/* * zcrypt 2.1.0 * * Copyright IBM Corp. 2001, 2012 * Author(s): Robert Burroughs * Eric Rossman (edrossma@us.ibm.com) * Cornelia Huck <cornelia.huck@de.ibm.com> * * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com) * Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com> * Ralph Wuerthner <rwuerthn@de.ibm.com> * MSGTYPE restruct: Holger Dengler <hd@linux.vnet.ibm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/miscdevice.h> #include <linux/fs.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/compat.h> #include <linux/slab.h> #include <linux/atomic.h> #include <asm/uaccess.h> #include <linux/hw_random.h> #include <linux/debugfs.h> #include <asm/debug.h> #include "zcrypt_debug.h" #include "zcrypt_api.h" #include "zcrypt_msgtype6.h" /* * Module description. */ MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("Cryptographic Coprocessor interface, " \ "Copyright IBM Corp. 2001, 2012"); MODULE_LICENSE("GPL"); static int zcrypt_hwrng_seed = 1; module_param_named(hwrng_seed, zcrypt_hwrng_seed, int, S_IRUSR|S_IRGRP); MODULE_PARM_DESC(hwrng_seed, "Turn on/off hwrng auto seed, default is 1 (on)."); static DEFINE_SPINLOCK(zcrypt_device_lock); static LIST_HEAD(zcrypt_device_list); static int zcrypt_device_count = 0; static atomic_t zcrypt_open_count = ATOMIC_INIT(0); static atomic_t zcrypt_rescan_count = ATOMIC_INIT(0); atomic_t zcrypt_rescan_req = ATOMIC_INIT(0); EXPORT_SYMBOL(zcrypt_rescan_req); static int zcrypt_rng_device_add(void); static void zcrypt_rng_device_remove(void); static DEFINE_SPINLOCK(zcrypt_ops_list_lock); static LIST_HEAD(zcrypt_ops_list); static debug_info_t *zcrypt_dbf_common; static debug_info_t *zcrypt_dbf_devices; static struct dentry *debugfs_root; /* * Device attributes common for all crypto devices. */ static ssize_t zcrypt_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct zcrypt_device *zdev = to_ap_dev(dev)->private; return snprintf(buf, PAGE_SIZE, "%s\n", zdev->type_string); } static DEVICE_ATTR(type, 0444, zcrypt_type_show, NULL); static ssize_t zcrypt_online_show(struct device *dev, struct device_attribute *attr, char *buf) { struct zcrypt_device *zdev = to_ap_dev(dev)->private; return snprintf(buf, PAGE_SIZE, "%d\n", zdev->online); } static ssize_t zcrypt_online_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct zcrypt_device *zdev = to_ap_dev(dev)->private; int online; if (sscanf(buf, "%d\n", &online) != 1 || online < 0 || online > 1) return -EINVAL; zdev->online = online; ZCRYPT_DBF_DEV(DBF_INFO, zdev, "dev%04xo%dman", zdev->ap_dev->qid, zdev->online); if (!online) ap_flush_queue(zdev->ap_dev); return count; } static DEVICE_ATTR(online, 0644, zcrypt_online_show, zcrypt_online_store); static struct attribute * zcrypt_device_attrs[] = { &dev_attr_type.attr, &dev_attr_online.attr, NULL, }; static struct attribute_group zcrypt_device_attr_group = { .attrs = zcrypt_device_attrs, }; /** * Process a rescan of the transport layer. * * Returns 1, if the rescan has been processed, otherwise 0. */ static inline int zcrypt_process_rescan(void) { if (atomic_read(&zcrypt_rescan_req)) { atomic_set(&zcrypt_rescan_req, 0); atomic_inc(&zcrypt_rescan_count); ap_bus_force_rescan(); ZCRYPT_DBF_COMMON(DBF_INFO, "rescan%07d", atomic_inc_return(&zcrypt_rescan_count)); return 1; } return 0; } /** * __zcrypt_increase_preference(): Increase preference of a crypto device. * @zdev: Pointer the crypto device * * Move the device towards the head of the device list. * Need to be called while holding the zcrypt device list lock. * Note: cards with speed_rating of 0 are kept at the end of the list. */ static void __zcrypt_increase_preference(struct zcrypt_device *zdev) { struct zcrypt_device *tmp; struct list_head *l; if (zdev->speed_rating == 0) return; for (l = zdev->list.prev; l != &zcrypt_device_list; l = l->prev) { tmp = list_entry(l, struct zcrypt_device, list); if ((tmp->request_count + 1) * tmp->speed_rating <= (zdev->request_count + 1) * zdev->speed_rating && tmp->speed_rating != 0) break; } if (l == zdev->list.prev) return; /* Move zdev behind l */ list_move(&zdev->list, l); } /** * __zcrypt_decrease_preference(): Decrease preference of a crypto device. * @zdev: Pointer to a crypto device. * * Move the device towards the tail of the device list. * Need to be called while holding the zcrypt device list lock. * Note: cards with speed_rating of 0 are kept at the end of the list. */ static void __zcrypt_decrease_preference(struct zcrypt_device *zdev) { struct zcrypt_device *tmp; struct list_head *l; if (zdev->speed_rating == 0) return; for (l = zdev->list.next; l != &zcrypt_device_list; l = l->next) { tmp = list_entry(l, struct zcrypt_device, list); if ((tmp->request_count + 1) * tmp->speed_rating > (zdev->request_count + 1) * zdev->speed_rating || tmp->speed_rating == 0) break; } if (l == zdev->list.next) return; /* Move zdev before l */ list_move_tail(&zdev->list, l); } static void zcrypt_device_release(struct kref *kref) { struct zcrypt_device *zdev = container_of(kref, struct zcrypt_device, refcount); zcrypt_device_free(zdev); } void zcrypt_device_get(struct zcrypt_device *zdev) { kref_get(&zdev->refcount); } EXPORT_SYMBOL(zcrypt_device_get); int zcrypt_device_put(struct zcrypt_device *zdev) { return kref_put(&zdev->refcount, zcrypt_device_release); } EXPORT_SYMBOL(zcrypt_device_put); struct zcrypt_device *zcrypt_device_alloc(size_t max_response_size) { struct zcrypt_device *zdev; zdev = kzalloc(sizeof(struct zcrypt_device), GFP_KERNEL); if (!zdev) return NULL; zdev->reply.message = kmalloc(max_response_size, GFP_KERNEL); if (!zdev->reply.message) goto out_free; zdev->reply.length = max_response_size; spin_lock_init(&zdev->lock); INIT_LIST_HEAD(&zdev->list); zdev->dbf_area = zcrypt_dbf_devices; return zdev; out_free: kfree(zdev); return NULL; } EXPORT_SYMBOL(zcrypt_device_alloc); void zcrypt_device_free(struct zcrypt_device *zdev) { kfree(zdev->reply.message); kfree(zdev); } EXPORT_SYMBOL(zcrypt_device_free); /** * zcrypt_device_register() - Register a crypto device. * @zdev: Pointer to a crypto device * * Register a crypto device. Returns 0 if successful. */ int zcrypt_device_register(struct zcrypt_device *zdev) { int rc; if (!zdev->ops) return -ENODEV; rc = sysfs_create_group(&zdev->ap_dev->device.kobj, &zcrypt_device_attr_group); if (rc) goto out; get_device(&zdev->ap_dev->device); kref_init(&zdev->refcount); spin_lock_bh(&zcrypt_device_lock); zdev->online = 1; /* New devices are online by default. */ ZCRYPT_DBF_DEV(DBF_INFO, zdev, "dev%04xo%dreg", zdev->ap_dev->qid, zdev->online); list_add_tail(&zdev->list, &zcrypt_device_list); __zcrypt_increase_preference(zdev); zcrypt_device_count++; spin_unlock_bh(&zcrypt_device_lock); if (zdev->ops->rng) { rc = zcrypt_rng_device_add(); if (rc) goto out_unregister; } return 0; out_unregister: spin_lock_bh(&zcrypt_device_lock); zcrypt_device_count--; list_del_init(&zdev->list); spin_unlock_bh(&zcrypt_device_lock); sysfs_remove_group(&zdev->ap_dev->device.kobj, &zcrypt_device_attr_group); put_device(&zdev->ap_dev->device); zcrypt_device_put(zdev); out: return rc; } EXPORT_SYMBOL(zcrypt_device_register); /** * zcrypt_device_unregister(): Unregister a crypto device. * @zdev: Pointer to crypto device * * Unregister a crypto device. */ void zcrypt_device_unregister(struct zcrypt_device *zdev) { if (zdev->ops->rng) zcrypt_rng_device_remove(); spin_lock_bh(&zcrypt_device_lock); zcrypt_device_count--; list_del_init(&zdev->list); spin_unlock_bh(&zcrypt_device_lock); sysfs_remove_group(&zdev->ap_dev->device.kobj, &zcrypt_device_attr_group); put_device(&zdev->ap_dev->device); zcrypt_device_put(zdev); } EXPORT_SYMBOL(zcrypt_device_unregister); void zcrypt_msgtype_register(struct zcrypt_ops *zops) { spin_lock_bh(&zcrypt_ops_list_lock); list_add_tail(&zops->list, &zcrypt_ops_list); spin_unlock_bh(&zcrypt_ops_list_lock); } EXPORT_SYMBOL(zcrypt_msgtype_register); void zcrypt_msgtype_unregister(struct zcrypt_ops *zops) { spin_lock_bh(&zcrypt_ops_list_lock); list_del_init(&zops->list); spin_unlock_bh(&zcrypt_ops_list_lock); } EXPORT_SYMBOL(zcrypt_msgtype_unregister); static inline struct zcrypt_ops *__ops_lookup(unsigned char *name, int variant) { struct zcrypt_ops *zops; int found = 0; spin_lock_bh(&zcrypt_ops_list_lock); list_for_each_entry(zops, &zcrypt_ops_list, list) { if ((zops->variant == variant) && (!strncmp(zops->name, name, sizeof(zops->name)))) { found = 1; break; } } if (!found || !try_module_get(zops->owner)) zops = NULL; spin_unlock_bh(&zcrypt_ops_list_lock); return zops; } struct zcrypt_ops *zcrypt_msgtype_request(unsigned char *name, int variant) { struct zcrypt_ops *zops = NULL; zops = __ops_lookup(name, variant); if (!zops) { request_module("%s", name); zops = __ops_lookup(name, variant); } return zops; } EXPORT_SYMBOL(zcrypt_msgtype_request); void zcrypt_msgtype_release(struct zcrypt_ops *zops) { if (zops) module_put(zops->owner); } EXPORT_SYMBOL(zcrypt_msgtype_release); /** * zcrypt_read (): Not supported beyond zcrypt 1.3.1. * * This function is not supported beyond zcrypt 1.3.1. */ static ssize_t zcrypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { return -EPERM; } /** * zcrypt_write(): Not allowed. * * Write is is not allowed */ static ssize_t zcrypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { return -EPERM; } /** * zcrypt_open(): Count number of users. * * Device open function to count number of users. */ static int zcrypt_open(struct inode *inode, struct file *filp) { atomic_inc(&zcrypt_open_count); return nonseekable_open(inode, filp); } /** * zcrypt_release(): Count number of users. * * Device close function to count number of users. */ static int zcrypt_release(struct inode *inode, struct file *filp) { atomic_dec(&zcrypt_open_count); return 0; } /* * zcrypt ioctls. */ static long zcrypt_rsa_modexpo(struct ica_rsa_modexpo *mex) { struct zcrypt_device *zdev; int rc; if (mex->outputdatalength < mex->inputdatalength) return -EINVAL; /* * As long as outputdatalength is big enough, we can set the * outputdatalength equal to the inputdatalength, since that is the * number of bytes we will copy in any case */ mex->outputdatalength = mex->inputdatalength; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { if (!zdev->online || !zdev->ops->rsa_modexpo || zdev->min_mod_size > mex->inputdatalength || zdev->max_mod_size < mex->inputdatalength) continue; zcrypt_device_get(zdev); get_device(&zdev->ap_dev->device); zdev->request_count++; __zcrypt_decrease_preference(zdev); if (try_module_get(zdev->ap_dev->drv->driver.owner)) { spin_unlock_bh(&zcrypt_device_lock); rc = zdev->ops->rsa_modexpo(zdev, mex); spin_lock_bh(&zcrypt_device_lock); module_put(zdev->ap_dev->drv->driver.owner); } else rc = -EAGAIN; zdev->request_count--; __zcrypt_increase_preference(zdev); put_device(&zdev->ap_dev->device); zcrypt_device_put(zdev); spin_unlock_bh(&zcrypt_device_lock); return rc; } spin_unlock_bh(&zcrypt_device_lock); return -ENODEV; } static long zcrypt_rsa_crt(struct ica_rsa_modexpo_crt *crt) { struct zcrypt_device *zdev; unsigned long long z1, z2, z3; int rc, copied; if (crt->outputdatalength < crt->inputdatalength) return -EINVAL; /* * As long as outputdatalength is big enough, we can set the * outputdatalength equal to the inputdatalength, since that is the * number of bytes we will copy in any case */ crt->outputdatalength = crt->inputdatalength; copied = 0; restart: spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { if (!zdev->online || !zdev->ops->rsa_modexpo_crt || zdev->min_mod_size > crt->inputdatalength || zdev->max_mod_size < crt->inputdatalength) continue; if (zdev->short_crt && crt->inputdatalength > 240) { /* * Check inputdata for leading zeros for cards * that can't handle np_prime, bp_key, or * u_mult_inv > 128 bytes. */ if (copied == 0) { unsigned int len; spin_unlock_bh(&zcrypt_device_lock); /* len is max 256 / 2 - 120 = 8 * For bigger device just assume len of leading * 0s is 8 as stated in the requirements for * ica_rsa_modexpo_crt struct in zcrypt.h. */ if (crt->inputdatalength <= 256) len = crt->inputdatalength / 2 - 120; else len = 8; if (len > sizeof(z1)) return -EFAULT; z1 = z2 = z3 = 0; if (copy_from_user(&z1, crt->np_prime, len) || copy_from_user(&z2, crt->bp_key, len) || copy_from_user(&z3, crt->u_mult_inv, len)) return -EFAULT; z1 = z2 = z3 = 0; copied = 1; /* * We have to restart device lookup - * the device list may have changed by now. */ goto restart; } if (z1 != 0ULL || z2 != 0ULL || z3 != 0ULL) /* The device can't handle this request. */ continue; } zcrypt_device_get(zdev); get_device(&zdev->ap_dev->device); zdev->request_count++; __zcrypt_decrease_preference(zdev); if (try_module_get(zdev->ap_dev->drv->driver.owner)) { spin_unlock_bh(&zcrypt_device_lock); rc = zdev->ops->rsa_modexpo_crt(zdev, crt); spin_lock_bh(&zcrypt_device_lock); module_put(zdev->ap_dev->drv->driver.owner); } else rc = -EAGAIN; zdev->request_count--; __zcrypt_increase_preference(zdev); put_device(&zdev->ap_dev->device); zcrypt_device_put(zdev); spin_unlock_bh(&zcrypt_device_lock); return rc; } spin_unlock_bh(&zcrypt_device_lock); return -ENODEV; } static long zcrypt_send_cprb(struct ica_xcRB *xcRB) { struct zcrypt_device *zdev; int rc; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { if (!zdev->online || !zdev->ops->send_cprb || (zdev->ops->variant == MSGTYPE06_VARIANT_EP11) || (xcRB->user_defined != AUTOSELECT && AP_QID_DEVICE(zdev->ap_dev->qid) != xcRB->user_defined)) continue; zcrypt_device_get(zdev); get_device(&zdev->ap_dev->device); zdev->request_count++; __zcrypt_decrease_preference(zdev); if (try_module_get(zdev->ap_dev->drv->driver.owner)) { spin_unlock_bh(&zcrypt_device_lock); rc = zdev->ops->send_cprb(zdev, xcRB); spin_lock_bh(&zcrypt_device_lock); module_put(zdev->ap_dev->drv->driver.owner); } else rc = -EAGAIN; zdev->request_count--; __zcrypt_increase_preference(zdev); put_device(&zdev->ap_dev->device); zcrypt_device_put(zdev); spin_unlock_bh(&zcrypt_device_lock); return rc; } spin_unlock_bh(&zcrypt_device_lock); return -ENODEV; } struct ep11_target_dev_list { unsigned short targets_num; struct ep11_target_dev *targets; }; static bool is_desired_ep11dev(unsigned int dev_qid, struct ep11_target_dev_list dev_list) { int n; for (n = 0; n < dev_list.targets_num; n++, dev_list.targets++) { if ((AP_QID_DEVICE(dev_qid) == dev_list.targets->ap_id) && (AP_QID_QUEUE(dev_qid) == dev_list.targets->dom_id)) { return true; } } return false; } static long zcrypt_send_ep11_cprb(struct ep11_urb *xcrb) { struct zcrypt_device *zdev; bool autoselect = false; int rc; struct ep11_target_dev_list ep11_dev_list = { .targets_num = 0x00, .targets = NULL, }; ep11_dev_list.targets_num = (unsigned short) xcrb->targets_num; /* empty list indicates autoselect (all available targets) */ if (ep11_dev_list.targets_num == 0) autoselect = true; else { ep11_dev_list.targets = kcalloc((unsigned short) xcrb->targets_num, sizeof(struct ep11_target_dev), GFP_KERNEL); if (!ep11_dev_list.targets) return -ENOMEM; if (copy_from_user(ep11_dev_list.targets, (struct ep11_target_dev __force __user *) xcrb->targets, xcrb->targets_num * sizeof(struct ep11_target_dev))) return -EFAULT; } spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { /* check if device is eligible */ if (!zdev->online || zdev->ops->variant != MSGTYPE06_VARIANT_EP11) continue; /* check if device is selected as valid target */ if (!is_desired_ep11dev(zdev->ap_dev->qid, ep11_dev_list) && !autoselect) continue; zcrypt_device_get(zdev); get_device(&zdev->ap_dev->device); zdev->request_count++; __zcrypt_decrease_preference(zdev); if (try_module_get(zdev->ap_dev->drv->driver.owner)) { spin_unlock_bh(&zcrypt_device_lock); rc = zdev->ops->send_ep11_cprb(zdev, xcrb); spin_lock_bh(&zcrypt_device_lock); module_put(zdev->ap_dev->drv->driver.owner); } else { rc = -EAGAIN; } zdev->request_count--; __zcrypt_increase_preference(zdev); put_device(&zdev->ap_dev->device); zcrypt_device_put(zdev); spin_unlock_bh(&zcrypt_device_lock); return rc; } spin_unlock_bh(&zcrypt_device_lock); return -ENODEV; } static long zcrypt_rng(char *buffer) { struct zcrypt_device *zdev; int rc; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { if (!zdev->online || !zdev->ops->rng) continue; zcrypt_device_get(zdev); get_device(&zdev->ap_dev->device); zdev->request_count++; __zcrypt_decrease_preference(zdev); if (try_module_get(zdev->ap_dev->drv->driver.owner)) { spin_unlock_bh(&zcrypt_device_lock); rc = zdev->ops->rng(zdev, buffer); spin_lock_bh(&zcrypt_device_lock); module_put(zdev->ap_dev->drv->driver.owner); } else rc = -EAGAIN; zdev->request_count--; __zcrypt_increase_preference(zdev); put_device(&zdev->ap_dev->device); zcrypt_device_put(zdev); spin_unlock_bh(&zcrypt_device_lock); return rc; } spin_unlock_bh(&zcrypt_device_lock); return -ENODEV; } static void zcrypt_status_mask(char status[AP_DEVICES]) { struct zcrypt_device *zdev; memset(status, 0, sizeof(char) * AP_DEVICES); spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) status[AP_QID_DEVICE(zdev->ap_dev->qid)] = zdev->online ? zdev->user_space_type : 0x0d; spin_unlock_bh(&zcrypt_device_lock); } static void zcrypt_qdepth_mask(char qdepth[AP_DEVICES]) { struct zcrypt_device *zdev; memset(qdepth, 0, sizeof(char) * AP_DEVICES); spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { spin_lock(&zdev->ap_dev->lock); qdepth[AP_QID_DEVICE(zdev->ap_dev->qid)] = zdev->ap_dev->pendingq_count + zdev->ap_dev->requestq_count; spin_unlock(&zdev->ap_dev->lock); } spin_unlock_bh(&zcrypt_device_lock); } static void zcrypt_perdev_reqcnt(int reqcnt[AP_DEVICES]) { struct zcrypt_device *zdev; memset(reqcnt, 0, sizeof(int) * AP_DEVICES); spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { spin_lock(&zdev->ap_dev->lock); reqcnt[AP_QID_DEVICE(zdev->ap_dev->qid)] = zdev->ap_dev->total_request_count; spin_unlock(&zdev->ap_dev->lock); } spin_unlock_bh(&zcrypt_device_lock); } static int zcrypt_pendingq_count(void) { struct zcrypt_device *zdev; int pendingq_count = 0; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { spin_lock(&zdev->ap_dev->lock); pendingq_count += zdev->ap_dev->pendingq_count; spin_unlock(&zdev->ap_dev->lock); } spin_unlock_bh(&zcrypt_device_lock); return pendingq_count; } static int zcrypt_requestq_count(void) { struct zcrypt_device *zdev; int requestq_count = 0; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) { spin_lock(&zdev->ap_dev->lock); requestq_count += zdev->ap_dev->requestq_count; spin_unlock(&zdev->ap_dev->lock); } spin_unlock_bh(&zcrypt_device_lock); return requestq_count; } static int zcrypt_count_type(int type) { struct zcrypt_device *zdev; int device_count = 0; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) if (zdev->user_space_type == type) device_count++; spin_unlock_bh(&zcrypt_device_lock); return device_count; } /** * zcrypt_ica_status(): Old, depracted combi status call. * * Old, deprecated combi status call. */ static long zcrypt_ica_status(struct file *filp, unsigned long arg) { struct ica_z90_status *pstat; int ret; pstat = kzalloc(sizeof(*pstat), GFP_KERNEL); if (!pstat) return -ENOMEM; pstat->totalcount = zcrypt_device_count; pstat->leedslitecount = zcrypt_count_type(ZCRYPT_PCICA); pstat->leeds2count = zcrypt_count_type(ZCRYPT_PCICC); pstat->requestqWaitCount = zcrypt_requestq_count(); pstat->pendingqWaitCount = zcrypt_pendingq_count(); pstat->totalOpenCount = atomic_read(&zcrypt_open_count); pstat->cryptoDomain = ap_domain_index; zcrypt_status_mask(pstat->status); zcrypt_qdepth_mask(pstat->qdepth); ret = 0; if (copy_to_user((void __user *) arg, pstat, sizeof(*pstat))) ret = -EFAULT; kfree(pstat); return ret; } static long zcrypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int rc; switch (cmd) { case ICARSAMODEXPO: { struct ica_rsa_modexpo __user *umex = (void __user *) arg; struct ica_rsa_modexpo mex; if (copy_from_user(&mex, umex, sizeof(mex))) return -EFAULT; do { rc = zcrypt_rsa_modexpo(&mex); } while (rc == -EAGAIN); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) do { rc = zcrypt_rsa_modexpo(&mex); } while (rc == -EAGAIN); if (rc) return rc; return put_user(mex.outputdatalength, &umex->outputdatalength); } case ICARSACRT: { struct ica_rsa_modexpo_crt __user *ucrt = (void __user *) arg; struct ica_rsa_modexpo_crt crt; if (copy_from_user(&crt, ucrt, sizeof(crt))) return -EFAULT; do { rc = zcrypt_rsa_crt(&crt); } while (rc == -EAGAIN); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) do { rc = zcrypt_rsa_crt(&crt); } while (rc == -EAGAIN); if (rc) return rc; return put_user(crt.outputdatalength, &ucrt->outputdatalength); } case ZSECSENDCPRB: { struct ica_xcRB __user *uxcRB = (void __user *) arg; struct ica_xcRB xcRB; if (copy_from_user(&xcRB, uxcRB, sizeof(xcRB))) return -EFAULT; do { rc = zcrypt_send_cprb(&xcRB); } while (rc == -EAGAIN); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) do { rc = zcrypt_send_cprb(&xcRB); } while (rc == -EAGAIN); if (copy_to_user(uxcRB, &xcRB, sizeof(xcRB))) return -EFAULT; return rc; } case ZSENDEP11CPRB: { struct ep11_urb __user *uxcrb = (void __user *)arg; struct ep11_urb xcrb; if (copy_from_user(&xcrb, uxcrb, sizeof(xcrb))) return -EFAULT; do { rc = zcrypt_send_ep11_cprb(&xcrb); } while (rc == -EAGAIN); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) do { rc = zcrypt_send_ep11_cprb(&xcrb); } while (rc == -EAGAIN); if (copy_to_user(uxcrb, &xcrb, sizeof(xcrb))) return -EFAULT; return rc; } case Z90STAT_STATUS_MASK: { char status[AP_DEVICES]; zcrypt_status_mask(status); if (copy_to_user((char __user *) arg, status, sizeof(char) * AP_DEVICES)) return -EFAULT; return 0; } case Z90STAT_QDEPTH_MASK: { char qdepth[AP_DEVICES]; zcrypt_qdepth_mask(qdepth); if (copy_to_user((char __user *) arg, qdepth, sizeof(char) * AP_DEVICES)) return -EFAULT; return 0; } case Z90STAT_PERDEV_REQCNT: { int reqcnt[AP_DEVICES]; zcrypt_perdev_reqcnt(reqcnt); if (copy_to_user((int __user *) arg, reqcnt, sizeof(int) * AP_DEVICES)) return -EFAULT; return 0; } case Z90STAT_REQUESTQ_COUNT: return put_user(zcrypt_requestq_count(), (int __user *) arg); case Z90STAT_PENDINGQ_COUNT: return put_user(zcrypt_pendingq_count(), (int __user *) arg); case Z90STAT_TOTALOPEN_COUNT: return put_user(atomic_read(&zcrypt_open_count), (int __user *) arg); case Z90STAT_DOMAIN_INDEX: return put_user(ap_domain_index, (int __user *) arg); /* * Deprecated ioctls. Don't add another device count ioctl, * you can count them yourself in the user space with the * output of the Z90STAT_STATUS_MASK ioctl. */ case ICAZ90STATUS: return zcrypt_ica_status(filp, arg); case Z90STAT_TOTALCOUNT: return put_user(zcrypt_device_count, (int __user *) arg); case Z90STAT_PCICACOUNT: return put_user(zcrypt_count_type(ZCRYPT_PCICA), (int __user *) arg); case Z90STAT_PCICCCOUNT: return put_user(zcrypt_count_type(ZCRYPT_PCICC), (int __user *) arg); case Z90STAT_PCIXCCMCL2COUNT: return put_user(zcrypt_count_type(ZCRYPT_PCIXCC_MCL2), (int __user *) arg); case Z90STAT_PCIXCCMCL3COUNT: return put_user(zcrypt_count_type(ZCRYPT_PCIXCC_MCL3), (int __user *) arg); case Z90STAT_PCIXCCCOUNT: return put_user(zcrypt_count_type(ZCRYPT_PCIXCC_MCL2) + zcrypt_count_type(ZCRYPT_PCIXCC_MCL3), (int __user *) arg); case Z90STAT_CEX2CCOUNT: return put_user(zcrypt_count_type(ZCRYPT_CEX2C), (int __user *) arg); case Z90STAT_CEX2ACOUNT: return put_user(zcrypt_count_type(ZCRYPT_CEX2A), (int __user *) arg); default: /* unknown ioctl number */ return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT /* * ioctl32 conversion routines */ struct compat_ica_rsa_modexpo { compat_uptr_t inputdata; unsigned int inputdatalength; compat_uptr_t outputdata; unsigned int outputdatalength; compat_uptr_t b_key; compat_uptr_t n_modulus; }; static long trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg) { struct compat_ica_rsa_modexpo __user *umex32 = compat_ptr(arg); struct compat_ica_rsa_modexpo mex32; struct ica_rsa_modexpo mex64; long rc; if (copy_from_user(&mex32, umex32, sizeof(mex32))) return -EFAULT; mex64.inputdata = compat_ptr(mex32.inputdata); mex64.inputdatalength = mex32.inputdatalength; mex64.outputdata = compat_ptr(mex32.outputdata); mex64.outputdatalength = mex32.outputdatalength; mex64.b_key = compat_ptr(mex32.b_key); mex64.n_modulus = compat_ptr(mex32.n_modulus); do { rc = zcrypt_rsa_modexpo(&mex64); } while (rc == -EAGAIN); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) do { rc = zcrypt_rsa_modexpo(&mex64); } while (rc == -EAGAIN); if (rc) return rc; return put_user(mex64.outputdatalength, &umex32->outputdatalength); } struct compat_ica_rsa_modexpo_crt { compat_uptr_t inputdata; unsigned int inputdatalength; compat_uptr_t outputdata; unsigned int outputdatalength; compat_uptr_t bp_key; compat_uptr_t bq_key; compat_uptr_t np_prime; compat_uptr_t nq_prime; compat_uptr_t u_mult_inv; }; static long trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg) { struct compat_ica_rsa_modexpo_crt __user *ucrt32 = compat_ptr(arg); struct compat_ica_rsa_modexpo_crt crt32; struct ica_rsa_modexpo_crt crt64; long rc; if (copy_from_user(&crt32, ucrt32, sizeof(crt32))) return -EFAULT; crt64.inputdata = compat_ptr(crt32.inputdata); crt64.inputdatalength = crt32.inputdatalength; crt64.outputdata= compat_ptr(crt32.outputdata); crt64.outputdatalength = crt32.outputdatalength; crt64.bp_key = compat_ptr(crt32.bp_key); crt64.bq_key = compat_ptr(crt32.bq_key); crt64.np_prime = compat_ptr(crt32.np_prime); crt64.nq_prime = compat_ptr(crt32.nq_prime); crt64.u_mult_inv = compat_ptr(crt32.u_mult_inv); do { rc = zcrypt_rsa_crt(&crt64); } while (rc == -EAGAIN); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) do { rc = zcrypt_rsa_crt(&crt64); } while (rc == -EAGAIN); if (rc) return rc; return put_user(crt64.outputdatalength, &ucrt32->outputdatalength); } struct compat_ica_xcRB { unsigned short agent_ID; unsigned int user_defined; unsigned short request_ID; unsigned int request_control_blk_length; unsigned char padding1[16 - sizeof (compat_uptr_t)]; compat_uptr_t request_control_blk_addr; unsigned int request_data_length; char padding2[16 - sizeof (compat_uptr_t)]; compat_uptr_t request_data_address; unsigned int reply_control_blk_length; char padding3[16 - sizeof (compat_uptr_t)]; compat_uptr_t reply_control_blk_addr; unsigned int reply_data_length; char padding4[16 - sizeof (compat_uptr_t)]; compat_uptr_t reply_data_addr; unsigned short priority_window; unsigned int status; } __attribute__((packed)); static long trans_xcRB32(struct file *filp, unsigned int cmd, unsigned long arg) { struct compat_ica_xcRB __user *uxcRB32 = compat_ptr(arg); struct compat_ica_xcRB xcRB32; struct ica_xcRB xcRB64; long rc; if (copy_from_user(&xcRB32, uxcRB32, sizeof(xcRB32))) return -EFAULT; xcRB64.agent_ID = xcRB32.agent_ID; xcRB64.user_defined = xcRB32.user_defined; xcRB64.request_ID = xcRB32.request_ID; xcRB64.request_control_blk_length = xcRB32.request_control_blk_length; xcRB64.request_control_blk_addr = compat_ptr(xcRB32.request_control_blk_addr); xcRB64.request_data_length = xcRB32.request_data_length; xcRB64.request_data_address = compat_ptr(xcRB32.request_data_address); xcRB64.reply_control_blk_length = xcRB32.reply_control_blk_length; xcRB64.reply_control_blk_addr = compat_ptr(xcRB32.reply_control_blk_addr); xcRB64.reply_data_length = xcRB32.reply_data_length; xcRB64.reply_data_addr = compat_ptr(xcRB32.reply_data_addr); xcRB64.priority_window = xcRB32.priority_window; xcRB64.status = xcRB32.status; do { rc = zcrypt_send_cprb(&xcRB64); } while (rc == -EAGAIN); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) do { rc = zcrypt_send_cprb(&xcRB64); } while (rc == -EAGAIN); xcRB32.reply_control_blk_length = xcRB64.reply_control_blk_length; xcRB32.reply_data_length = xcRB64.reply_data_length; xcRB32.status = xcRB64.status; if (copy_to_user(uxcRB32, &xcRB32, sizeof(xcRB32))) return -EFAULT; return rc; } static long zcrypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { if (cmd == ICARSAMODEXPO) return trans_modexpo32(filp, cmd, arg); if (cmd == ICARSACRT) return trans_modexpo_crt32(filp, cmd, arg); if (cmd == ZSECSENDCPRB) return trans_xcRB32(filp, cmd, arg); return zcrypt_unlocked_ioctl(filp, cmd, arg); } #endif /* * Misc device file operations. */ static const struct file_operations zcrypt_fops = { .owner = THIS_MODULE, .read = zcrypt_read, .write = zcrypt_write, .unlocked_ioctl = zcrypt_unlocked_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = zcrypt_compat_ioctl, #endif .open = zcrypt_open, .release = zcrypt_release, .llseek = no_llseek, }; /* * Misc device. */ static struct miscdevice zcrypt_misc_device = { .minor = MISC_DYNAMIC_MINOR, .name = "z90crypt", .fops = &zcrypt_fops, }; /* * Deprecated /proc entry support. */ static struct proc_dir_entry *zcrypt_entry; static void sprintcl(struct seq_file *m, unsigned char *addr, unsigned int len) { int i; for (i = 0; i < len; i++) seq_printf(m, "%01x", (unsigned int) addr[i]); seq_putc(m, ' '); } static void sprintrw(struct seq_file *m, unsigned char *addr, unsigned int len) { int inl, c, cx; seq_printf(m, " "); inl = 0; for (c = 0; c < (len / 16); c++) { sprintcl(m, addr+inl, 16); inl += 16; } cx = len%16; if (cx) { sprintcl(m, addr+inl, cx); inl += cx; } seq_putc(m, '\n'); } static void sprinthx(unsigned char *title, struct seq_file *m, unsigned char *addr, unsigned int len) { int inl, r, rx; seq_printf(m, "\n%s\n", title); inl = 0; for (r = 0; r < (len / 64); r++) { sprintrw(m, addr+inl, 64); inl += 64; } rx = len % 64; if (rx) { sprintrw(m, addr+inl, rx); inl += rx; } seq_putc(m, '\n'); } static void sprinthx4(unsigned char *title, struct seq_file *m, unsigned int *array, unsigned int len) { seq_printf(m, "\n%s\n", title); seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, array, len, false); seq_putc(m, '\n'); } static int zcrypt_proc_show(struct seq_file *m, void *v) { char workarea[sizeof(int) * AP_DEVICES]; seq_printf(m, "\nzcrypt version: %d.%d.%d\n", ZCRYPT_VERSION, ZCRYPT_RELEASE, ZCRYPT_VARIANT); seq_printf(m, "Cryptographic domain: %d\n", ap_domain_index); seq_printf(m, "Total device count: %d\n", zcrypt_device_count); seq_printf(m, "PCICA count: %d\n", zcrypt_count_type(ZCRYPT_PCICA)); seq_printf(m, "PCICC count: %d\n", zcrypt_count_type(ZCRYPT_PCICC)); seq_printf(m, "PCIXCC MCL2 count: %d\n", zcrypt_count_type(ZCRYPT_PCIXCC_MCL2)); seq_printf(m, "PCIXCC MCL3 count: %d\n", zcrypt_count_type(ZCRYPT_PCIXCC_MCL3)); seq_printf(m, "CEX2C count: %d\n", zcrypt_count_type(ZCRYPT_CEX2C)); seq_printf(m, "CEX2A count: %d\n", zcrypt_count_type(ZCRYPT_CEX2A)); seq_printf(m, "CEX3C count: %d\n", zcrypt_count_type(ZCRYPT_CEX3C)); seq_printf(m, "CEX3A count: %d\n", zcrypt_count_type(ZCRYPT_CEX3A)); seq_printf(m, "requestq count: %d\n", zcrypt_requestq_count()); seq_printf(m, "pendingq count: %d\n", zcrypt_pendingq_count()); seq_printf(m, "Total open handles: %d\n\n", atomic_read(&zcrypt_open_count)); zcrypt_status_mask(workarea); sprinthx("Online devices: 1=PCICA 2=PCICC 3=PCIXCC(MCL2) " "4=PCIXCC(MCL3) 5=CEX2C 6=CEX2A 7=CEX3C 8=CEX3A", m, workarea, AP_DEVICES); zcrypt_qdepth_mask(workarea); sprinthx("Waiting work element counts", m, workarea, AP_DEVICES); zcrypt_perdev_reqcnt((int *) workarea); sprinthx4("Per-device successfully completed request counts", m, (unsigned int *) workarea, AP_DEVICES); return 0; } static int zcrypt_proc_open(struct inode *inode, struct file *file) { return single_open(file, zcrypt_proc_show, NULL); } static void zcrypt_disable_card(int index) { struct zcrypt_device *zdev; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) if (AP_QID_DEVICE(zdev->ap_dev->qid) == index) { zdev->online = 0; ap_flush_queue(zdev->ap_dev); break; } spin_unlock_bh(&zcrypt_device_lock); } static void zcrypt_enable_card(int index) { struct zcrypt_device *zdev; spin_lock_bh(&zcrypt_device_lock); list_for_each_entry(zdev, &zcrypt_device_list, list) if (AP_QID_DEVICE(zdev->ap_dev->qid) == index) { zdev->online = 1; break; } spin_unlock_bh(&zcrypt_device_lock); } static ssize_t zcrypt_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { unsigned char *lbuf, *ptr; size_t local_count; int j; if (count <= 0) return 0; #define LBUFSIZE 1200UL lbuf = kmalloc(LBUFSIZE, GFP_KERNEL); if (!lbuf) return 0; local_count = min(LBUFSIZE - 1, count); if (copy_from_user(lbuf, buffer, local_count) != 0) { kfree(lbuf); return -EFAULT; } lbuf[local_count] = '\0'; ptr = strstr(lbuf, "Online devices"); if (!ptr) goto out; ptr = strstr(ptr, "\n"); if (!ptr) goto out; ptr++; if (strstr(ptr, "Waiting work element counts") == NULL) goto out; for (j = 0; j < 64 && *ptr; ptr++) { /* * '0' for no device, '1' for PCICA, '2' for PCICC, * '3' for PCIXCC_MCL2, '4' for PCIXCC_MCL3, * '5' for CEX2C and '6' for CEX2A' * '7' for CEX3C and '8' for CEX3A */ if (*ptr >= '0' && *ptr <= '8') j++; else if (*ptr == 'd' || *ptr == 'D') zcrypt_disable_card(j++); else if (*ptr == 'e' || *ptr == 'E') zcrypt_enable_card(j++); else if (*ptr != ' ' && *ptr != '\t') break; } out: kfree(lbuf); return count; } static const struct file_operations zcrypt_proc_fops = { .owner = THIS_MODULE, .open = zcrypt_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = zcrypt_proc_write, }; static int zcrypt_rng_device_count; static u32 *zcrypt_rng_buffer; static int zcrypt_rng_buffer_index; static DEFINE_MUTEX(zcrypt_rng_mutex); static int zcrypt_rng_data_read(struct hwrng *rng, u32 *data) { int rc; /* * We don't need locking here because the RNG API guarantees serialized * read method calls. */ if (zcrypt_rng_buffer_index == 0) { rc = zcrypt_rng((char *) zcrypt_rng_buffer); /* on failure: retry once again after a requested rescan */ if ((rc == -ENODEV) && (zcrypt_process_rescan())) rc = zcrypt_rng((char *) zcrypt_rng_buffer); if (rc < 0) return -EIO; zcrypt_rng_buffer_index = rc / sizeof *data; } *data = zcrypt_rng_buffer[--zcrypt_rng_buffer_index]; return sizeof *data; } static struct hwrng zcrypt_rng_dev = { .name = "zcrypt", .data_read = zcrypt_rng_data_read, .quality = 990, }; static int zcrypt_rng_device_add(void) { int rc = 0; mutex_lock(&zcrypt_rng_mutex); if (zcrypt_rng_device_count == 0) { zcrypt_rng_buffer = (u32 *) get_zeroed_page(GFP_KERNEL); if (!zcrypt_rng_buffer) { rc = -ENOMEM; goto out; } zcrypt_rng_buffer_index = 0; if (!zcrypt_hwrng_seed) zcrypt_rng_dev.quality = 0; rc = hwrng_register(&zcrypt_rng_dev); if (rc) goto out_free; zcrypt_rng_device_count = 1; } else zcrypt_rng_device_count++; mutex_unlock(&zcrypt_rng_mutex); return 0; out_free: free_page((unsigned long) zcrypt_rng_buffer); out: mutex_unlock(&zcrypt_rng_mutex); return rc; } static void zcrypt_rng_device_remove(void) { mutex_lock(&zcrypt_rng_mutex); zcrypt_rng_device_count--; if (zcrypt_rng_device_count == 0) { hwrng_unregister(&zcrypt_rng_dev); free_page((unsigned long) zcrypt_rng_buffer); } mutex_unlock(&zcrypt_rng_mutex); } int __init zcrypt_debug_init(void) { debugfs_root = debugfs_create_dir("zcrypt", NULL); zcrypt_dbf_common = debug_register("zcrypt_common", 1, 1, 16); debug_register_view(zcrypt_dbf_common, &debug_hex_ascii_view); debug_set_level(zcrypt_dbf_common, DBF_ERR); zcrypt_dbf_devices = debug_register("zcrypt_devices", 1, 1, 16); debug_register_view(zcrypt_dbf_devices, &debug_hex_ascii_view); debug_set_level(zcrypt_dbf_devices, DBF_ERR); return 0; } void zcrypt_debug_exit(void) { debugfs_remove(debugfs_root); if (zcrypt_dbf_common) debug_unregister(zcrypt_dbf_common); if (zcrypt_dbf_devices) debug_unregister(zcrypt_dbf_devices); } /** * zcrypt_api_init(): Module initialization. * * The module initialization code. */ int __init zcrypt_api_init(void) { int rc; rc = zcrypt_debug_init(); if (rc) goto out; atomic_set(&zcrypt_rescan_req, 0); /* Register the request sprayer. */ rc = misc_register(&zcrypt_misc_device); if (rc < 0) goto out; /* Set up the proc file system */ zcrypt_entry = proc_create("driver/z90crypt", 0644, NULL, &zcrypt_proc_fops); if (!zcrypt_entry) { rc = -ENOMEM; goto out_misc; } return 0; out_misc: misc_deregister(&zcrypt_misc_device); out: return rc; } /** * zcrypt_api_exit(): Module termination. * * The module termination code. */ void zcrypt_api_exit(void) { remove_proc_entry("driver/z90crypt", NULL); misc_deregister(&zcrypt_misc_device); zcrypt_debug_exit(); } module_init(zcrypt_api_init); module_exit(zcrypt_api_exit);