pdata; desc->dev = dev; desc->groups = coresight_etm_groups; drvdata->csdev = coresight_register(desc); if (IS_ERR(drvdata->csdev)) { ret = PTR_ERR(drvdata->csdev); goto err_arch_supported; } pm_runtime_put(&adev->dev); dev_info(dev, "%s initialized\n", (char *)id->data); if (boot_enable) { coresight_enable(drvdata->csdev); drvdata->boot_enable = true; } return 0; err_arch_supported: if (--etm_count == 0) unregister_hotcpu_notifier(&etm_cpu_notifier); return ret; } static int etm_remove(struct amba_device *adev) { struct etm_drvdata *drvdata = amba_get_drvdata(adev); coresight_unregister(drvdata->csdev); if (--etm_count == 0) unregister_hotcpu_notifier(&etm_cpu_notifier); return 0; } #ifdef CONFIG_PM static int etm_runtime_suspend(struct device *dev) { struct etm_drvdata *drvdata = dev_get_drvdata(dev); if (drvdata && !IS_ERR(drvdata->atclk)) clk_disable_unprepare(drvdata->atclk); return 0; } static int etm_runtime_resume(struct device *dev) { struct etm_drvdata *drvdata = dev_get_drvdata(dev); if (drvdata && !IS_ERR(drvdata->atclk)) clk_prepare_enable(drvdata->atclk); return 0; } #endif static const struct dev_pm_ops etm_dev_pm_ops = { SET_RUNTIME_PM_OPS(etm_runtime_suspend, etm_runtime_resume, NULL) }; static struct amba_id etm_ids[] = { { /* ETM 3.3 */ .id = 0x0003b921, .mask = 0x0003ffff, .data = "ETM 3.3", }, { /* ETM 3.5 */ .id = 0x0003b956, .mask = 0x0003ffff, .data = "ETM 3.5", }, { /* PTM 1.0 */ .id = 0x0003b950, .mask = 0x0003ffff, .data = "PTM 1.0", }, { /* PTM 1.1 */ .id = 0x0003b95f, .mask = 0x0003ffff, .data = "PTM 1.1", }, { /* PTM 1.1 Qualcomm */ .id = 0x0003006f, .mask = 0x0003ffff, .data = "PTM 1.1", }, { 0, 0}, }; static struct amba_driver etm_driver = { .drv = { .name = "coresight-etm3x", .owner = THIS_MODULE, .pm = &etm_dev_pm_ops, }, .probe = etm_probe, .remove = etm_remove, .id_table = etm_ids, }; module_amba_driver(etm_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");