/* * axp288_fuel_gauge.c - Xpower AXP288 PMIC Fuel Gauge Driver * * Copyright (C) 2014 Intel Corporation * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/regmap.h> #include <linux/jiffies.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/workqueue.h> #include <linux/mfd/axp20x.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/iio/consumer.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #define CHRG_STAT_BAT_SAFE_MODE (1 << 3) #define CHRG_STAT_BAT_VALID (1 << 4) #define CHRG_STAT_BAT_PRESENT (1 << 5) #define CHRG_STAT_CHARGING (1 << 6) #define CHRG_STAT_PMIC_OTP (1 << 7) #define CHRG_CCCV_CC_MASK 0xf /* 4 bits */ #define CHRG_CCCV_CC_BIT_POS 0 #define CHRG_CCCV_CC_OFFSET 200 /* 200mA */ #define CHRG_CCCV_CC_LSB_RES 200 /* 200mA */ #define CHRG_CCCV_ITERM_20P (1 << 4) /* 20% of CC */ #define CHRG_CCCV_CV_MASK 0x60 /* 2 bits */ #define CHRG_CCCV_CV_BIT_POS 5 #define CHRG_CCCV_CV_4100MV 0x0 /* 4.10V */ #define CHRG_CCCV_CV_4150MV 0x1 /* 4.15V */ #define CHRG_CCCV_CV_4200MV 0x2 /* 4.20V */ #define CHRG_CCCV_CV_4350MV 0x3 /* 4.35V */ #define CHRG_CCCV_CHG_EN (1 << 7) #define CV_4100 4100 /* 4100mV */ #define CV_4150 4150 /* 4150mV */ #define CV_4200 4200 /* 4200mV */ #define CV_4350 4350 /* 4350mV */ #define TEMP_IRQ_CFG_QWBTU (1 << 0) #define TEMP_IRQ_CFG_WBTU (1 << 1) #define TEMP_IRQ_CFG_QWBTO (1 << 2) #define TEMP_IRQ_CFG_WBTO (1 << 3) #define TEMP_IRQ_CFG_MASK 0xf #define FG_IRQ_CFG_LOWBATT_WL2 (1 << 0) #define FG_IRQ_CFG_LOWBATT_WL1 (1 << 1) #define FG_IRQ_CFG_LOWBATT_MASK 0x3 #define LOWBAT_IRQ_STAT_LOWBATT_WL2 (1 << 0) #define LOWBAT_IRQ_STAT_LOWBATT_WL1 (1 << 1) #define FG_CNTL_OCV_ADJ_STAT (1 << 2) #define FG_CNTL_OCV_ADJ_EN (1 << 3) #define FG_CNTL_CAP_ADJ_STAT (1 << 4) #define FG_CNTL_CAP_ADJ_EN (1 << 5) #define FG_CNTL_CC_EN (1 << 6) #define FG_CNTL_GAUGE_EN (1 << 7) #define FG_REP_CAP_VALID (1 << 7) #define FG_REP_CAP_VAL_MASK 0x7F #define FG_DES_CAP1_VALID (1 << 7) #define FG_DES_CAP1_VAL_MASK 0x7F #define FG_DES_CAP0_VAL_MASK 0xFF #define FG_DES_CAP_RES_LSB 1456 /* 1.456mAhr */ #define FG_CC_MTR1_VALID (1 << 7) #define FG_CC_MTR1_VAL_MASK 0x7F #define FG_CC_MTR0_VAL_MASK 0xFF #define FG_DES_CC_RES_LSB 1456 /* 1.456mAhr */ #define FG_OCV_CAP_VALID (1 << 7) #define FG_OCV_CAP_VAL_MASK 0x7F #define FG_CC_CAP_VALID (1 << 7) #define FG_CC_CAP_VAL_MASK 0x7F #define FG_LOW_CAP_THR1_MASK 0xf0 /* 5% tp 20% */ #define FG_LOW_CAP_THR1_VAL 0xa0 /* 15 perc */ #define FG_LOW_CAP_THR2_MASK 0x0f /* 0% to 15% */ #define FG_LOW_CAP_WARN_THR 14 /* 14 perc */ #define FG_LOW_CAP_CRIT_THR 4 /* 4 perc */ #define FG_LOW_CAP_SHDN_THR 0 /* 0 perc */ #define STATUS_MON_DELAY_JIFFIES (HZ * 60) /*60 sec */ #define NR_RETRY_CNT 3 #define DEV_NAME "axp288_fuel_gauge" /* 1.1mV per LSB expressed in uV */ #define VOLTAGE_FROM_ADC(a) ((a * 11) / 10) /* properties converted to tenths of degrees, uV, uA, uW */ #define PROP_TEMP(a) ((a) * 10) #define UNPROP_TEMP(a) ((a) / 10) #define PROP_VOLT(a) ((a) * 1000) #define PROP_CURR(a) ((a) * 1000) #define AXP288_FG_INTR_NUM 6 enum { QWBTU_IRQ = 0, WBTU_IRQ, QWBTO_IRQ, WBTO_IRQ, WL2_IRQ, WL1_IRQ, }; struct axp288_fg_info { struct platform_device *pdev; struct axp20x_fg_pdata *pdata; struct regmap *regmap; struct regmap_irq_chip_data *regmap_irqc; int irq[AXP288_FG_INTR_NUM]; struct power_supply *bat; struct mutex lock; int status; struct delayed_work status_monitor; struct dentry *debug_file; }; static enum power_supply_property fuel_gauge_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TEMP_MAX, POWER_SUPPLY_PROP_TEMP_MIN, POWER_SUPPLY_PROP_TEMP_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_ALERT_MAX, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_MODEL_NAME, }; static int fuel_gauge_reg_readb(struct axp288_fg_info *info, int reg) { int ret, i; unsigned int val; for (i = 0; i < NR_RETRY_CNT; i++) { ret = regmap_read(info->regmap, reg, &val); if (ret == -EBUSY) continue; else break; } if (ret < 0) dev_err(&info->pdev->dev, "axp288 reg read err:%d\n", ret); return val; } static int fuel_gauge_reg_writeb(struct axp288_fg_info *info, int reg, u8 val) { int ret; ret = regmap_write(info->regmap, reg, (unsigned int)val); if (ret < 0) dev_err(&info->pdev->dev, "axp288 reg write err:%d\n", ret); return ret; } static int pmic_read_adc_val(const char *name, int *raw_val, struct axp288_fg_info *info) { int ret, val = 0; struct iio_channel *indio_chan; indio_chan = iio_channel_get(NULL, name); if (IS_ERR_OR_NULL(indio_chan)) { ret = PTR_ERR(indio_chan); goto exit; } ret = iio_read_channel_raw(indio_chan, &val); if (ret < 0) { dev_err(&info->pdev->dev, "IIO channel read error: %x, %x\n", ret, val); goto err_exit; } dev_dbg(&info->pdev->dev, "adc raw val=%x\n", val); *raw_val = val; err_exit: iio_channel_release(indio_chan); exit: return ret; } #ifdef CONFIG_DEBUG_FS static int fuel_gauge_debug_show(struct seq_file *s, void *data) { struct axp288_fg_info *info = s->private; int raw_val, ret; seq_printf(s, " PWR_STATUS[%02x] : %02x\n", AXP20X_PWR_INPUT_STATUS, fuel_gauge_reg_readb(info, AXP20X_PWR_INPUT_STATUS)); seq_printf(s, "PWR_OP_MODE[%02x] : %02x\n", AXP20X_PWR_OP_MODE, fuel_gauge_reg_readb(info, AXP20X_PWR_OP_MODE)); seq_printf(s, " CHRG_CTRL1[%02x] : %02x\n", AXP20X_CHRG_CTRL1, fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1)); seq_printf(s, " VLTF[%02x] : %02x\n", AXP20X_V_LTF_DISCHRG, fuel_gauge_reg_readb(info, AXP20X_V_LTF_DISCHRG)); seq_printf(s, " VHTF[%02x] : %02x\n", AXP20X_V_HTF_DISCHRG, fuel_gauge_reg_readb(info, AXP20X_V_HTF_DISCHRG)); seq_printf(s, " CC_CTRL[%02x] : %02x\n", AXP20X_CC_CTRL, fuel_gauge_reg_readb(info, AXP20X_CC_CTRL)); seq_printf(s, "BATTERY CAP[%02x] : %02x\n", AXP20X_FG_RES, fuel_gauge_reg_readb(info, AXP20X_FG_RES)); seq_printf(s, " FG_RDC1[%02x] : %02x\n", AXP288_FG_RDC1_REG, fuel_gauge_reg_readb(info, AXP288_FG_RDC1_REG)); seq_printf(s, " FG_RDC0[%02x] : %02x\n", AXP288_FG_RDC0_REG, fuel_gauge_reg_readb(info, AXP288_FG_RDC0_REG)); seq_printf(s, " FG_OCVH[%02x] : %02x\n", AXP288_FG_OCVH_REG, fuel_gauge_reg_readb(info, AXP288_FG_OCVH_REG)); seq_printf(s, " FG_OCVL[%02x] : %02x\n", AXP288_FG_OCVL_REG, fuel_gauge_reg_readb(info, AXP288_FG_OCVL_REG)); seq_printf(s, "FG_DES_CAP1[%02x] : %02x\n", AXP288_FG_DES_CAP1_REG, fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG)); seq_printf(s, "FG_DES_CAP0[%02x] : %02x\n", AXP288_FG_DES_CAP0_REG, fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP0_REG)); seq_printf(s, " FG_CC_MTR1[%02x] : %02x\n", AXP288_FG_CC_MTR1_REG, fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR1_REG)); seq_printf(s, " FG_CC_MTR0[%02x] : %02x\n", AXP288_FG_CC_MTR0_REG, fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR0_REG)); seq_printf(s, " FG_OCV_CAP[%02x] : %02x\n", AXP288_FG_OCV_CAP_REG, fuel_gauge_reg_readb(info, AXP288_FG_OCV_CAP_REG)); seq_printf(s, " FG_CC_CAP[%02x] : %02x\n", AXP288_FG_CC_CAP_REG, fuel_gauge_reg_readb(info, AXP288_FG_CC_CAP_REG)); seq_printf(s, " FG_LOW_CAP[%02x] : %02x\n", AXP288_FG_LOW_CAP_REG, fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG)); seq_printf(s, "TUNING_CTL0[%02x] : %02x\n", AXP288_FG_TUNE0, fuel_gauge_reg_readb(info, AXP288_FG_TUNE0)); seq_printf(s, "TUNING_CTL1[%02x] : %02x\n", AXP288_FG_TUNE1, fuel_gauge_reg_readb(info, AXP288_FG_TUNE1)); seq_printf(s, "TUNING_CTL2[%02x] : %02x\n", AXP288_FG_TUNE2, fuel_gauge_reg_readb(info, AXP288_FG_TUNE2)); seq_printf(s, "TUNING_CTL3[%02x] : %02x\n", AXP288_FG_TUNE3, fuel_gauge_reg_readb(info, AXP288_FG_TUNE3)); seq_printf(s, "TUNING_CTL4[%02x] : %02x\n", AXP288_FG_TUNE4, fuel_gauge_reg_readb(info, AXP288_FG_TUNE4)); seq_printf(s, "TUNING_CTL5[%02x] : %02x\n", AXP288_FG_TUNE5, fuel_gauge_reg_readb(info, AXP288_FG_TUNE5)); ret = pmic_read_adc_val("axp288-batt-temp", &raw_val, info); if (ret >= 0) seq_printf(s, "axp288-batttemp : %d\n", raw_val); ret = pmic_read_adc_val("axp288-pmic-temp", &raw_val, info); if (ret >= 0) seq_printf(s, "axp288-pmictemp : %d\n", raw_val); ret = pmic_read_adc_val("axp288-system-temp", &raw_val, info); if (ret >= 0) seq_printf(s, "axp288-systtemp : %d\n", raw_val); ret = pmic_read_adc_val("axp288-chrg-curr", &raw_val, info); if (ret >= 0) seq_printf(s, "axp288-chrgcurr : %d\n", raw_val); ret = pmic_read_adc_val("axp288-chrg-d-curr", &raw_val, info); if (ret >= 0) seq_printf(s, "axp288-dchrgcur : %d\n", raw_val); ret = pmic_read_adc_val("axp288-batt-volt", &raw_val, info); if (ret >= 0) seq_printf(s, "axp288-battvolt : %d\n", raw_val); return 0; } static int debug_open(struct inode *inode, struct file *file) { return single_open(file, fuel_gauge_debug_show, inode->i_private); } static const struct file_operations fg_debug_fops = { .open = debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void fuel_gauge_create_debugfs(struct axp288_fg_info *info) { info->debug_file = debugfs_create_file("fuelgauge", 0666, NULL, info, &fg_debug_fops); } static void fuel_gauge_remove_debugfs(struct axp288_fg_info *info) { debugfs_remove(info->debug_file); } #else static inline void fuel_gauge_create_debugfs(struct axp288_fg_info *info) { } static inline void fuel_gauge_remove_debugfs(struct axp288_fg_info *info) { } #endif static void fuel_gauge_get_status(struct axp288_fg_info *info) { int pwr_stat, ret; int charge, discharge; pwr_stat = fuel_gauge_reg_readb(info, AXP20X_PWR_INPUT_STATUS); if (pwr_stat < 0) { dev_err(&info->pdev->dev, "PWR STAT read failed:%d\n", pwr_stat); return; } ret = pmic_read_adc_val("axp288-chrg-curr", &charge, info); if (ret < 0) { dev_err(&info->pdev->dev, "ADC charge current read failed:%d\n", ret); return; } ret = pmic_read_adc_val("axp288-chrg-d-curr", &discharge, info); if (ret < 0) { dev_err(&info->pdev->dev, "ADC discharge current read failed:%d\n", ret); return; } if (charge > 0) info->status = POWER_SUPPLY_STATUS_CHARGING; else if (discharge > 0) info->status = POWER_SUPPLY_STATUS_DISCHARGING; else { if (pwr_stat & CHRG_STAT_BAT_PRESENT) info->status = POWER_SUPPLY_STATUS_FULL; else info->status = POWER_SUPPLY_STATUS_NOT_CHARGING; } } static int fuel_gauge_get_vbatt(struct axp288_fg_info *info, int *vbatt) { int ret = 0, raw_val; ret = pmic_read_adc_val("axp288-batt-volt", &raw_val, info); if (ret < 0) goto vbatt_read_fail; *vbatt = VOLTAGE_FROM_ADC(raw_val); vbatt_read_fail: return ret; } static int fuel_gauge_get_current(struct axp288_fg_info *info, int *cur) { int ret, value = 0; int charge, discharge; ret = pmic_read_adc_val("axp288-chrg-curr", &charge, info); if (ret < 0) goto current_read_fail; ret = pmic_read_adc_val("axp288-chrg-d-curr", &discharge, info); if (ret < 0) goto current_read_fail; if (charge > 0) value = charge; else if (discharge > 0) value = -1 * discharge; *cur = value; current_read_fail: return ret; } static int temp_to_adc(struct axp288_fg_info *info, int tval) { int rntc = 0, i, ret, adc_val; int rmin, rmax, tmin, tmax; int tcsz = info->pdata->tcsz; /* get the Rntc resitance value for this temp */ if (tval > info->pdata->thermistor_curve[0][1]) { rntc = info->pdata->thermistor_curve[0][0]; } else if (tval <= info->pdata->thermistor_curve[tcsz-1][1]) { rntc = info->pdata->thermistor_curve[tcsz-1][0]; } else { for (i = 1; i < tcsz; i++) { if (tval > info->pdata->thermistor_curve[i][1]) { rmin = info->pdata->thermistor_curve[i-1][0]; rmax = info->pdata->thermistor_curve[i][0]; tmin = info->pdata->thermistor_curve[i-1][1]; tmax = info->pdata->thermistor_curve[i][1]; rntc = rmin + ((rmax - rmin) * (tval - tmin) / (tmax - tmin)); break; } } } /* we need the current to calculate the proper adc voltage */ ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE); if (ret < 0) { dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret); ret = 0x30; } /* * temperature is proportional to NTS thermistor resistance * ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA * [12-bit ADC VAL] = R_NTC(Ω) * current / 800 */ adc_val = rntc * (20 + (20 * ((ret >> 4) & 0x3))) / 800; return adc_val; } static int adc_to_temp(struct axp288_fg_info *info, int adc_val) { int ret, r, i, tval = 0; int rmin, rmax, tmin, tmax; int tcsz = info->pdata->tcsz; ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE); if (ret < 0) { dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret); ret = 0x30; } /* * temperature is proportional to NTS thermistor resistance * ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA * R_NTC(Ω) = [12-bit ADC VAL] * 800 / current */ r = adc_val * 800 / (20 + (20 * ((ret >> 4) & 0x3))); if (r < info->pdata->thermistor_curve[0][0]) { tval = info->pdata->thermistor_curve[0][1]; } else if (r >= info->pdata->thermistor_curve[tcsz-1][0]) { tval = info->pdata->thermistor_curve[tcsz-1][1]; } else { for (i = 1; i < tcsz; i++) { if (r < info->pdata->thermistor_curve[i][0]) { rmin = info->pdata->thermistor_curve[i-1][0]; rmax = info->pdata->thermistor_curve[i][0]; tmin = info->pdata->thermistor_curve[i-1][1]; tmax = info->pdata->thermistor_curve[i][1]; tval = tmin + ((tmax - tmin) * (r - rmin) / (rmax - rmin)); break; } } } return tval; } static int fuel_gauge_get_btemp(struct axp288_fg_info *info, int *btemp) { int ret, raw_val = 0; ret = pmic_read_adc_val("axp288-batt-temp", &raw_val, info); if (ret < 0) goto temp_read_fail; *btemp = adc_to_temp(info, raw_val); temp_read_fail: return ret; } static int fuel_gauge_get_vocv(struct axp288_fg_info *info, int *vocv) { int ret, value; /* 12-bit data value, upper 8 in OCVH, lower 4 in OCVL */ ret = fuel_gauge_reg_readb(info, AXP288_FG_OCVH_REG); if (ret < 0) goto vocv_read_fail; value = ret << 4; ret = fuel_gauge_reg_readb(info, AXP288_FG_OCVL_REG); if (ret < 0) goto vocv_read_fail; value |= (ret & 0xf); *vocv = VOLTAGE_FROM_ADC(value); vocv_read_fail: return ret; } static int fuel_gauge_battery_health(struct axp288_fg_info *info) { int temp, vocv; int ret, health = POWER_SUPPLY_HEALTH_UNKNOWN; ret = fuel_gauge_get_btemp(info, &temp); if (ret < 0) goto health_read_fail; ret = fuel_gauge_get_vocv(info, &vocv); if (ret < 0) goto health_read_fail; if (vocv > info->pdata->max_volt) health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (temp > info->pdata->max_temp) health = POWER_SUPPLY_HEALTH_OVERHEAT; else if (temp < info->pdata->min_temp) health = POWER_SUPPLY_HEALTH_COLD; else if (vocv < info->pdata->min_volt) health = POWER_SUPPLY_HEALTH_DEAD; else health = POWER_SUPPLY_HEALTH_GOOD; health_read_fail: return health; } static int fuel_gauge_set_high_btemp_alert(struct axp288_fg_info *info) { int ret, adc_val; /* program temperature threshold as 1/16 ADC value */ adc_val = temp_to_adc(info, info->pdata->max_temp); ret = fuel_gauge_reg_writeb(info, AXP20X_V_HTF_DISCHRG, adc_val >> 4); return ret; } static int fuel_gauge_set_low_btemp_alert(struct axp288_fg_info *info) { int ret, adc_val; /* program temperature threshold as 1/16 ADC value */ adc_val = temp_to_adc(info, info->pdata->min_temp); ret = fuel_gauge_reg_writeb(info, AXP20X_V_LTF_DISCHRG, adc_val >> 4); return ret; } static int fuel_gauge_get_property(struct power_supply *ps, enum power_supply_property prop, union power_supply_propval *val) { struct axp288_fg_info *info = power_supply_get_drvdata(ps); int ret = 0, value; mutex_lock(&info->lock); switch (prop) { case POWER_SUPPLY_PROP_STATUS: fuel_gauge_get_status(info); val->intval = info->status; break; case POWER_SUPPLY_PROP_HEALTH: val->intval = fuel_gauge_battery_health(info); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = fuel_gauge_get_vbatt(info, &value); if (ret < 0) goto fuel_gauge_read_err; val->intval = PROP_VOLT(value); break; case POWER_SUPPLY_PROP_VOLTAGE_OCV: ret = fuel_gauge_get_vocv(info, &value); if (ret < 0) goto fuel_gauge_read_err; val->intval = PROP_VOLT(value); break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = fuel_gauge_get_current(info, &value); if (ret < 0) goto fuel_gauge_read_err; val->intval = PROP_CURR(value); break; case POWER_SUPPLY_PROP_PRESENT: ret = fuel_gauge_reg_readb(info, AXP20X_PWR_OP_MODE); if (ret < 0) goto fuel_gauge_read_err; if (ret & CHRG_STAT_BAT_PRESENT) val->intval = 1; else val->intval = 0; break; case POWER_SUPPLY_PROP_CAPACITY: ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES); if (ret < 0) goto fuel_gauge_read_err; if (!(ret & FG_REP_CAP_VALID)) dev_err(&info->pdev->dev, "capacity measurement not valid\n"); val->intval = (ret & FG_REP_CAP_VAL_MASK); break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: ret = fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG); if (ret < 0) goto fuel_gauge_read_err; val->intval = (ret & 0x0f); break; case POWER_SUPPLY_PROP_TEMP: ret = fuel_gauge_get_btemp(info, &value); if (ret < 0) goto fuel_gauge_read_err; val->intval = PROP_TEMP(value); break; case POWER_SUPPLY_PROP_TEMP_MAX: case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: val->intval = PROP_TEMP(info->pdata->max_temp); break; case POWER_SUPPLY_PROP_TEMP_MIN: case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: val->intval = PROP_TEMP(info->pdata->min_temp); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR1_REG); if (ret < 0) goto fuel_gauge_read_err; value = (ret & FG_CC_MTR1_VAL_MASK) << 8; ret = fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR0_REG); if (ret < 0) goto fuel_gauge_read_err; value |= (ret & FG_CC_MTR0_VAL_MASK); val->intval = value * FG_DES_CAP_RES_LSB; break; case POWER_SUPPLY_PROP_CHARGE_FULL: ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG); if (ret < 0) goto fuel_gauge_read_err; value = (ret & FG_DES_CAP1_VAL_MASK) << 8; ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP0_REG); if (ret < 0) goto fuel_gauge_read_err; value |= (ret & FG_DES_CAP0_VAL_MASK); val->intval = value * FG_DES_CAP_RES_LSB; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = PROP_CURR(info->pdata->design_cap); break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = PROP_VOLT(info->pdata->max_volt); break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = PROP_VOLT(info->pdata->min_volt); break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = info->pdata->battid; break; default: mutex_unlock(&info->lock); return -EINVAL; } mutex_unlock(&info->lock); return 0; fuel_gauge_read_err: mutex_unlock(&info->lock); return ret; } static int fuel_gauge_set_property(struct power_supply *ps, enum power_supply_property prop, const union power_supply_propval *val) { struct axp288_fg_info *info = power_supply_get_drvdata(ps); int ret = 0; mutex_lock(&info->lock); switch (prop) { case POWER_SUPPLY_PROP_STATUS: info->status = val->intval; break; case POWER_SUPPLY_PROP_TEMP_MIN: case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: if ((val->intval < PD_DEF_MIN_TEMP) || (val->intval > PD_DEF_MAX_TEMP)) { ret = -EINVAL; break; } info->pdata->min_temp = UNPROP_TEMP(val->intval); ret = fuel_gauge_set_low_btemp_alert(info); if (ret < 0) dev_err(&info->pdev->dev, "temp alert min set fail:%d\n", ret); break; case POWER_SUPPLY_PROP_TEMP_MAX: case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: if ((val->intval < PD_DEF_MIN_TEMP) || (val->intval > PD_DEF_MAX_TEMP)) { ret = -EINVAL; break; } info->pdata->max_temp = UNPROP_TEMP(val->intval); ret = fuel_gauge_set_high_btemp_alert(info); if (ret < 0) dev_err(&info->pdev->dev, "temp alert max set fail:%d\n", ret); break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: if ((val->intval < 0) || (val->intval > 15)) { ret = -EINVAL; break; } ret = fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG); if (ret < 0) break; ret &= 0xf0; ret |= (val->intval & 0xf); ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, ret); break; default: ret = -EINVAL; break; } mutex_unlock(&info->lock); return ret; } static int fuel_gauge_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { int ret; switch (psp) { case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_TEMP_MIN: case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: case POWER_SUPPLY_PROP_TEMP_MAX: case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: ret = 1; break; default: ret = 0; } return ret; } static void fuel_gauge_status_monitor(struct work_struct *work) { struct axp288_fg_info *info = container_of(work, struct axp288_fg_info, status_monitor.work); fuel_gauge_get_status(info); power_supply_changed(info->bat); schedule_delayed_work(&info->status_monitor, STATUS_MON_DELAY_JIFFIES); } static irqreturn_t fuel_gauge_thread_handler(int irq, void *dev) { struct axp288_fg_info *info = dev; int i; for (i = 0; i < AXP288_FG_INTR_NUM; i++) { if (info->irq[i] == irq) break; } if (i >= AXP288_FG_INTR_NUM) { dev_warn(&info->pdev->dev, "spurious interrupt!!\n"); return IRQ_NONE; } switch (i) { case QWBTU_IRQ: dev_info(&info->pdev->dev, "Quit Battery under temperature in work mode IRQ (QWBTU)\n"); break; case WBTU_IRQ: dev_info(&info->pdev->dev, "Battery under temperature in work mode IRQ (WBTU)\n"); break; case QWBTO_IRQ: dev_info(&info->pdev->dev, "Quit Battery over temperature in work mode IRQ (QWBTO)\n"); break; case WBTO_IRQ: dev_info(&info->pdev->dev, "Battery over temperature in work mode IRQ (WBTO)\n"); break; case WL2_IRQ: dev_info(&info->pdev->dev, "Low Batt Warning(2) INTR\n"); break; case WL1_IRQ: dev_info(&info->pdev->dev, "Low Batt Warning(1) INTR\n"); break; default: dev_warn(&info->pdev->dev, "Spurious Interrupt!!!\n"); } power_supply_changed(info->bat); return IRQ_HANDLED; } static void fuel_gauge_external_power_changed(struct power_supply *psy) { struct axp288_fg_info *info = power_supply_get_drvdata(psy); power_supply_changed(info->bat); } static const struct power_supply_desc fuel_gauge_desc = { .name = DEV_NAME, .type = POWER_SUPPLY_TYPE_BATTERY, .properties = fuel_gauge_props, .num_properties = ARRAY_SIZE(fuel_gauge_props), .get_property = fuel_gauge_get_property, .set_property = fuel_gauge_set_property, .property_is_writeable = fuel_gauge_property_is_writeable, .external_power_changed = fuel_gauge_external_power_changed, }; static int fuel_gauge_set_lowbatt_thresholds(struct axp288_fg_info *info) { int ret; u8 reg_val; ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES); if (ret < 0) { dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret); return ret; } ret = (ret & FG_REP_CAP_VAL_MASK); if (ret > FG_LOW_CAP_WARN_THR) reg_val = FG_LOW_CAP_WARN_THR; else if (ret > FG_LOW_CAP_CRIT_THR) reg_val = FG_LOW_CAP_CRIT_THR; else reg_val = FG_LOW_CAP_SHDN_THR; reg_val |= FG_LOW_CAP_THR1_VAL; ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, reg_val); if (ret < 0) dev_err(&info->pdev->dev, "%s:write err:%d\n", __func__, ret); return ret; } static int fuel_gauge_program_vbatt_full(struct axp288_fg_info *info) { int ret; u8 val; ret = fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1); if (ret < 0) goto fg_prog_ocv_fail; else val = (ret & ~CHRG_CCCV_CV_MASK); switch (info->pdata->max_volt) { case CV_4100: val |= (CHRG_CCCV_CV_4100MV << CHRG_CCCV_CV_BIT_POS); break; case CV_4150: val |= (CHRG_CCCV_CV_4150MV << CHRG_CCCV_CV_BIT_POS); break; case CV_4200: val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS); break; case CV_4350: val |= (CHRG_CCCV_CV_4350MV << CHRG_CCCV_CV_BIT_POS); break; default: val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS); break; } ret = fuel_gauge_reg_writeb(info, AXP20X_CHRG_CTRL1, val); fg_prog_ocv_fail: return ret; } static int fuel_gauge_program_design_cap(struct axp288_fg_info *info) { int ret; ret = fuel_gauge_reg_writeb(info, AXP288_FG_DES_CAP1_REG, info->pdata->cap1); if (ret < 0) goto fg_prog_descap_fail; ret = fuel_gauge_reg_writeb(info, AXP288_FG_DES_CAP0_REG, info->pdata->cap0); fg_prog_descap_fail: return ret; } static int fuel_gauge_program_ocv_curve(struct axp288_fg_info *info) { int ret = 0, i; for (i = 0; i < OCV_CURVE_SIZE; i++) { ret = fuel_gauge_reg_writeb(info, AXP288_FG_OCV_CURVE_REG + i, info->pdata->ocv_curve[i]); if (ret < 0) goto fg_prog_ocv_fail; } fg_prog_ocv_fail: return ret; } static int fuel_gauge_program_rdc_vals(struct axp288_fg_info *info) { int ret; ret = fuel_gauge_reg_writeb(info, AXP288_FG_RDC1_REG, info->pdata->rdc1); if (ret < 0) goto fg_prog_ocv_fail; ret = fuel_gauge_reg_writeb(info, AXP288_FG_RDC0_REG, info->pdata->rdc0); fg_prog_ocv_fail: return ret; } static void fuel_gauge_init_config_regs(struct axp288_fg_info *info) { int ret; /* * check if the config data is already * programmed and if so just return. */ ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG); if (ret < 0) { dev_warn(&info->pdev->dev, "CAP1 reg read err!!\n"); } else if (!(ret & FG_DES_CAP1_VALID)) { dev_info(&info->pdev->dev, "FG data needs to be initialized\n"); } else { dev_info(&info->pdev->dev, "FG data is already initialized\n"); return; } ret = fuel_gauge_program_vbatt_full(info); if (ret < 0) dev_err(&info->pdev->dev, "set vbatt full fail:%d\n", ret); ret = fuel_gauge_program_design_cap(info); if (ret < 0) dev_err(&info->pdev->dev, "set design cap fail:%d\n", ret); ret = fuel_gauge_program_rdc_vals(info); if (ret < 0) dev_err(&info->pdev->dev, "set rdc fail:%d\n", ret); ret = fuel_gauge_program_ocv_curve(info); if (ret < 0) dev_err(&info->pdev->dev, "set ocv curve fail:%d\n", ret); ret = fuel_gauge_set_lowbatt_thresholds(info); if (ret < 0) dev_err(&info->pdev->dev, "lowbatt thr set fail:%d\n", ret); ret = fuel_gauge_reg_writeb(info, AXP20X_CC_CTRL, 0xef); if (ret < 0) dev_err(&info->pdev->dev, "gauge cntl set fail:%d\n", ret); } static void fuel_gauge_init_irq(struct axp288_fg_info *info) { int ret, i, pirq; for (i = 0; i < AXP288_FG_INTR_NUM; i++) { pirq = platform_get_irq(info->pdev, i); info->irq[i] = regmap_irq_get_virq(info->regmap_irqc, pirq); if (info->irq[i] < 0) { dev_warn(&info->pdev->dev, "regmap_irq get virq failed for IRQ %d: %d\n", pirq, info->irq[i]); info->irq[i] = -1; goto intr_failed; } ret = request_threaded_irq(info->irq[i], NULL, fuel_gauge_thread_handler, IRQF_ONESHOT, DEV_NAME, info); if (ret) { dev_warn(&info->pdev->dev, "request irq failed for IRQ %d: %d\n", pirq, info->irq[i]); info->irq[i] = -1; goto intr_failed; } else { dev_info(&info->pdev->dev, "HW IRQ %d -> VIRQ %d\n", pirq, info->irq[i]); } } return; intr_failed: for (; i > 0; i--) { free_irq(info->irq[i - 1], info); info->irq[i - 1] = -1; } } static void fuel_gauge_init_hw_regs(struct axp288_fg_info *info) { int ret; unsigned int val; ret = fuel_gauge_set_high_btemp_alert(info); if (ret < 0) dev_err(&info->pdev->dev, "high batt temp set fail:%d\n", ret); ret = fuel_gauge_set_low_btemp_alert(info); if (ret < 0) dev_err(&info->pdev->dev, "low batt temp set fail:%d\n", ret); /* enable interrupts */ val = fuel_gauge_reg_readb(info, AXP20X_IRQ3_EN); val |= TEMP_IRQ_CFG_MASK; fuel_gauge_reg_writeb(info, AXP20X_IRQ3_EN, val); val = fuel_gauge_reg_readb(info, AXP20X_IRQ4_EN); val |= FG_IRQ_CFG_LOWBATT_MASK; val = fuel_gauge_reg_writeb(info, AXP20X_IRQ4_EN, val); } static int axp288_fuel_gauge_probe(struct platform_device *pdev) { int ret = 0; struct axp288_fg_info *info; struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent); struct power_supply_config psy_cfg = {}; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->pdev = pdev; info->regmap = axp20x->regmap; info->regmap_irqc = axp20x->regmap_irqc; info->status = POWER_SUPPLY_STATUS_UNKNOWN; info->pdata = pdev->dev.platform_data; if (!info->pdata) return -ENODEV; platform_set_drvdata(pdev, info); mutex_init(&info->lock); INIT_DELAYED_WORK(&info->status_monitor, fuel_gauge_status_monitor); psy_cfg.drv_data = info; info->bat = power_supply_register(&pdev->dev, &fuel_gauge_desc, &psy_cfg); if (IS_ERR(info->bat)) { ret = PTR_ERR(info->bat); dev_err(&pdev->dev, "failed to register battery: %d\n", ret); return ret; } fuel_gauge_create_debugfs(info); fuel_gauge_init_config_regs(info); fuel_gauge_init_irq(info); fuel_gauge_init_hw_regs(info); schedule_delayed_work(&info->status_monitor, STATUS_MON_DELAY_JIFFIES); return ret; } static const struct platform_device_id axp288_fg_id_table[] = { { .name = DEV_NAME }, {}, }; static int axp288_fuel_gauge_remove(struct platform_device *pdev) { struct axp288_fg_info *info = platform_get_drvdata(pdev); int i; cancel_delayed_work_sync(&info->status_monitor); power_supply_unregister(info->bat); fuel_gauge_remove_debugfs(info); for (i = 0; i < AXP288_FG_INTR_NUM; i++) if (info->irq[i] >= 0) free_irq(info->irq[i], info); return 0; } static struct platform_driver axp288_fuel_gauge_driver = { .probe = axp288_fuel_gauge_probe, .remove = axp288_fuel_gauge_remove, .id_table = axp288_fg_id_table, .driver = { .name = DEV_NAME, }, }; module_platform_driver(axp288_fuel_gauge_driver); MODULE_AUTHOR("Ramakrishna Pallala <ramakrishna.pallala@intel.com>"); MODULE_AUTHOR("Todd Brandt <todd.e.brandt@linux.intel.com>"); MODULE_DESCRIPTION("Xpower AXP288 Fuel Gauge Driver"); MODULE_LICENSE("GPL");