/* * intel_mid_thermal.c - Intel MID platform thermal driver * * Copyright (C) 2011 Intel Corporation * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Author: Durgadoss R <durgadoss.r@intel.com> */ #define pr_fmt(fmt) "intel_mid_thermal: " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/err.h> #include <linux/param.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/pm.h> #include <linux/thermal.h> #include <linux/mfd/intel_msic.h> /* Number of thermal sensors */ #define MSIC_THERMAL_SENSORS 4 /* ADC1 - thermal registers */ #define MSIC_ADC_ENBL 0x10 #define MSIC_ADC_START 0x08 #define MSIC_ADCTHERM_ENBL 0x04 #define MSIC_ADCRRDATA_ENBL 0x05 #define MSIC_CHANL_MASK_VAL 0x0F #define MSIC_STOPBIT_MASK 16 #define MSIC_ADCTHERM_MASK 4 /* Number of ADC channels */ #define ADC_CHANLS_MAX 15 #define ADC_LOOP_MAX (ADC_CHANLS_MAX - MSIC_THERMAL_SENSORS) /* ADC channel code values */ #define SKIN_SENSOR0_CODE 0x08 #define SKIN_SENSOR1_CODE 0x09 #define SYS_SENSOR_CODE 0x0A #define MSIC_DIE_SENSOR_CODE 0x03 #define SKIN_THERM_SENSOR0 0 #define SKIN_THERM_SENSOR1 1 #define SYS_THERM_SENSOR2 2 #define MSIC_DIE_THERM_SENSOR3 3 /* ADC code range */ #define ADC_MAX 977 #define ADC_MIN 162 #define ADC_VAL0C 887 #define ADC_VAL20C 720 #define ADC_VAL40C 508 #define ADC_VAL60C 315 /* ADC base addresses */ #define ADC_CHNL_START_ADDR INTEL_MSIC_ADC1ADDR0 /* increments by 1 */ #define ADC_DATA_START_ADDR INTEL_MSIC_ADC1SNS0H /* increments by 2 */ /* MSIC die attributes */ #define MSIC_DIE_ADC_MIN 488 #define MSIC_DIE_ADC_MAX 1004 /* This holds the address of the first free ADC channel, * among the 15 channels */ static int channel_index; struct platform_info { struct platform_device *pdev; struct thermal_zone_device *tzd[MSIC_THERMAL_SENSORS]; }; struct thermal_device_info { unsigned int chnl_addr; int direct; /* This holds the current temperature in millidegree celsius */ long curr_temp; }; /** * to_msic_die_temp - converts adc_val to msic_die temperature * @adc_val: ADC value to be converted * * Can sleep */ static int to_msic_die_temp(uint16_t adc_val) { return (368 * (adc_val) / 1000) - 220; } /** * is_valid_adc - checks whether the adc code is within the defined range * @min: minimum value for the sensor * @max: maximum value for the sensor * * Can sleep */ static int is_valid_adc(uint16_t adc_val, uint16_t min, uint16_t max) { return (adc_val >= min) && (adc_val <= max); } /** * adc_to_temp - converts the ADC code to temperature in C * @direct: true if ths channel is direct index * @adc_val: the adc_val that needs to be converted * @tp: temperature return value * * Linear approximation is used to covert the skin adc value into temperature. * This technique is used to avoid very long look-up table to get * the appropriate temp value from ADC value. * The adc code vs sensor temp curve is split into five parts * to achieve very close approximate temp value with less than * 0.5C error */ static int adc_to_temp(int direct, uint16_t adc_val, int *tp) { int temp; /* Direct conversion for die temperature */ if (direct) { if (is_valid_adc(adc_val, MSIC_DIE_ADC_MIN, MSIC_DIE_ADC_MAX)) { *tp = to_msic_die_temp(adc_val) * 1000; return 0; } return -ERANGE; } if (!is_valid_adc(adc_val, ADC_MIN, ADC_MAX)) return -ERANGE; /* Linear approximation for skin temperature */ if (adc_val > ADC_VAL0C) temp = 177 - (adc_val/5); else if ((adc_val <= ADC_VAL0C) && (adc_val > ADC_VAL20C)) temp = 111 - (adc_val/8); else if ((adc_val <= ADC_VAL20C) && (adc_val > ADC_VAL40C)) temp = 92 - (adc_val/10); else if ((adc_val <= ADC_VAL40C) && (adc_val > ADC_VAL60C)) temp = 91 - (adc_val/10); else temp = 112 - (adc_val/6); /* Convert temperature in celsius to milli degree celsius */ *tp = temp * 1000; return 0; } /** * mid_read_temp - read sensors for temperature * @temp: holds the current temperature for the sensor after reading * * reads the adc_code from the channel and converts it to real * temperature. The converted value is stored in temp. * * Can sleep */ static int mid_read_temp(struct thermal_zone_device *tzd, int *temp) { struct thermal_device_info *td_info = tzd->devdata; uint16_t adc_val, addr; uint8_t data = 0; int ret; int curr_temp; addr = td_info->chnl_addr; /* Enable the msic for conversion before reading */ ret = intel_msic_reg_write(INTEL_MSIC_ADC1CNTL3, MSIC_ADCRRDATA_ENBL); if (ret) return ret; /* Re-toggle the RRDATARD bit (temporary workaround) */ ret = intel_msic_reg_write(INTEL_MSIC_ADC1CNTL3, MSIC_ADCTHERM_ENBL); if (ret) return ret; /* Read the higher bits of data */ ret = intel_msic_reg_read(addr, &data); if (ret) return ret; /* Shift bits to accommodate the lower two data bits */ adc_val = (data << 2); addr++; ret = intel_msic_reg_read(addr, &data);/* Read lower bits */ if (ret) return ret; /* Adding lower two bits to the higher bits */ data &= 03; adc_val += data; /* Convert ADC value to temperature */ ret = adc_to_temp(td_info->direct, adc_val, &curr_temp); if (ret == 0) *temp = td_info->curr_temp = curr_temp; return ret; } /** * configure_adc - enables/disables the ADC for conversion * @val: zero: disables the ADC non-zero:enables the ADC * * Enable/Disable the ADC depending on the argument * * Can sleep */ static int configure_adc(int val) { int ret; uint8_t data; ret = intel_msic_reg_read(INTEL_MSIC_ADC1CNTL1, &data); if (ret) return ret; if (val) { /* Enable and start the ADC */ data |= (MSIC_ADC_ENBL | MSIC_ADC_START); } else { /* Just stop the ADC */ data &= (~MSIC_ADC_START); } return intel_msic_reg_write(INTEL_MSIC_ADC1CNTL1, data); } /** * set_up_therm_channel - enable thermal channel for conversion * @base_addr: index of free msic ADC channel * * Enable all the three channels for conversion * * Can sleep */ static int set_up_therm_channel(u16 base_addr) { int ret; /* Enable all the sensor channels */ ret = intel_msic_reg_write(base_addr, SKIN_SENSOR0_CODE); if (ret) return ret; ret = intel_msic_reg_write(base_addr + 1, SKIN_SENSOR1_CODE); if (ret) return ret; ret = intel_msic_reg_write(base_addr + 2, SYS_SENSOR_CODE); if (ret) return ret; /* Since this is the last channel, set the stop bit * to 1 by ORing the DIE_SENSOR_CODE with 0x10 */ ret = intel_msic_reg_write(base_addr + 3, (MSIC_DIE_SENSOR_CODE | 0x10)); if (ret) return ret; /* Enable ADC and start it */ return configure_adc(1); } /** * reset_stopbit - sets the stop bit to 0 on the given channel * @addr: address of the channel * * Can sleep */ static int reset_stopbit(uint16_t addr) { int ret; uint8_t data; ret = intel_msic_reg_read(addr, &data); if (ret) return ret; /* Set the stop bit to zero */ return intel_msic_reg_write(addr, (data & 0xEF)); } /** * find_free_channel - finds an empty channel for conversion * * If the ADC is not enabled then start using 0th channel * itself. Otherwise find an empty channel by looking for a * channel in which the stopbit is set to 1. returns the index * of the first free channel if succeeds or an error code. * * Context: can sleep * * FIXME: Ultimately the channel allocator will move into the intel_scu_ipc * code. */ static int find_free_channel(void) { int ret; int i; uint8_t data; /* check whether ADC is enabled */ ret = intel_msic_reg_read(INTEL_MSIC_ADC1CNTL1, &data); if (ret) return ret; if ((data & MSIC_ADC_ENBL) == 0) return 0; /* ADC is already enabled; Looking for an empty channel */ for (i = 0; i < ADC_CHANLS_MAX; i++) { ret = intel_msic_reg_read(ADC_CHNL_START_ADDR + i, &data); if (ret) return ret; if (data & MSIC_STOPBIT_MASK) { ret = i; break; } } return (ret > ADC_LOOP_MAX) ? (-EINVAL) : ret; } /** * mid_initialize_adc - initializing the ADC * @dev: our device structure * * Initialize the ADC for reading thermistor values. Can sleep. */ static int mid_initialize_adc(struct device *dev) { u8 data; u16 base_addr; int ret; /* * Ensure that adctherm is disabled before we * initialize the ADC */ ret = intel_msic_reg_read(INTEL_MSIC_ADC1CNTL3, &data); if (ret) return ret; data &= ~MSIC_ADCTHERM_MASK; ret = intel_msic_reg_write(INTEL_MSIC_ADC1CNTL3, data); if (ret) return ret; /* Index of the first channel in which the stop bit is set */ channel_index = find_free_channel(); if (channel_index < 0) { dev_err(dev, "No free ADC channels"); return channel_index; } base_addr = ADC_CHNL_START_ADDR + channel_index; if (!(channel_index == 0 || channel_index == ADC_LOOP_MAX)) { /* Reset stop bit for channels other than 0 and 12 */ ret = reset_stopbit(base_addr); if (ret) return ret; /* Index of the first free channel */ base_addr++; channel_index++; } ret = set_up_therm_channel(base_addr); if (ret) { dev_err(dev, "unable to enable ADC"); return ret; } dev_dbg(dev, "ADC initialization successful"); return ret; } /** * initialize_sensor - sets default temp and timer ranges * @index: index of the sensor * * Context: can sleep */ static struct thermal_device_info *initialize_sensor(int index) { struct thermal_device_info *td_info = kzalloc(sizeof(struct thermal_device_info), GFP_KERNEL); if (!td_info) return NULL; /* Set the base addr of the channel for this sensor */ td_info->chnl_addr = ADC_DATA_START_ADDR + 2 * (channel_index + index); /* Sensor 3 is direct conversion */ if (index == 3) td_info->direct = 1; return td_info; } /** * mid_thermal_resume - resume routine * @dev: device structure * * mid thermal resume: re-initializes the adc. Can sleep. */ static int mid_thermal_resume(struct device *dev) { return mid_initialize_adc(dev); } /** * mid_thermal_suspend - suspend routine * @dev: device structure * * mid thermal suspend implements the suspend functionality * by stopping the ADC. Can sleep. */ static int mid_thermal_suspend(struct device *dev) { /* * This just stops the ADC and does not disable it. * temporary workaround until we have a generic ADC driver. * If 0 is passed, it disables the ADC. */ return configure_adc(0); } static SIMPLE_DEV_PM_OPS(mid_thermal_pm, mid_thermal_suspend, mid_thermal_resume); /** * read_curr_temp - reads the current temperature and stores in temp * @temp: holds the current temperature value after reading * * Can sleep */ static int read_curr_temp(struct thermal_zone_device *tzd, int *temp) { WARN_ON(tzd == NULL); return mid_read_temp(tzd, temp); } /* Can't be const */ static struct thermal_zone_device_ops tzd_ops = { .get_temp = read_curr_temp, }; /** * mid_thermal_probe - mfld thermal initialize * @pdev: platform device structure * * mid thermal probe initializes the hardware and registers * all the sensors with the generic thermal framework. Can sleep. */ static int mid_thermal_probe(struct platform_device *pdev) { static char *name[MSIC_THERMAL_SENSORS] = { "skin0", "skin1", "sys", "msicdie" }; int ret; int i; struct platform_info *pinfo; pinfo = devm_kzalloc(&pdev->dev, sizeof(struct platform_info), GFP_KERNEL); if (!pinfo) return -ENOMEM; /* Initializing the hardware */ ret = mid_initialize_adc(&pdev->dev); if (ret) { dev_err(&pdev->dev, "ADC init failed"); return ret; } /* Register each sensor with the generic thermal framework*/ for (i = 0; i < MSIC_THERMAL_SENSORS; i++) { struct thermal_device_info *td_info = initialize_sensor(i); if (!td_info) { ret = -ENOMEM; goto err; } pinfo->tzd[i] = thermal_zone_device_register(name[i], 0, 0, td_info, &tzd_ops, NULL, 0, 0); if (IS_ERR(pinfo->tzd[i])) { kfree(td_info); ret = PTR_ERR(pinfo->tzd[i]); goto err; } } pinfo->pdev = pdev; platform_set_drvdata(pdev, pinfo); return 0; err: while (--i >= 0) { kfree(pinfo->tzd[i]->devdata); thermal_zone_device_unregister(pinfo->tzd[i]); } configure_adc(0); return ret; } /** * mid_thermal_remove - mfld thermal finalize * @dev: platform device structure * * MLFD thermal remove unregisters all the sensors from the generic * thermal framework. Can sleep. */ static int mid_thermal_remove(struct platform_device *pdev) { int i; struct platform_info *pinfo = platform_get_drvdata(pdev); for (i = 0; i < MSIC_THERMAL_SENSORS; i++) { kfree(pinfo->tzd[i]->devdata); thermal_zone_device_unregister(pinfo->tzd[i]); } /* Stop the ADC */ return configure_adc(0); } #define DRIVER_NAME "msic_thermal" static const struct platform_device_id therm_id_table[] = { { DRIVER_NAME, 1 }, { "msic_thermal", 1 }, { } }; static struct platform_driver mid_thermal_driver = { .driver = { .name = DRIVER_NAME, .pm = &mid_thermal_pm, }, .probe = mid_thermal_probe, .remove = mid_thermal_remove, .id_table = therm_id_table, }; module_platform_driver(mid_thermal_driver); MODULE_AUTHOR("Durgadoss R <durgadoss.r@intel.com>"); MODULE_DESCRIPTION("Intel Medfield Platform Thermal Driver"); MODULE_LICENSE("GPL");