/* * Intel pinctrl/GPIO core driver. * * Copyright (C) 2015, Intel Corporation * Authors: Mathias Nyman <mathias.nyman@linux.intel.com> * Mika Westerberg <mika.westerberg@linux.intel.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/acpi.h> #include <linux/gpio.h> #include <linux/gpio/driver.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/pinmux.h> #include <linux/pinctrl/pinconf.h> #include <linux/pinctrl/pinconf-generic.h> #include "pinctrl-intel.h" /* Offset from regs */ #define PADBAR 0x00c #define GPI_IS 0x100 #define GPI_GPE_STS 0x140 #define GPI_GPE_EN 0x160 #define PADOWN_BITS 4 #define PADOWN_SHIFT(p) ((p) % 8 * PADOWN_BITS) #define PADOWN_MASK(p) (0xf << PADOWN_SHIFT(p)) #define PADOWN_GPP(p) ((p) / 8) /* Offset from pad_regs */ #define PADCFG0 0x000 #define PADCFG0_RXEVCFG_SHIFT 25 #define PADCFG0_RXEVCFG_MASK (3 << PADCFG0_RXEVCFG_SHIFT) #define PADCFG0_RXEVCFG_LEVEL 0 #define PADCFG0_RXEVCFG_EDGE 1 #define PADCFG0_RXEVCFG_DISABLED 2 #define PADCFG0_RXEVCFG_EDGE_BOTH 3 #define PADCFG0_RXINV BIT(23) #define PADCFG0_GPIROUTIOXAPIC BIT(20) #define PADCFG0_GPIROUTSCI BIT(19) #define PADCFG0_GPIROUTSMI BIT(18) #define PADCFG0_GPIROUTNMI BIT(17) #define PADCFG0_PMODE_SHIFT 10 #define PADCFG0_PMODE_MASK (0xf << PADCFG0_PMODE_SHIFT) #define PADCFG0_GPIORXDIS BIT(9) #define PADCFG0_GPIOTXDIS BIT(8) #define PADCFG0_GPIORXSTATE BIT(1) #define PADCFG0_GPIOTXSTATE BIT(0) #define PADCFG1 0x004 #define PADCFG1_TERM_UP BIT(13) #define PADCFG1_TERM_SHIFT 10 #define PADCFG1_TERM_MASK (7 << PADCFG1_TERM_SHIFT) #define PADCFG1_TERM_20K 4 #define PADCFG1_TERM_2K 3 #define PADCFG1_TERM_5K 2 #define PADCFG1_TERM_1K 1 struct intel_pad_context { u32 padcfg0; u32 padcfg1; }; struct intel_community_context { u32 *intmask; }; struct intel_pinctrl_context { struct intel_pad_context *pads; struct intel_community_context *communities; }; /** * struct intel_pinctrl - Intel pinctrl private structure * @dev: Pointer to the device structure * @lock: Lock to serialize register access * @pctldesc: Pin controller description * @pctldev: Pointer to the pin controller device * @chip: GPIO chip in this pin controller * @soc: SoC/PCH specific pin configuration data * @communities: All communities in this pin controller * @ncommunities: Number of communities in this pin controller * @context: Configuration saved over system sleep */ struct intel_pinctrl { struct device *dev; spinlock_t lock; struct pinctrl_desc pctldesc; struct pinctrl_dev *pctldev; struct gpio_chip chip; const struct intel_pinctrl_soc_data *soc; struct intel_community *communities; size_t ncommunities; struct intel_pinctrl_context context; }; #define gpiochip_to_pinctrl(c) container_of(c, struct intel_pinctrl, chip) #define pin_to_padno(c, p) ((p) - (c)->pin_base) static struct intel_community *intel_get_community(struct intel_pinctrl *pctrl, unsigned pin) { struct intel_community *community; int i; for (i = 0; i < pctrl->ncommunities; i++) { community = &pctrl->communities[i]; if (pin >= community->pin_base && pin < community->pin_base + community->npins) return community; } dev_warn(pctrl->dev, "failed to find community for pin %u\n", pin); return NULL; } static void __iomem *intel_get_padcfg(struct intel_pinctrl *pctrl, unsigned pin, unsigned reg) { const struct intel_community *community; unsigned padno; community = intel_get_community(pctrl, pin); if (!community) return NULL; padno = pin_to_padno(community, pin); return community->pad_regs + reg + padno * 8; } static bool intel_pad_owned_by_host(struct intel_pinctrl *pctrl, unsigned pin) { const struct intel_community *community; unsigned padno, gpp, offset, group; void __iomem *padown; community = intel_get_community(pctrl, pin); if (!community) return false; if (!community->padown_offset) return true; padno = pin_to_padno(community, pin); group = padno / community->gpp_size; gpp = PADOWN_GPP(padno % community->gpp_size); offset = community->padown_offset + 0x10 * group + gpp * 4; padown = community->regs + offset; return !(readl(padown) & PADOWN_MASK(padno)); } static bool intel_pad_acpi_mode(struct intel_pinctrl *pctrl, unsigned pin) { const struct intel_community *community; unsigned padno, gpp, offset; void __iomem *hostown; community = intel_get_community(pctrl, pin); if (!community) return true; if (!community->hostown_offset) return false; padno = pin_to_padno(community, pin); gpp = padno / community->gpp_size; offset = community->hostown_offset + gpp * 4; hostown = community->regs + offset; return !(readl(hostown) & BIT(padno % community->gpp_size)); } static bool intel_pad_locked(struct intel_pinctrl *pctrl, unsigned pin) { struct intel_community *community; unsigned padno, gpp, offset; u32 value; community = intel_get_community(pctrl, pin); if (!community) return true; if (!community->padcfglock_offset) return false; padno = pin_to_padno(community, pin); gpp = padno / community->gpp_size; /* * If PADCFGLOCK and PADCFGLOCKTX bits are both clear for this pad, * the pad is considered unlocked. Any other case means that it is * either fully or partially locked and we don't touch it. */ offset = community->padcfglock_offset + gpp * 8; value = readl(community->regs + offset); if (value & BIT(pin % community->gpp_size)) return true; offset = community->padcfglock_offset + 4 + gpp * 8; value = readl(community->regs + offset); if (value & BIT(pin % community->gpp_size)) return true; return false; } static bool intel_pad_usable(struct intel_pinctrl *pctrl, unsigned pin) { return intel_pad_owned_by_host(pctrl, pin) && !intel_pad_locked(pctrl, pin); } static int intel_get_groups_count(struct pinctrl_dev *pctldev) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->ngroups; } static const char *intel_get_group_name(struct pinctrl_dev *pctldev, unsigned group) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->groups[group].name; } static int intel_get_group_pins(struct pinctrl_dev *pctldev, unsigned group, const unsigned **pins, unsigned *npins) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *pins = pctrl->soc->groups[group].pins; *npins = pctrl->soc->groups[group].npins; return 0; } static void intel_pin_dbg_show(struct pinctrl_dev *pctldev, struct seq_file *s, unsigned pin) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); u32 cfg0, cfg1, mode; bool locked, acpi; if (!intel_pad_owned_by_host(pctrl, pin)) { seq_puts(s, "not available"); return; } cfg0 = readl(intel_get_padcfg(pctrl, pin, PADCFG0)); cfg1 = readl(intel_get_padcfg(pctrl, pin, PADCFG1)); mode = (cfg0 & PADCFG0_PMODE_MASK) >> PADCFG0_PMODE_SHIFT; if (!mode) seq_puts(s, "GPIO "); else seq_printf(s, "mode %d ", mode); seq_printf(s, "0x%08x 0x%08x", cfg0, cfg1); locked = intel_pad_locked(pctrl, pin); acpi = intel_pad_acpi_mode(pctrl, pin); if (locked || acpi) { seq_puts(s, " ["); if (locked) { seq_puts(s, "LOCKED"); if (acpi) seq_puts(s, ", "); } if (acpi) seq_puts(s, "ACPI"); seq_puts(s, "]"); } } static const struct pinctrl_ops intel_pinctrl_ops = { .get_groups_count = intel_get_groups_count, .get_group_name = intel_get_group_name, .get_group_pins = intel_get_group_pins, .pin_dbg_show = intel_pin_dbg_show, }; static int intel_get_functions_count(struct pinctrl_dev *pctldev) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->nfunctions; } static const char *intel_get_function_name(struct pinctrl_dev *pctldev, unsigned function) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->functions[function].name; } static int intel_get_function_groups(struct pinctrl_dev *pctldev, unsigned function, const char * const **groups, unsigned * const ngroups) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *groups = pctrl->soc->functions[function].groups; *ngroups = pctrl->soc->functions[function].ngroups; return 0; } static int intel_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned function, unsigned group) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); const struct intel_pingroup *grp = &pctrl->soc->groups[group]; unsigned long flags; int i; spin_lock_irqsave(&pctrl->lock, flags); /* * All pins in the groups needs to be accessible and writable * before we can enable the mux for this group. */ for (i = 0; i < grp->npins; i++) { if (!intel_pad_usable(pctrl, grp->pins[i])) { spin_unlock_irqrestore(&pctrl->lock, flags); return -EBUSY; } } /* Now enable the mux setting for each pin in the group */ for (i = 0; i < grp->npins; i++) { void __iomem *padcfg0; u32 value; padcfg0 = intel_get_padcfg(pctrl, grp->pins[i], PADCFG0); value = readl(padcfg0); value &= ~PADCFG0_PMODE_MASK; value |= grp->mode << PADCFG0_PMODE_SHIFT; writel(value, padcfg0); } spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static int intel_gpio_request_enable(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range, unsigned pin) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); void __iomem *padcfg0; unsigned long flags; u32 value; spin_lock_irqsave(&pctrl->lock, flags); if (!intel_pad_usable(pctrl, pin)) { spin_unlock_irqrestore(&pctrl->lock, flags); return -EBUSY; } padcfg0 = intel_get_padcfg(pctrl, pin, PADCFG0); /* Put the pad into GPIO mode */ value = readl(padcfg0) & ~PADCFG0_PMODE_MASK; /* Disable SCI/SMI/NMI generation */ value &= ~(PADCFG0_GPIROUTIOXAPIC | PADCFG0_GPIROUTSCI); value &= ~(PADCFG0_GPIROUTSMI | PADCFG0_GPIROUTNMI); /* Disable TX buffer and enable RX (this will be input) */ value &= ~PADCFG0_GPIORXDIS; value |= PADCFG0_GPIOTXDIS; writel(value, padcfg0); spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static int intel_gpio_set_direction(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range, unsigned pin, bool input) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); void __iomem *padcfg0; unsigned long flags; u32 value; spin_lock_irqsave(&pctrl->lock, flags); padcfg0 = intel_get_padcfg(pctrl, pin, PADCFG0); value = readl(padcfg0); if (input) value |= PADCFG0_GPIOTXDIS; else value &= ~PADCFG0_GPIOTXDIS; writel(value, padcfg0); spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static const struct pinmux_ops intel_pinmux_ops = { .get_functions_count = intel_get_functions_count, .get_function_name = intel_get_function_name, .get_function_groups = intel_get_function_groups, .set_mux = intel_pinmux_set_mux, .gpio_request_enable = intel_gpio_request_enable, .gpio_set_direction = intel_gpio_set_direction, }; static int intel_config_get(struct pinctrl_dev *pctldev, unsigned pin, unsigned long *config) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); enum pin_config_param param = pinconf_to_config_param(*config); u32 value, term; u16 arg = 0; if (!intel_pad_owned_by_host(pctrl, pin)) return -ENOTSUPP; value = readl(intel_get_padcfg(pctrl, pin, PADCFG1)); term = (value & PADCFG1_TERM_MASK) >> PADCFG1_TERM_SHIFT; switch (param) { case PIN_CONFIG_BIAS_DISABLE: if (term) return -EINVAL; break; case PIN_CONFIG_BIAS_PULL_UP: if (!term || !(value & PADCFG1_TERM_UP)) return -EINVAL; switch (term) { case PADCFG1_TERM_1K: arg = 1000; break; case PADCFG1_TERM_2K: arg = 2000; break; case PADCFG1_TERM_5K: arg = 5000; break; case PADCFG1_TERM_20K: arg = 20000; break; } break; case PIN_CONFIG_BIAS_PULL_DOWN: if (!term || value & PADCFG1_TERM_UP) return -EINVAL; switch (term) { case PADCFG1_TERM_5K: arg = 5000; break; case PADCFG1_TERM_20K: arg = 20000; break; } break; default: return -ENOTSUPP; } *config = pinconf_to_config_packed(param, arg); return 0; } static int intel_config_set_pull(struct intel_pinctrl *pctrl, unsigned pin, unsigned long config) { unsigned param = pinconf_to_config_param(config); unsigned arg = pinconf_to_config_argument(config); void __iomem *padcfg1; unsigned long flags; int ret = 0; u32 value; spin_lock_irqsave(&pctrl->lock, flags); padcfg1 = intel_get_padcfg(pctrl, pin, PADCFG1); value = readl(padcfg1); switch (param) { case PIN_CONFIG_BIAS_DISABLE: value &= ~(PADCFG1_TERM_MASK | PADCFG1_TERM_UP); break; case PIN_CONFIG_BIAS_PULL_UP: value &= ~PADCFG1_TERM_MASK; value |= PADCFG1_TERM_UP; switch (arg) { case 20000: value |= PADCFG1_TERM_20K << PADCFG1_TERM_SHIFT; break; case 5000: value |= PADCFG1_TERM_5K << PADCFG1_TERM_SHIFT; break; case 2000: value |= PADCFG1_TERM_2K << PADCFG1_TERM_SHIFT; break; case 1000: value |= PADCFG1_TERM_1K << PADCFG1_TERM_SHIFT; break; default: ret = -EINVAL; } break; case PIN_CONFIG_BIAS_PULL_DOWN: value &= ~(PADCFG1_TERM_UP | PADCFG1_TERM_MASK); switch (arg) { case 20000: value |= PADCFG1_TERM_20K << PADCFG1_TERM_SHIFT; break; case 5000: value |= PADCFG1_TERM_5K << PADCFG1_TERM_SHIFT; break; default: ret = -EINVAL; } break; } if (!ret) writel(value, padcfg1); spin_unlock_irqrestore(&pctrl->lock, flags); return ret; } static int intel_config_set(struct pinctrl_dev *pctldev, unsigned pin, unsigned long *configs, unsigned nconfigs) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); int i, ret; if (!intel_pad_usable(pctrl, pin)) return -ENOTSUPP; for (i = 0; i < nconfigs; i++) { switch (pinconf_to_config_param(configs[i])) { case PIN_CONFIG_BIAS_DISABLE: case PIN_CONFIG_BIAS_PULL_UP: case PIN_CONFIG_BIAS_PULL_DOWN: ret = intel_config_set_pull(pctrl, pin, configs[i]); if (ret) return ret; break; default: return -ENOTSUPP; } } return 0; } static const struct pinconf_ops intel_pinconf_ops = { .is_generic = true, .pin_config_get = intel_config_get, .pin_config_set = intel_config_set, }; static const struct pinctrl_desc intel_pinctrl_desc = { .pctlops = &intel_pinctrl_ops, .pmxops = &intel_pinmux_ops, .confops = &intel_pinconf_ops, .owner = THIS_MODULE, }; static int intel_gpio_get(struct gpio_chip *chip, unsigned offset) { struct intel_pinctrl *pctrl = gpiochip_to_pinctrl(chip); void __iomem *reg; reg = intel_get_padcfg(pctrl, offset, PADCFG0); if (!reg) return -EINVAL; return !!(readl(reg) & PADCFG0_GPIORXSTATE); } static void intel_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { struct intel_pinctrl *pctrl = gpiochip_to_pinctrl(chip); void __iomem *reg; reg = intel_get_padcfg(pctrl, offset, PADCFG0); if (reg) { unsigned long flags; u32 padcfg0; spin_lock_irqsave(&pctrl->lock, flags); padcfg0 = readl(reg); if (value) padcfg0 |= PADCFG0_GPIOTXSTATE; else padcfg0 &= ~PADCFG0_GPIOTXSTATE; writel(padcfg0, reg); spin_unlock_irqrestore(&pctrl->lock, flags); } } static int intel_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { return pinctrl_gpio_direction_input(chip->base + offset); } static int intel_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) { intel_gpio_set(chip, offset, value); return pinctrl_gpio_direction_output(chip->base + offset); } static const struct gpio_chip intel_gpio_chip = { .owner = THIS_MODULE, .request = gpiochip_generic_request, .free = gpiochip_generic_free, .direction_input = intel_gpio_direction_input, .direction_output = intel_gpio_direction_output, .get = intel_gpio_get, .set = intel_gpio_set, }; static void intel_gpio_irq_ack(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct intel_pinctrl *pctrl = gpiochip_to_pinctrl(gc); const struct intel_community *community; unsigned pin = irqd_to_hwirq(d); spin_lock(&pctrl->lock); community = intel_get_community(pctrl, pin); if (community) { unsigned padno = pin_to_padno(community, pin); unsigned gpp_offset = padno % community->gpp_size; unsigned gpp = padno / community->gpp_size; writel(BIT(gpp_offset), community->regs + GPI_IS + gpp * 4); } spin_unlock(&pctrl->lock); } static void intel_gpio_irq_mask_unmask(struct irq_data *d, bool mask) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct intel_pinctrl *pctrl = gpiochip_to_pinctrl(gc); const struct intel_community *community; unsigned pin = irqd_to_hwirq(d); unsigned long flags; spin_lock_irqsave(&pctrl->lock, flags); community = intel_get_community(pctrl, pin); if (community) { unsigned padno = pin_to_padno(community, pin); unsigned gpp_offset = padno % community->gpp_size; unsigned gpp = padno / community->gpp_size; void __iomem *reg; u32 value; reg = community->regs + community->ie_offset + gpp * 4; value = readl(reg); if (mask) value &= ~BIT(gpp_offset); else value |= BIT(gpp_offset); writel(value, reg); } spin_unlock_irqrestore(&pctrl->lock, flags); } static void intel_gpio_irq_mask(struct irq_data *d) { intel_gpio_irq_mask_unmask(d, true); } static void intel_gpio_irq_unmask(struct irq_data *d) { intel_gpio_irq_mask_unmask(d, false); } static int intel_gpio_irq_type(struct irq_data *d, unsigned type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct intel_pinctrl *pctrl = gpiochip_to_pinctrl(gc); unsigned pin = irqd_to_hwirq(d); unsigned long flags; void __iomem *reg; u32 value; reg = intel_get_padcfg(pctrl, pin, PADCFG0); if (!reg) return -EINVAL; /* * If the pin is in ACPI mode it is still usable as a GPIO but it * cannot be used as IRQ because GPI_IS status bit will not be * updated by the host controller hardware. */ if (intel_pad_acpi_mode(pctrl, pin)) { dev_warn(pctrl->dev, "pin %u cannot be used as IRQ\n", pin); return -EPERM; } spin_lock_irqsave(&pctrl->lock, flags); value = readl(reg); value &= ~(PADCFG0_RXEVCFG_MASK | PADCFG0_RXINV); if ((type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH) { value |= PADCFG0_RXEVCFG_EDGE_BOTH << PADCFG0_RXEVCFG_SHIFT; } else if (type & IRQ_TYPE_EDGE_FALLING) { value |= PADCFG0_RXEVCFG_EDGE << PADCFG0_RXEVCFG_SHIFT; value |= PADCFG0_RXINV; } else if (type & IRQ_TYPE_EDGE_RISING) { value |= PADCFG0_RXEVCFG_EDGE << PADCFG0_RXEVCFG_SHIFT; } else if (type & IRQ_TYPE_LEVEL_LOW) { value |= PADCFG0_RXINV; } else { value |= PADCFG0_RXEVCFG_DISABLED << PADCFG0_RXEVCFG_SHIFT; } writel(value, reg); if (type & IRQ_TYPE_EDGE_BOTH) irq_set_handler_locked(d, handle_edge_irq); else if (type & IRQ_TYPE_LEVEL_MASK) irq_set_handler_locked(d, handle_level_irq); spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static int intel_gpio_irq_wake(struct irq_data *d, unsigned int on) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct intel_pinctrl *pctrl = gpiochip_to_pinctrl(gc); const struct intel_community *community; unsigned pin = irqd_to_hwirq(d); unsigned padno, gpp, gpp_offset; u32 gpe_en; community = intel_get_community(pctrl, pin); if (!community) return -EINVAL; padno = pin_to_padno(community, pin); gpp = padno / community->gpp_size; gpp_offset = padno % community->gpp_size; /* Clear the existing wake status */ writel(BIT(gpp_offset), community->regs + GPI_GPE_STS + gpp * 4); /* * The controller will generate wake when GPE of the corresponding * pad is enabled and it is not routed to SCI (GPIROUTSCI is not * set). */ gpe_en = readl(community->regs + GPI_GPE_EN + gpp * 4); if (on) gpe_en |= BIT(gpp_offset); else gpe_en &= ~BIT(gpp_offset); writel(gpe_en, community->regs + GPI_GPE_EN + gpp * 4); dev_dbg(pctrl->dev, "%sable wake for pin %u\n", on ? "en" : "dis", pin); return 0; } static irqreturn_t intel_gpio_community_irq_handler(struct intel_pinctrl *pctrl, const struct intel_community *community) { struct gpio_chip *gc = &pctrl->chip; irqreturn_t ret = IRQ_NONE; int gpp; for (gpp = 0; gpp < community->ngpps; gpp++) { unsigned long pending, enabled, gpp_offset; pending = readl(community->regs + GPI_IS + gpp * 4); enabled = readl(community->regs + community->ie_offset + gpp * 4); /* Only interrupts that are enabled */ pending &= enabled; for_each_set_bit(gpp_offset, &pending, community->gpp_size) { unsigned padno, irq; /* * The last group in community can have less pins * than NPADS_IN_GPP. */ padno = gpp_offset + gpp * community->gpp_size; if (padno >= community->npins) break; irq = irq_find_mapping(gc->irqdomain, community->pin_base + padno); generic_handle_irq(irq); ret |= IRQ_HANDLED; } } return ret; } static irqreturn_t intel_gpio_irq(int irq, void *data) { const struct intel_community *community; struct intel_pinctrl *pctrl = data; irqreturn_t ret = IRQ_NONE; int i; /* Need to check all communities for pending interrupts */ for (i = 0; i < pctrl->ncommunities; i++) { community = &pctrl->communities[i]; ret |= intel_gpio_community_irq_handler(pctrl, community); } return ret; } static struct irq_chip intel_gpio_irqchip = { .name = "intel-gpio", .irq_ack = intel_gpio_irq_ack, .irq_mask = intel_gpio_irq_mask, .irq_unmask = intel_gpio_irq_unmask, .irq_set_type = intel_gpio_irq_type, .irq_set_wake = intel_gpio_irq_wake, }; static int intel_gpio_probe(struct intel_pinctrl *pctrl, int irq) { int ret; pctrl->chip = intel_gpio_chip; pctrl->chip.ngpio = pctrl->soc->npins; pctrl->chip.label = dev_name(pctrl->dev); pctrl->chip.dev = pctrl->dev; pctrl->chip.base = -1; ret = gpiochip_add(&pctrl->chip); if (ret) { dev_err(pctrl->dev, "failed to register gpiochip\n"); return ret; } ret = gpiochip_add_pin_range(&pctrl->chip, dev_name(pctrl->dev), 0, 0, pctrl->soc->npins); if (ret) { dev_err(pctrl->dev, "failed to add GPIO pin range\n"); goto fail; } /* * We need to request the interrupt here (instead of providing chip * to the irq directly) because on some platforms several GPIO * controllers share the same interrupt line. */ ret = devm_request_irq(pctrl->dev, irq, intel_gpio_irq, IRQF_SHARED, dev_name(pctrl->dev), pctrl); if (ret) { dev_err(pctrl->dev, "failed to request interrupt\n"); goto fail; } ret = gpiochip_irqchip_add(&pctrl->chip, &intel_gpio_irqchip, 0, handle_simple_irq, IRQ_TYPE_NONE); if (ret) { dev_err(pctrl->dev, "failed to add irqchip\n"); goto fail; } gpiochip_set_chained_irqchip(&pctrl->chip, &intel_gpio_irqchip, irq, NULL); return 0; fail: gpiochip_remove(&pctrl->chip); return ret; } static int intel_pinctrl_pm_init(struct intel_pinctrl *pctrl) { #ifdef CONFIG_PM_SLEEP const struct intel_pinctrl_soc_data *soc = pctrl->soc; struct intel_community_context *communities; struct intel_pad_context *pads; int i; pads = devm_kcalloc(pctrl->dev, soc->npins, sizeof(*pads), GFP_KERNEL); if (!pads) return -ENOMEM; communities = devm_kcalloc(pctrl->dev, pctrl->ncommunities, sizeof(*communities), GFP_KERNEL); if (!communities) return -ENOMEM; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; u32 *intmask; intmask = devm_kcalloc(pctrl->dev, community->ngpps, sizeof(*intmask), GFP_KERNEL); if (!intmask) return -ENOMEM; communities[i].intmask = intmask; } pctrl->context.pads = pads; pctrl->context.communities = communities; #endif return 0; } int intel_pinctrl_probe(struct platform_device *pdev, const struct intel_pinctrl_soc_data *soc_data) { struct intel_pinctrl *pctrl; int i, ret, irq; if (!soc_data) return -EINVAL; pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); if (!pctrl) return -ENOMEM; pctrl->dev = &pdev->dev; pctrl->soc = soc_data; spin_lock_init(&pctrl->lock); /* * Make a copy of the communities which we can use to hold pointers * to the registers. */ pctrl->ncommunities = pctrl->soc->ncommunities; pctrl->communities = devm_kcalloc(&pdev->dev, pctrl->ncommunities, sizeof(*pctrl->communities), GFP_KERNEL); if (!pctrl->communities) return -ENOMEM; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; struct resource *res; void __iomem *regs; u32 padbar; *community = pctrl->soc->communities[i]; res = platform_get_resource(pdev, IORESOURCE_MEM, community->barno); regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); /* Read offset of the pad configuration registers */ padbar = readl(regs + PADBAR); community->regs = regs; community->pad_regs = regs + padbar; community->ngpps = DIV_ROUND_UP(community->npins, community->gpp_size); } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "failed to get interrupt number\n"); return irq; } ret = intel_pinctrl_pm_init(pctrl); if (ret) return ret; pctrl->pctldesc = intel_pinctrl_desc; pctrl->pctldesc.name = dev_name(&pdev->dev); pctrl->pctldesc.pins = pctrl->soc->pins; pctrl->pctldesc.npins = pctrl->soc->npins; pctrl->pctldev = pinctrl_register(&pctrl->pctldesc, &pdev->dev, pctrl); if (IS_ERR(pctrl->pctldev)) { dev_err(&pdev->dev, "failed to register pinctrl driver\n"); return PTR_ERR(pctrl->pctldev); } ret = intel_gpio_probe(pctrl, irq); if (ret) { pinctrl_unregister(pctrl->pctldev); return ret; } platform_set_drvdata(pdev, pctrl); return 0; } EXPORT_SYMBOL_GPL(intel_pinctrl_probe); int intel_pinctrl_remove(struct platform_device *pdev) { struct intel_pinctrl *pctrl = platform_get_drvdata(pdev); gpiochip_remove(&pctrl->chip); pinctrl_unregister(pctrl->pctldev); return 0; } EXPORT_SYMBOL_GPL(intel_pinctrl_remove); #ifdef CONFIG_PM_SLEEP int intel_pinctrl_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct intel_pinctrl *pctrl = platform_get_drvdata(pdev); struct intel_community_context *communities; struct intel_pad_context *pads; int i; pads = pctrl->context.pads; for (i = 0; i < pctrl->soc->npins; i++) { const struct pinctrl_pin_desc *desc = &pctrl->soc->pins[i]; u32 val; if (!intel_pad_usable(pctrl, desc->number)) continue; val = readl(intel_get_padcfg(pctrl, desc->number, PADCFG0)); pads[i].padcfg0 = val & ~PADCFG0_GPIORXSTATE; val = readl(intel_get_padcfg(pctrl, desc->number, PADCFG1)); pads[i].padcfg1 = val; } communities = pctrl->context.communities; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; void __iomem *base; unsigned gpp; base = community->regs + community->ie_offset; for (gpp = 0; gpp < community->ngpps; gpp++) communities[i].intmask[gpp] = readl(base + gpp * 4); } return 0; } EXPORT_SYMBOL_GPL(intel_pinctrl_suspend); static void intel_gpio_irq_init(struct intel_pinctrl *pctrl) { size_t i; for (i = 0; i < pctrl->ncommunities; i++) { const struct intel_community *community; void __iomem *base; unsigned gpp; community = &pctrl->communities[i]; base = community->regs; for (gpp = 0; gpp < community->ngpps; gpp++) { /* Mask and clear all interrupts */ writel(0, base + community->ie_offset + gpp * 4); writel(0xffff, base + GPI_IS + gpp * 4); } } } int intel_pinctrl_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct intel_pinctrl *pctrl = platform_get_drvdata(pdev); const struct intel_community_context *communities; const struct intel_pad_context *pads; int i; /* Mask all interrupts */ intel_gpio_irq_init(pctrl); pads = pctrl->context.pads; for (i = 0; i < pctrl->soc->npins; i++) { const struct pinctrl_pin_desc *desc = &pctrl->soc->pins[i]; void __iomem *padcfg; u32 val; if (!intel_pad_usable(pctrl, desc->number)) continue; padcfg = intel_get_padcfg(pctrl, desc->number, PADCFG0); val = readl(padcfg) & ~PADCFG0_GPIORXSTATE; if (val != pads[i].padcfg0) { writel(pads[i].padcfg0, padcfg); dev_dbg(dev, "restored pin %u padcfg0 %#08x\n", desc->number, readl(padcfg)); } padcfg = intel_get_padcfg(pctrl, desc->number, PADCFG1); val = readl(padcfg); if (val != pads[i].padcfg1) { writel(pads[i].padcfg1, padcfg); dev_dbg(dev, "restored pin %u padcfg1 %#08x\n", desc->number, readl(padcfg)); } } communities = pctrl->context.communities; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; void __iomem *base; unsigned gpp; base = community->regs + community->ie_offset; for (gpp = 0; gpp < community->ngpps; gpp++) { writel(communities[i].intmask[gpp], base + gpp * 4); dev_dbg(dev, "restored mask %d/%u %#08x\n", i, gpp, readl(base + gpp * 4)); } } return 0; } EXPORT_SYMBOL_GPL(intel_pinctrl_resume); #endif MODULE_AUTHOR("Mathias Nyman <mathias.nyman@linux.intel.com>"); MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); MODULE_DESCRIPTION("Intel pinctrl/GPIO core driver"); MODULE_LICENSE("GPL v2");