/* * kgdbts is a test suite for kgdb for the sole purpose of validating * that key pieces of the kgdb internals are working properly such as * HW/SW breakpoints, single stepping, and NMI. * * Created by: Jason Wessel <jason.wessel@windriver.com> * * Copyright (c) 2008 Wind River Systems, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Information about the kgdb test suite. * ------------------------------------- * * The kgdb test suite is designed as a KGDB I/O module which * simulates the communications that a debugger would have with kgdb. * The tests are broken up in to a line by line and referenced here as * a "get" which is kgdb requesting input and "put" which is kgdb * sending a response. * * The kgdb suite can be invoked from the kernel command line * arguments system or executed dynamically at run time. The test * suite uses the variable "kgdbts" to obtain the information about * which tests to run and to configure the verbosity level. The * following are the various characters you can use with the kgdbts= * line: * * When using the "kgdbts=" you only choose one of the following core * test types: * A = Run all the core tests silently * V1 = Run all the core tests with minimal output * V2 = Run all the core tests in debug mode * * You can also specify optional tests: * N## = Go to sleep with interrupts of for ## seconds * to test the HW NMI watchdog * F## = Break at do_fork for ## iterations * S## = Break at sys_open for ## iterations * I## = Run the single step test ## iterations * * NOTE: that the do_fork and sys_open tests are mutually exclusive. * * To invoke the kgdb test suite from boot you use a kernel start * argument as follows: * kgdbts=V1 kgdbwait * Or if you wanted to perform the NMI test for 6 seconds and do_fork * test for 100 forks, you could use: * kgdbts=V1N6F100 kgdbwait * * The test suite can also be invoked at run time with: * echo kgdbts=V1N6F100 > /sys/module/kgdbts/parameters/kgdbts * Or as another example: * echo kgdbts=V2 > /sys/module/kgdbts/parameters/kgdbts * * When developing a new kgdb arch specific implementation or * using these tests for the purpose of regression testing, * several invocations are required. * * 1) Boot with the test suite enabled by using the kernel arguments * "kgdbts=V1F100 kgdbwait" * ## If kgdb arch specific implementation has NMI use * "kgdbts=V1N6F100 * * 2) After the system boot run the basic test. * echo kgdbts=V1 > /sys/module/kgdbts/parameters/kgdbts * * 3) Run the concurrency tests. It is best to use n+1 * while loops where n is the number of cpus you have * in your system. The example below uses only two * loops. * * ## This tests break points on sys_open * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & * echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts * fg # and hit control-c * fg # and hit control-c * ## This tests break points on do_fork * while [ 1 ] ; do date > /dev/null ; done & * while [ 1 ] ; do date > /dev/null ; done & * echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts * fg # and hit control-c * */ #include <linux/kernel.h> #include <linux/kgdb.h> #include <linux/ctype.h> #include <linux/uaccess.h> #include <linux/syscalls.h> #include <linux/nmi.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/module.h> #include <asm/sections.h> #define v1printk(a...) do { \ if (verbose) \ printk(KERN_INFO a); \ } while (0) #define v2printk(a...) do { \ if (verbose > 1) \ printk(KERN_INFO a); \ touch_nmi_watchdog(); \ } while (0) #define eprintk(a...) do { \ printk(KERN_ERR a); \ WARN_ON(1); \ } while (0) #define MAX_CONFIG_LEN 40 static struct kgdb_io kgdbts_io_ops; static char get_buf[BUFMAX]; static int get_buf_cnt; static char put_buf[BUFMAX]; static int put_buf_cnt; static char scratch_buf[BUFMAX]; static int verbose; static int repeat_test; static int test_complete; static int send_ack; static int final_ack; static int force_hwbrks; static int hwbreaks_ok; static int hw_break_val; static int hw_break_val2; static int cont_instead_of_sstep; static unsigned long cont_thread_id; static unsigned long sstep_thread_id; #if defined(CONFIG_ARM) || defined(CONFIG_MIPS) || defined(CONFIG_SPARC) static int arch_needs_sstep_emulation = 1; #else static int arch_needs_sstep_emulation; #endif static unsigned long cont_addr; static unsigned long sstep_addr; static int restart_from_top_after_write; static int sstep_state; /* Storage for the registers, in GDB format. */ static unsigned long kgdbts_gdb_regs[(NUMREGBYTES + sizeof(unsigned long) - 1) / sizeof(unsigned long)]; static struct pt_regs kgdbts_regs; /* -1 = init not run yet, 0 = unconfigured, 1 = configured. */ static int configured = -1; #ifdef CONFIG_KGDB_TESTS_BOOT_STRING static char config[MAX_CONFIG_LEN] = CONFIG_KGDB_TESTS_BOOT_STRING; #else static char config[MAX_CONFIG_LEN]; #endif static struct kparam_string kps = { .string = config, .maxlen = MAX_CONFIG_LEN, }; static void fill_get_buf(char *buf); struct test_struct { char *get; char *put; void (*get_handler)(char *); int (*put_handler)(char *, char *); }; struct test_state { char *name; struct test_struct *tst; int idx; int (*run_test) (int, int); int (*validate_put) (char *); }; static struct test_state ts; static int kgdbts_unreg_thread(void *ptr) { /* Wait until the tests are complete and then ungresiter the I/O * driver. */ while (!final_ack) msleep_interruptible(1500); /* Pause for any other threads to exit after final ack. */ msleep_interruptible(1000); if (configured) kgdb_unregister_io_module(&kgdbts_io_ops); configured = 0; return 0; } /* This is noinline such that it can be used for a single location to * place a breakpoint */ static noinline void kgdbts_break_test(void) { v2printk("kgdbts: breakpoint complete\n"); } /* Lookup symbol info in the kernel */ static unsigned long lookup_addr(char *arg) { unsigned long addr = 0; if (!strcmp(arg, "kgdbts_break_test")) addr = (unsigned long)kgdbts_break_test; else if (!strcmp(arg, "sys_open")) addr = (unsigned long)do_sys_open; else if (!strcmp(arg, "do_fork")) addr = (unsigned long)_do_fork; else if (!strcmp(arg, "hw_break_val")) addr = (unsigned long)&hw_break_val; addr = (unsigned long) dereference_function_descriptor((void *)addr); return addr; } static void break_helper(char *bp_type, char *arg, unsigned long vaddr) { unsigned long addr; if (arg) addr = lookup_addr(arg); else addr = vaddr; sprintf(scratch_buf, "%s,%lx,%i", bp_type, addr, BREAK_INSTR_SIZE); fill_get_buf(scratch_buf); } static void sw_break(char *arg) { break_helper(force_hwbrks ? "Z1" : "Z0", arg, 0); } static void sw_rem_break(char *arg) { break_helper(force_hwbrks ? "z1" : "z0", arg, 0); } static void hw_break(char *arg) { break_helper("Z1", arg, 0); } static void hw_rem_break(char *arg) { break_helper("z1", arg, 0); } static void hw_write_break(char *arg) { break_helper("Z2", arg, 0); } static void hw_rem_write_break(char *arg) { break_helper("z2", arg, 0); } static void hw_access_break(char *arg) { break_helper("Z4", arg, 0); } static void hw_rem_access_break(char *arg) { break_helper("z4", arg, 0); } static void hw_break_val_access(void) { hw_break_val2 = hw_break_val; } static void hw_break_val_write(void) { hw_break_val++; } static int get_thread_id_continue(char *put_str, char *arg) { char *ptr = &put_str[11]; if (put_str[1] != 'T' || put_str[2] != '0') return 1; kgdb_hex2long(&ptr, &cont_thread_id); return 0; } static int check_and_rewind_pc(char *put_str, char *arg) { unsigned long addr = lookup_addr(arg); unsigned long ip; int offset = 0; kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, NUMREGBYTES); gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); ip = instruction_pointer(&kgdbts_regs); v2printk("Stopped at IP: %lx\n", ip); #ifdef GDB_ADJUSTS_BREAK_OFFSET /* On some arches, a breakpoint stop requires it to be decremented */ if (addr + BREAK_INSTR_SIZE == ip) offset = -BREAK_INSTR_SIZE; #endif if (arch_needs_sstep_emulation && sstep_addr && ip + offset == sstep_addr && ((!strcmp(arg, "sys_open") || !strcmp(arg, "do_fork")))) { /* This is special case for emulated single step */ v2printk("Emul: rewind hit single step bp\n"); restart_from_top_after_write = 1; } else if (strcmp(arg, "silent") && ip + offset != addr) { eprintk("kgdbts: BP mismatch %lx expected %lx\n", ip + offset, addr); return 1; } /* Readjust the instruction pointer if needed */ ip += offset; cont_addr = ip; #ifdef GDB_ADJUSTS_BREAK_OFFSET instruction_pointer_set(&kgdbts_regs, ip); #endif return 0; } static int check_single_step(char *put_str, char *arg) { unsigned long addr = lookup_addr(arg); static int matched_id; /* * From an arch indepent point of view the instruction pointer * should be on a different instruction */ kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, NUMREGBYTES); gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); v2printk("Singlestep stopped at IP: %lx\n", instruction_pointer(&kgdbts_regs)); if (sstep_thread_id != cont_thread_id) { /* * Ensure we stopped in the same thread id as before, else the * debugger should continue until the original thread that was * single stepped is scheduled again, emulating gdb's behavior. */ v2printk("ThrID does not match: %lx\n", cont_thread_id); if (arch_needs_sstep_emulation) { if (matched_id && instruction_pointer(&kgdbts_regs) != addr) goto continue_test; matched_id++; ts.idx -= 2; sstep_state = 0; return 0; } cont_instead_of_sstep = 1; ts.idx -= 4; return 0; } continue_test: matched_id = 0; if (instruction_pointer(&kgdbts_regs) == addr) { eprintk("kgdbts: SingleStep failed at %lx\n", instruction_pointer(&kgdbts_regs)); return 1; } return 0; } static void write_regs(char *arg) { memset(scratch_buf, 0, sizeof(scratch_buf)); scratch_buf[0] = 'G'; pt_regs_to_gdb_regs(kgdbts_gdb_regs, &kgdbts_regs); kgdb_mem2hex((char *)kgdbts_gdb_regs, &scratch_buf[1], NUMREGBYTES); fill_get_buf(scratch_buf); } static void skip_back_repeat_test(char *arg) { int go_back = simple_strtol(arg, NULL, 10); repeat_test--; if (repeat_test <= 0) ts.idx++; else ts.idx -= go_back; fill_get_buf(ts.tst[ts.idx].get); } static int got_break(char *put_str, char *arg) { test_complete = 1; if (!strncmp(put_str+1, arg, 2)) { if (!strncmp(arg, "T0", 2)) test_complete = 2; return 0; } return 1; } static void get_cont_catch(char *arg) { /* Always send detach because the test is completed at this point */ fill_get_buf("D"); } static int put_cont_catch(char *put_str, char *arg) { /* This is at the end of the test and we catch any and all input */ v2printk("kgdbts: cleanup task: %lx\n", sstep_thread_id); ts.idx--; return 0; } static int emul_reset(char *put_str, char *arg) { if (strncmp(put_str, "$OK", 3)) return 1; if (restart_from_top_after_write) { restart_from_top_after_write = 0; ts.idx = -1; } return 0; } static void emul_sstep_get(char *arg) { if (!arch_needs_sstep_emulation) { if (cont_instead_of_sstep) { cont_instead_of_sstep = 0; fill_get_buf("c"); } else { fill_get_buf(arg); } return; } switch (sstep_state) { case 0: v2printk("Emulate single step\n"); /* Start by looking at the current PC */ fill_get_buf("g"); break; case 1: /* set breakpoint */ break_helper("Z0", NULL, sstep_addr); break; case 2: /* Continue */ fill_get_buf("c"); break; case 3: /* Clear breakpoint */ break_helper("z0", NULL, sstep_addr); break; default: eprintk("kgdbts: ERROR failed sstep get emulation\n"); } sstep_state++; } static int emul_sstep_put(char *put_str, char *arg) { if (!arch_needs_sstep_emulation) { char *ptr = &put_str[11]; if (put_str[1] != 'T' || put_str[2] != '0') return 1; kgdb_hex2long(&ptr, &sstep_thread_id); return 0; } switch (sstep_state) { case 1: /* validate the "g" packet to get the IP */ kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, NUMREGBYTES); gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); v2printk("Stopped at IP: %lx\n", instruction_pointer(&kgdbts_regs)); /* Want to stop at IP + break instruction size by default */ sstep_addr = cont_addr + BREAK_INSTR_SIZE; break; case 2: if (strncmp(put_str, "$OK", 3)) { eprintk("kgdbts: failed sstep break set\n"); return 1; } break; case 3: if (strncmp(put_str, "$T0", 3)) { eprintk("kgdbts: failed continue sstep\n"); return 1; } else { char *ptr = &put_str[11]; kgdb_hex2long(&ptr, &sstep_thread_id); } break; case 4: if (strncmp(put_str, "$OK", 3)) { eprintk("kgdbts: failed sstep break unset\n"); return 1; } /* Single step is complete so continue on! */ sstep_state = 0; return 0; default: eprintk("kgdbts: ERROR failed sstep put emulation\n"); } /* Continue on the same test line until emulation is complete */ ts.idx--; return 0; } static int final_ack_set(char *put_str, char *arg) { if (strncmp(put_str+1, arg, 2)) return 1; final_ack = 1; return 0; } /* * Test to plant a breakpoint and detach, which should clear out the * breakpoint and restore the original instruction. */ static struct test_struct plant_and_detach_test[] = { { "?", "S0*" }, /* Clear break points */ { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ { "D", "OK" }, /* Detach */ { "", "" }, }; /* * Simple test to write in a software breakpoint, check for the * correct stop location and detach. */ static struct test_struct sw_breakpoint_test[] = { { "?", "S0*" }, /* Clear break points */ { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ { "c", "T0*", }, /* Continue */ { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, { "write", "OK", write_regs }, { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ { "D", "OK" }, /* Detach */ { "D", "OK", NULL, got_break }, /* On success we made it here */ { "", "" }, }; /* * Test a known bad memory read location to test the fault handler and * read bytes 1-8 at the bad address */ static struct test_struct bad_read_test[] = { { "?", "S0*" }, /* Clear break points */ { "m0,1", "E*" }, /* read 1 byte at address 1 */ { "m0,2", "E*" }, /* read 1 byte at address 2 */ { "m0,3", "E*" }, /* read 1 byte at address 3 */ { "m0,4", "E*" }, /* read 1 byte at address 4 */ { "m0,5", "E*" }, /* read 1 byte at address 5 */ { "m0,6", "E*" }, /* read 1 byte at address 6 */ { "m0,7", "E*" }, /* read 1 byte at address 7 */ { "m0,8", "E*" }, /* read 1 byte at address 8 */ { "D", "OK" }, /* Detach which removes all breakpoints and continues */ { "", "" }, }; /* * Test for hitting a breakpoint, remove it, single step, plant it * again and detach. */ static struct test_struct singlestep_break_test[] = { { "?", "S0*" }, /* Clear break points */ { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ { "c", "T0*", NULL, get_thread_id_continue }, /* Continue */ { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, { "write", "OK", write_regs }, /* Write registers */ { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ { "g", "kgdbts_break_test", NULL, check_single_step }, { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ { "c", "T0*", }, /* Continue */ { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, { "write", "OK", write_regs }, /* Write registers */ { "D", "OK" }, /* Remove all breakpoints and continues */ { "", "" }, }; /* * Test for hitting a breakpoint at do_fork for what ever the number * of iterations required by the variable repeat_test. */ static struct test_struct do_fork_test[] = { { "?", "S0*" }, /* Clear break points */ { "do_fork", "OK", sw_break, }, /* set sw breakpoint */ { "c", "T0*", NULL, get_thread_id_continue }, /* Continue */ { "do_fork", "OK", sw_rem_break }, /*remove breakpoint */ { "g", "do_fork", NULL, check_and_rewind_pc }, /* check location */ { "write", "OK", write_regs, emul_reset }, /* Write registers */ { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ { "g", "do_fork", NULL, check_single_step }, { "do_fork", "OK", sw_break, }, /* set sw breakpoint */ { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */ { "", "", get_cont_catch, put_cont_catch }, }; /* Test for hitting a breakpoint at sys_open for what ever the number * of iterations required by the variable repeat_test. */ static struct test_struct sys_open_test[] = { { "?", "S0*" }, /* Clear break points */ { "sys_open", "OK", sw_break, }, /* set sw breakpoint */ { "c", "T0*", NULL, get_thread_id_continue }, /* Continue */ { "sys_open", "OK", sw_rem_break }, /*remove breakpoint */ { "g", "sys_open", NULL, check_and_rewind_pc }, /* check location */ { "write", "OK", write_regs, emul_reset }, /* Write registers */ { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ { "g", "sys_open", NULL, check_single_step }, { "sys_open", "OK", sw_break, }, /* set sw breakpoint */ { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */ { "", "", get_cont_catch, put_cont_catch }, }; /* * Test for hitting a simple hw breakpoint */ static struct test_struct hw_breakpoint_test[] = { { "?", "S0*" }, /* Clear break points */ { "kgdbts_break_test", "OK", hw_break, }, /* set hw breakpoint */ { "c", "T0*", }, /* Continue */ { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, { "write", "OK", write_regs }, { "kgdbts_break_test", "OK", hw_rem_break }, /*remove breakpoint */ { "D", "OK" }, /* Detach */ { "D", "OK", NULL, got_break }, /* On success we made it here */ { "", "" }, }; /* * Test for hitting a hw write breakpoint */ static struct test_struct hw_write_break_test[] = { { "?", "S0*" }, /* Clear break points */ { "hw_break_val", "OK", hw_write_break, }, /* set hw breakpoint */ { "c", "T0*", NULL, got_break }, /* Continue */ { "g", "silent", NULL, check_and_rewind_pc }, { "write", "OK", write_regs }, { "hw_break_val", "OK", hw_rem_write_break }, /*remove breakpoint */ { "D", "OK" }, /* Detach */ { "D", "OK", NULL, got_break }, /* On success we made it here */ { "", "" }, }; /* * Test for hitting a hw access breakpoint */ static struct test_struct hw_access_break_test[] = { { "?", "S0*" }, /* Clear break points */ { "hw_break_val", "OK", hw_access_break, }, /* set hw breakpoint */ { "c", "T0*", NULL, got_break }, /* Continue */ { "g", "silent", NULL, check_and_rewind_pc }, { "write", "OK", write_regs }, { "hw_break_val", "OK", hw_rem_access_break }, /*remove breakpoint */ { "D", "OK" }, /* Detach */ { "D", "OK", NULL, got_break }, /* On success we made it here */ { "", "" }, }; /* * Test for hitting a hw access breakpoint */ static struct test_struct nmi_sleep_test[] = { { "?", "S0*" }, /* Clear break points */ { "c", "T0*", NULL, got_break }, /* Continue */ { "D", "OK" }, /* Detach */ { "D", "OK", NULL, got_break }, /* On success we made it here */ { "", "" }, }; static void fill_get_buf(char *buf) { unsigned char checksum = 0; int count = 0; char ch; strcpy(get_buf, "$"); strcat(get_buf, buf); while ((ch = buf[count])) { checksum += ch; count++; } strcat(get_buf, "#"); get_buf[count + 2] = hex_asc_hi(checksum); get_buf[count + 3] = hex_asc_lo(checksum); get_buf[count + 4] = '\0'; v2printk("get%i: %s\n", ts.idx, get_buf); } static int validate_simple_test(char *put_str) { char *chk_str; if (ts.tst[ts.idx].put_handler) return ts.tst[ts.idx].put_handler(put_str, ts.tst[ts.idx].put); chk_str = ts.tst[ts.idx].put; if (*put_str == '$') put_str++; while (*chk_str != '\0' && *put_str != '\0') { /* If someone does a * to match the rest of the string, allow * it, or stop if the received string is complete. */ if (*put_str == '#' || *chk_str == '*') return 0; if (*put_str != *chk_str) return 1; chk_str++; put_str++; } if (*chk_str == '\0' && (*put_str == '\0' || *put_str == '#')) return 0; return 1; } static int run_simple_test(int is_get_char, int chr) { int ret = 0; if (is_get_char) { /* Send an ACK on the get if a prior put completed and set the * send ack variable */ if (send_ack) { send_ack = 0; return '+'; } /* On the first get char, fill the transmit buffer and then * take from the get_string. */ if (get_buf_cnt == 0) { if (ts.tst[ts.idx].get_handler) ts.tst[ts.idx].get_handler(ts.tst[ts.idx].get); else fill_get_buf(ts.tst[ts.idx].get); } if (get_buf[get_buf_cnt] == '\0') { eprintk("kgdbts: ERROR GET: EOB on '%s' at %i\n", ts.name, ts.idx); get_buf_cnt = 0; fill_get_buf("D"); } ret = get_buf[get_buf_cnt]; get_buf_cnt++; return ret; } /* This callback is a put char which is when kgdb sends data to * this I/O module. */ if (ts.tst[ts.idx].get[0] == '\0' && ts.tst[ts.idx].put[0] == '\0' && !ts.tst[ts.idx].get_handler) { eprintk("kgdbts: ERROR: beyond end of test on" " '%s' line %i\n", ts.name, ts.idx); return 0; } if (put_buf_cnt >= BUFMAX) { eprintk("kgdbts: ERROR: put buffer overflow on" " '%s' line %i\n", ts.name, ts.idx); put_buf_cnt = 0; return 0; } /* Ignore everything until the first valid packet start '$' */ if (put_buf_cnt == 0 && chr != '$') return 0; put_buf[put_buf_cnt] = chr; put_buf_cnt++; /* End of packet == #XX so look for the '#' */ if (put_buf_cnt > 3 && put_buf[put_buf_cnt - 3] == '#') { if (put_buf_cnt >= BUFMAX) { eprintk("kgdbts: ERROR: put buffer overflow on" " '%s' line %i\n", ts.name, ts.idx); put_buf_cnt = 0; return 0; } put_buf[put_buf_cnt] = '\0'; v2printk("put%i: %s\n", ts.idx, put_buf); /* Trigger check here */ if (ts.validate_put && ts.validate_put(put_buf)) { eprintk("kgdbts: ERROR PUT: end of test " "buffer on '%s' line %i expected %s got %s\n", ts.name, ts.idx, ts.tst[ts.idx].put, put_buf); } ts.idx++; put_buf_cnt = 0; get_buf_cnt = 0; send_ack = 1; } return 0; } static void init_simple_test(void) { memset(&ts, 0, sizeof(ts)); ts.run_test = run_simple_test; ts.validate_put = validate_simple_test; } static void run_plant_and_detach_test(int is_early) { char before[BREAK_INSTR_SIZE]; char after[BREAK_INSTR_SIZE]; probe_kernel_read(before, (char *)kgdbts_break_test, BREAK_INSTR_SIZE); init_simple_test(); ts.tst = plant_and_detach_test; ts.name = "plant_and_detach_test"; /* Activate test with initial breakpoint */ if (!is_early) kgdb_breakpoint(); probe_kernel_read(after, (char *)kgdbts_break_test, BREAK_INSTR_SIZE); if (memcmp(before, after, BREAK_INSTR_SIZE)) { printk(KERN_CRIT "kgdbts: ERROR kgdb corrupted memory\n"); panic("kgdb memory corruption"); } /* complete the detach test */ if (!is_early) kgdbts_break_test(); } static void run_breakpoint_test(int is_hw_breakpoint) { test_complete = 0; init_simple_test(); if (is_hw_breakpoint) { ts.tst = hw_breakpoint_test; ts.name = "hw_breakpoint_test"; } else { ts.tst = sw_breakpoint_test; ts.name = "sw_breakpoint_test"; } /* Activate test with initial breakpoint */ kgdb_breakpoint(); /* run code with the break point in it */ kgdbts_break_test(); kgdb_breakpoint(); if (test_complete) return; eprintk("kgdbts: ERROR %s test failed\n", ts.name); if (is_hw_breakpoint) hwbreaks_ok = 0; } static void run_hw_break_test(int is_write_test) { test_complete = 0; init_simple_test(); if (is_write_test) { ts.tst = hw_write_break_test; ts.name = "hw_write_break_test"; } else { ts.tst = hw_access_break_test; ts.name = "hw_access_break_test"; } /* Activate test with initial breakpoint */ kgdb_breakpoint(); hw_break_val_access(); if (is_write_test) { if (test_complete == 2) { eprintk("kgdbts: ERROR %s broke on access\n", ts.name); hwbreaks_ok = 0; } hw_break_val_write(); } kgdb_breakpoint(); if (test_complete == 1) return; eprintk("kgdbts: ERROR %s test failed\n", ts.name); hwbreaks_ok = 0; } static void run_nmi_sleep_test(int nmi_sleep) { unsigned long flags; init_simple_test(); ts.tst = nmi_sleep_test; ts.name = "nmi_sleep_test"; /* Activate test with initial breakpoint */ kgdb_breakpoint(); local_irq_save(flags); mdelay(nmi_sleep*1000); touch_nmi_watchdog(); local_irq_restore(flags); if (test_complete != 2) eprintk("kgdbts: ERROR nmi_test did not hit nmi\n"); kgdb_breakpoint(); if (test_complete == 1) return; eprintk("kgdbts: ERROR %s test failed\n", ts.name); } static void run_bad_read_test(void) { init_simple_test(); ts.tst = bad_read_test; ts.name = "bad_read_test"; /* Activate test with initial breakpoint */ kgdb_breakpoint(); } static void run_do_fork_test(void) { init_simple_test(); ts.tst = do_fork_test; ts.name = "do_fork_test"; /* Activate test with initial breakpoint */ kgdb_breakpoint(); } static void run_sys_open_test(void) { init_simple_test(); ts.tst = sys_open_test; ts.name = "sys_open_test"; /* Activate test with initial breakpoint */ kgdb_breakpoint(); } static void run_singlestep_break_test(void) { init_simple_test(); ts.tst = singlestep_break_test; ts.name = "singlestep_breakpoint_test"; /* Activate test with initial breakpoint */ kgdb_breakpoint(); kgdbts_break_test(); kgdbts_break_test(); } static void kgdbts_run_tests(void) { char *ptr; int fork_test = 0; int do_sys_open_test = 0; int sstep_test = 1000; int nmi_sleep = 0; int i; ptr = strchr(config, 'F'); if (ptr) fork_test = simple_strtol(ptr + 1, NULL, 10); ptr = strchr(config, 'S'); if (ptr) do_sys_open_test = simple_strtol(ptr + 1, NULL, 10); ptr = strchr(config, 'N'); if (ptr) nmi_sleep = simple_strtol(ptr+1, NULL, 10); ptr = strchr(config, 'I'); if (ptr) sstep_test = simple_strtol(ptr+1, NULL, 10); /* All HW break point tests */ if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) { hwbreaks_ok = 1; v1printk("kgdbts:RUN hw breakpoint test\n"); run_breakpoint_test(1); v1printk("kgdbts:RUN hw write breakpoint test\n"); run_hw_break_test(1); v1printk("kgdbts:RUN access write breakpoint test\n"); run_hw_break_test(0); } /* required internal KGDB tests */ v1printk("kgdbts:RUN plant and detach test\n"); run_plant_and_detach_test(0); v1printk("kgdbts:RUN sw breakpoint test\n"); run_breakpoint_test(0); v1printk("kgdbts:RUN bad memory access test\n"); run_bad_read_test(); v1printk("kgdbts:RUN singlestep test %i iterations\n", sstep_test); for (i = 0; i < sstep_test; i++) { run_singlestep_break_test(); if (i % 100 == 0) v1printk("kgdbts:RUN singlestep [%i/%i]\n", i, sstep_test); } /* ===Optional tests=== */ if (nmi_sleep) { v1printk("kgdbts:RUN NMI sleep %i seconds test\n", nmi_sleep); run_nmi_sleep_test(nmi_sleep); } /* If the do_fork test is run it will be the last test that is * executed because a kernel thread will be spawned at the very * end to unregister the debug hooks. */ if (fork_test) { repeat_test = fork_test; printk(KERN_INFO "kgdbts:RUN do_fork for %i breakpoints\n", repeat_test); kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg"); run_do_fork_test(); return; } /* If the sys_open test is run it will be the last test that is * executed because a kernel thread will be spawned at the very * end to unregister the debug hooks. */ if (do_sys_open_test) { repeat_test = do_sys_open_test; printk(KERN_INFO "kgdbts:RUN sys_open for %i breakpoints\n", repeat_test); kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg"); run_sys_open_test(); return; } /* Shutdown and unregister */ kgdb_unregister_io_module(&kgdbts_io_ops); configured = 0; } static int kgdbts_option_setup(char *opt) { if (strlen(opt) >= MAX_CONFIG_LEN) { printk(KERN_ERR "kgdbts: config string too long\n"); return -ENOSPC; } strcpy(config, opt); verbose = 0; if (strstr(config, "V1")) verbose = 1; if (strstr(config, "V2")) verbose = 2; return 0; } __setup("kgdbts=", kgdbts_option_setup); static int configure_kgdbts(void) { int err = 0; if (!strlen(config) || isspace(config[0])) goto noconfig; err = kgdbts_option_setup(config); if (err) goto noconfig; final_ack = 0; run_plant_and_detach_test(1); err = kgdb_register_io_module(&kgdbts_io_ops); if (err) { configured = 0; return err; } configured = 1; kgdbts_run_tests(); return err; noconfig: config[0] = 0; configured = 0; return err; } static int __init init_kgdbts(void) { /* Already configured? */ if (configured == 1) return 0; return configure_kgdbts(); } device_initcall(init_kgdbts); static int kgdbts_get_char(void) { int val = 0; if (ts.run_test) val = ts.run_test(1, 0); return val; } static void kgdbts_put_char(u8 chr) { if (ts.run_test) ts.run_test(0, chr); } static int param_set_kgdbts_var(const char *kmessage, struct kernel_param *kp) { int len = strlen(kmessage); if (len >= MAX_CONFIG_LEN) { printk(KERN_ERR "kgdbts: config string too long\n"); return -ENOSPC; } /* Only copy in the string if the init function has not run yet */ if (configured < 0) { strcpy(config, kmessage); return 0; } if (configured == 1) { printk(KERN_ERR "kgdbts: ERROR: Already configured and running.\n"); return -EBUSY; } strcpy(config, kmessage); /* Chop out \n char as a result of echo */ if (config[len - 1] == '\n') config[len - 1] = '\0'; /* Go and configure with the new params. */ return configure_kgdbts(); } static void kgdbts_pre_exp_handler(void) { /* Increment the module count when the debugger is active */ if (!kgdb_connected) try_module_get(THIS_MODULE); } static void kgdbts_post_exp_handler(void) { /* decrement the module count when the debugger detaches */ if (!kgdb_connected) module_put(THIS_MODULE); } static struct kgdb_io kgdbts_io_ops = { .name = "kgdbts", .read_char = kgdbts_get_char, .write_char = kgdbts_put_char, .pre_exception = kgdbts_pre_exp_handler, .post_exception = kgdbts_post_exp_handler, }; /* * not really modular, but the easiest way to keep compat with existing * bootargs behaviour is to continue using module_param here. */ module_param_call(kgdbts, param_set_kgdbts_var, param_get_string, &kps, 0644); MODULE_PARM_DESC(kgdbts, "<A|V1|V2>[F#|S#][N#]");