/* * Copyright 2003 Digi International (www.digi.com) * Scott H Kilau <Scott_Kilau at digi dot com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. */ #include <linux/kernel.h> #include <linux/sched.h> /* For jiffies, task states */ #include <linux/interrupt.h> /* For tasklet and interrupt structs/defines */ #include <linux/delay.h> /* For udelay */ #include <linux/io.h> /* For read[bwl]/write[bwl] */ #include <linux/serial.h> /* For struct async_serial */ #include <linux/serial_reg.h> /* For the various UART offsets */ #include "dgnc_driver.h" /* Driver main header file */ #include "dgnc_neo.h" /* Our header file */ #include "dgnc_tty.h" static inline void neo_parse_lsr(struct dgnc_board *brd, uint port); static inline void neo_parse_isr(struct dgnc_board *brd, uint port); static void neo_copy_data_from_uart_to_queue(struct channel_t *ch); static inline void neo_clear_break(struct channel_t *ch, int force); static inline void neo_set_cts_flow_control(struct channel_t *ch); static inline void neo_set_rts_flow_control(struct channel_t *ch); static inline void neo_set_ixon_flow_control(struct channel_t *ch); static inline void neo_set_ixoff_flow_control(struct channel_t *ch); static inline void neo_set_no_output_flow_control(struct channel_t *ch); static inline void neo_set_no_input_flow_control(struct channel_t *ch); static inline void neo_set_new_start_stop_chars(struct channel_t *ch); static void neo_parse_modem(struct channel_t *ch, unsigned char signals); static void neo_tasklet(unsigned long data); static void neo_vpd(struct dgnc_board *brd); static void neo_uart_init(struct channel_t *ch); static void neo_uart_off(struct channel_t *ch); static int neo_drain(struct tty_struct *tty, uint seconds); static void neo_param(struct tty_struct *tty); static void neo_assert_modem_signals(struct channel_t *ch); static void neo_flush_uart_write(struct channel_t *ch); static void neo_flush_uart_read(struct channel_t *ch); static void neo_disable_receiver(struct channel_t *ch); static void neo_enable_receiver(struct channel_t *ch); static void neo_send_break(struct channel_t *ch, int msecs); static void neo_send_start_character(struct channel_t *ch); static void neo_send_stop_character(struct channel_t *ch); static void neo_copy_data_from_queue_to_uart(struct channel_t *ch); static uint neo_get_uart_bytes_left(struct channel_t *ch); static void neo_send_immediate_char(struct channel_t *ch, unsigned char c); static irqreturn_t neo_intr(int irq, void *voidbrd); struct board_ops dgnc_neo_ops = { .tasklet = neo_tasklet, .intr = neo_intr, .uart_init = neo_uart_init, .uart_off = neo_uart_off, .drain = neo_drain, .param = neo_param, .vpd = neo_vpd, .assert_modem_signals = neo_assert_modem_signals, .flush_uart_write = neo_flush_uart_write, .flush_uart_read = neo_flush_uart_read, .disable_receiver = neo_disable_receiver, .enable_receiver = neo_enable_receiver, .send_break = neo_send_break, .send_start_character = neo_send_start_character, .send_stop_character = neo_send_stop_character, .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, .get_uart_bytes_left = neo_get_uart_bytes_left, .send_immediate_char = neo_send_immediate_char }; static uint dgnc_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; /* * This function allows calls to ensure that all outstanding * PCI writes have been completed, by doing a PCI read against * a non-destructive, read-only location on the Neo card. * * In this case, we are reading the DVID (Read-only Device Identification) * value of the Neo card. */ static inline void neo_pci_posting_flush(struct dgnc_board *bd) { readb(bd->re_map_membase + 0x8D); } static inline void neo_set_cts_flow_control(struct channel_t *ch) { unsigned char ier = readb(&ch->ch_neo_uart->ier); unsigned char efr = readb(&ch->ch_neo_uart->efr); /* Turn on auto CTS flow control */ #if 1 ier |= UART_17158_IER_CTSDSR; #else ier &= ~(UART_17158_IER_CTSDSR); #endif efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); /* Turn off auto Xon flow control */ efr &= ~UART_17158_EFR_IXON; /* Why? Becuz Exar's spec says we have to zero it out before setting it */ writeb(0, &ch->ch_neo_uart->efr); /* Turn on UART enhanced bits */ writeb(efr, &ch->ch_neo_uart->efr); /* Turn on table D, with 8 char hi/low watermarks */ writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); /* Feed the UART our trigger levels */ writeb(8, &ch->ch_neo_uart->tfifo); ch->ch_t_tlevel = 8; writeb(ier, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } static inline void neo_set_rts_flow_control(struct channel_t *ch) { unsigned char ier = readb(&ch->ch_neo_uart->ier); unsigned char efr = readb(&ch->ch_neo_uart->efr); /* Turn on auto RTS flow control */ #if 1 ier |= UART_17158_IER_RTSDTR; #else ier &= ~(UART_17158_IER_RTSDTR); #endif efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); /* Turn off auto Xoff flow control */ ier &= ~UART_17158_IER_XOFF; efr &= ~UART_17158_EFR_IXOFF; /* Why? Becuz Exar's spec says we have to zero it out before setting it */ writeb(0, &ch->ch_neo_uart->efr); /* Turn on UART enhanced bits */ writeb(efr, &ch->ch_neo_uart->efr); writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); ch->ch_r_watermark = 4; writeb(32, &ch->ch_neo_uart->rfifo); ch->ch_r_tlevel = 32; writeb(ier, &ch->ch_neo_uart->ier); /* * From the Neo UART spec sheet: * The auto RTS/DTR function must be started by asserting * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after * it is enabled. */ ch->ch_mostat |= UART_MCR_RTS; neo_pci_posting_flush(ch->ch_bd); } static inline void neo_set_ixon_flow_control(struct channel_t *ch) { unsigned char ier = readb(&ch->ch_neo_uart->ier); unsigned char efr = readb(&ch->ch_neo_uart->efr); /* Turn off auto CTS flow control */ ier &= ~UART_17158_IER_CTSDSR; efr &= ~UART_17158_EFR_CTSDSR; /* Turn on auto Xon flow control */ efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); /* Why? Becuz Exar's spec says we have to zero it out before setting it */ writeb(0, &ch->ch_neo_uart->efr); /* Turn on UART enhanced bits */ writeb(efr, &ch->ch_neo_uart->efr); writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); ch->ch_r_watermark = 4; writeb(32, &ch->ch_neo_uart->rfifo); ch->ch_r_tlevel = 32; /* Tell UART what start/stop chars it should be looking for */ writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); writeb(0, &ch->ch_neo_uart->xonchar2); writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); writeb(0, &ch->ch_neo_uart->xoffchar2); writeb(ier, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } static inline void neo_set_ixoff_flow_control(struct channel_t *ch) { unsigned char ier = readb(&ch->ch_neo_uart->ier); unsigned char efr = readb(&ch->ch_neo_uart->efr); /* Turn off auto RTS flow control */ ier &= ~UART_17158_IER_RTSDTR; efr &= ~UART_17158_EFR_RTSDTR; /* Turn on auto Xoff flow control */ ier |= UART_17158_IER_XOFF; efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); /* Why? Becuz Exar's spec says we have to zero it out before setting it */ writeb(0, &ch->ch_neo_uart->efr); /* Turn on UART enhanced bits */ writeb(efr, &ch->ch_neo_uart->efr); /* Turn on table D, with 8 char hi/low watermarks */ writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); writeb(8, &ch->ch_neo_uart->tfifo); ch->ch_t_tlevel = 8; /* Tell UART what start/stop chars it should be looking for */ writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); writeb(0, &ch->ch_neo_uart->xonchar2); writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); writeb(0, &ch->ch_neo_uart->xoffchar2); writeb(ier, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } static inline void neo_set_no_input_flow_control(struct channel_t *ch) { unsigned char ier = readb(&ch->ch_neo_uart->ier); unsigned char efr = readb(&ch->ch_neo_uart->efr); /* Turn off auto RTS flow control */ ier &= ~UART_17158_IER_RTSDTR; efr &= ~UART_17158_EFR_RTSDTR; /* Turn off auto Xoff flow control */ ier &= ~UART_17158_IER_XOFF; if (ch->ch_c_iflag & IXON) efr &= ~(UART_17158_EFR_IXOFF); else efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); /* Why? Becuz Exar's spec says we have to zero it out before setting it */ writeb(0, &ch->ch_neo_uart->efr); /* Turn on UART enhanced bits */ writeb(efr, &ch->ch_neo_uart->efr); /* Turn on table D, with 8 char hi/low watermarks */ writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); ch->ch_r_watermark = 0; writeb(16, &ch->ch_neo_uart->tfifo); ch->ch_t_tlevel = 16; writeb(16, &ch->ch_neo_uart->rfifo); ch->ch_r_tlevel = 16; writeb(ier, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } static inline void neo_set_no_output_flow_control(struct channel_t *ch) { unsigned char ier = readb(&ch->ch_neo_uart->ier); unsigned char efr = readb(&ch->ch_neo_uart->efr); /* Turn off auto CTS flow control */ ier &= ~UART_17158_IER_CTSDSR; efr &= ~UART_17158_EFR_CTSDSR; /* Turn off auto Xon flow control */ if (ch->ch_c_iflag & IXOFF) efr &= ~UART_17158_EFR_IXON; else efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); /* Why? Becuz Exar's spec says we have to zero it out before setting it */ writeb(0, &ch->ch_neo_uart->efr); /* Turn on UART enhanced bits */ writeb(efr, &ch->ch_neo_uart->efr); /* Turn on table D, with 8 char hi/low watermarks */ writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); ch->ch_r_watermark = 0; writeb(16, &ch->ch_neo_uart->tfifo); ch->ch_t_tlevel = 16; writeb(16, &ch->ch_neo_uart->rfifo); ch->ch_r_tlevel = 16; writeb(ier, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } /* change UARTs start/stop chars */ static inline void neo_set_new_start_stop_chars(struct channel_t *ch) { /* if hardware flow control is set, then skip this whole thing */ if (ch->ch_digi.digi_flags & (CTSPACE | RTSPACE) || ch->ch_c_cflag & CRTSCTS) return; /* Tell UART what start/stop chars it should be looking for */ writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); writeb(0, &ch->ch_neo_uart->xonchar2); writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); writeb(0, &ch->ch_neo_uart->xoffchar2); neo_pci_posting_flush(ch->ch_bd); } /* * No locks are assumed to be held when calling this function. */ static inline void neo_clear_break(struct channel_t *ch, int force) { unsigned long flags; spin_lock_irqsave(&ch->ch_lock, flags); /* Bail if we aren't currently sending a break. */ if (!ch->ch_stop_sending_break) { spin_unlock_irqrestore(&ch->ch_lock, flags); return; } /* Turn break off, and unset some variables */ if (ch->ch_flags & CH_BREAK_SENDING) { if (time_after_eq(jiffies, ch->ch_stop_sending_break) || force) { unsigned char temp = readb(&ch->ch_neo_uart->lcr); writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); neo_pci_posting_flush(ch->ch_bd); ch->ch_flags &= ~(CH_BREAK_SENDING); ch->ch_stop_sending_break = 0; } } spin_unlock_irqrestore(&ch->ch_lock, flags); } /* * Parse the ISR register. */ static inline void neo_parse_isr(struct dgnc_board *brd, uint port) { struct channel_t *ch; unsigned char isr; unsigned char cause; unsigned long flags; if (!brd || brd->magic != DGNC_BOARD_MAGIC) return; if (port >= brd->maxports) return; ch = brd->channels[port]; if (ch->magic != DGNC_CHANNEL_MAGIC) return; /* Here we try to figure out what caused the interrupt to happen */ while (1) { isr = readb(&ch->ch_neo_uart->isr_fcr); /* Bail if no pending interrupt */ if (isr & UART_IIR_NO_INT) break; /* * Yank off the upper 2 bits, which just show that the FIFO's are enabled. */ isr &= ~(UART_17158_IIR_FIFO_ENABLED); if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { /* Read data from uart -> queue */ brd->intr_rx++; ch->ch_intr_rx++; neo_copy_data_from_uart_to_queue(ch); /* Call our tty layer to enforce queue flow control if needed. */ spin_lock_irqsave(&ch->ch_lock, flags); dgnc_check_queue_flow_control(ch); spin_unlock_irqrestore(&ch->ch_lock, flags); } if (isr & UART_IIR_THRI) { brd->intr_tx++; ch->ch_intr_tx++; /* Transfer data (if any) from Write Queue -> UART. */ spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); spin_unlock_irqrestore(&ch->ch_lock, flags); neo_copy_data_from_queue_to_uart(ch); } if (isr & UART_17158_IIR_XONXOFF) { cause = readb(&ch->ch_neo_uart->xoffchar1); /* * Since the UART detected either an XON or * XOFF match, we need to figure out which * one it was, so we can suspend or resume data flow. */ if (cause == UART_17158_XON_DETECT) { /* Is output stopped right now, if so, resume it */ if (brd->channels[port]->ch_flags & CH_STOP) { spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_flags &= ~(CH_STOP); spin_unlock_irqrestore(&ch->ch_lock, flags); } } else if (cause == UART_17158_XOFF_DETECT) { if (!(brd->channels[port]->ch_flags & CH_STOP)) { spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_flags |= CH_STOP; spin_unlock_irqrestore(&ch->ch_lock, flags); } } } if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { /* * If we get here, this means the hardware is doing auto flow control. * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. */ brd->intr_modem++; ch->ch_intr_modem++; cause = readb(&ch->ch_neo_uart->mcr); /* Which pin is doing auto flow? RTS or DTR? */ if ((cause & 0x4) == 0) { if (cause & UART_MCR_RTS) { spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_mostat |= UART_MCR_RTS; spin_unlock_irqrestore(&ch->ch_lock, flags); } else { spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_mostat &= ~(UART_MCR_RTS); spin_unlock_irqrestore(&ch->ch_lock, flags); } } else { if (cause & UART_MCR_DTR) { spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_mostat |= UART_MCR_DTR; spin_unlock_irqrestore(&ch->ch_lock, flags); } else { spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_mostat &= ~(UART_MCR_DTR); spin_unlock_irqrestore(&ch->ch_lock, flags); } } } /* Parse any modem signal changes */ neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); } } static inline void neo_parse_lsr(struct dgnc_board *brd, uint port) { struct channel_t *ch; int linestatus; unsigned long flags; /* * Check to make sure it didn't receive interrupt with a null board * associated or a board pointer that wasn't ours. */ if (!brd || brd->magic != DGNC_BOARD_MAGIC) return; if (port >= brd->maxports) return; ch = brd->channels[port]; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; linestatus = readb(&ch->ch_neo_uart->lsr); ch->ch_cached_lsr |= linestatus; if (ch->ch_cached_lsr & UART_LSR_DR) { brd->intr_rx++; ch->ch_intr_rx++; /* Read data from uart -> queue */ neo_copy_data_from_uart_to_queue(ch); spin_lock_irqsave(&ch->ch_lock, flags); dgnc_check_queue_flow_control(ch); spin_unlock_irqrestore(&ch->ch_lock, flags); } /* * The next 3 tests should *NOT* happen, as the above test * should encapsulate all 3... At least, thats what Exar says. */ if (linestatus & UART_LSR_PE) ch->ch_err_parity++; if (linestatus & UART_LSR_FE) ch->ch_err_frame++; if (linestatus & UART_LSR_BI) ch->ch_err_break++; if (linestatus & UART_LSR_OE) { /* * Rx Oruns. Exar says that an orun will NOT corrupt * the FIFO. It will just replace the holding register * with this new data byte. So basically just ignore this. * Probably we should eventually have an orun stat in our driver... */ ch->ch_err_overrun++; } if (linestatus & UART_LSR_THRE) { brd->intr_tx++; ch->ch_intr_tx++; spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); spin_unlock_irqrestore(&ch->ch_lock, flags); /* Transfer data (if any) from Write Queue -> UART. */ neo_copy_data_from_queue_to_uart(ch); } else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { brd->intr_tx++; ch->ch_intr_tx++; spin_lock_irqsave(&ch->ch_lock, flags); ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); spin_unlock_irqrestore(&ch->ch_lock, flags); /* Transfer data (if any) from Write Queue -> UART. */ neo_copy_data_from_queue_to_uart(ch); } } /* * neo_param() * Send any/all changes to the line to the UART. */ static void neo_param(struct tty_struct *tty) { unsigned char lcr = 0; unsigned char uart_lcr = 0; unsigned char ier = 0; unsigned char uart_ier = 0; uint baud = 9600; int quot = 0; struct dgnc_board *bd; struct channel_t *ch; struct un_t *un; if (!tty || tty->magic != TTY_MAGIC) return; un = (struct un_t *)tty->driver_data; if (!un || un->magic != DGNC_UNIT_MAGIC) return; ch = un->un_ch; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; bd = ch->ch_bd; if (!bd || bd->magic != DGNC_BOARD_MAGIC) return; /* * If baud rate is zero, flush queues, and set mval to drop DTR. */ if ((ch->ch_c_cflag & (CBAUD)) == 0) { ch->ch_r_head = 0; ch->ch_r_tail = 0; ch->ch_e_head = 0; ch->ch_e_tail = 0; ch->ch_w_head = 0; ch->ch_w_tail = 0; neo_flush_uart_write(ch); neo_flush_uart_read(ch); /* The baudrate is B0 so all modem lines are to be dropped. */ ch->ch_flags |= (CH_BAUD0); ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); neo_assert_modem_signals(ch); ch->ch_old_baud = 0; return; } else if (ch->ch_custom_speed) { baud = ch->ch_custom_speed; /* Handle transition from B0 */ if (ch->ch_flags & CH_BAUD0) { ch->ch_flags &= ~(CH_BAUD0); /* * Bring back up RTS and DTR... * Also handle RTS or DTR toggle if set. */ if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE)) ch->ch_mostat |= (UART_MCR_RTS); if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE)) ch->ch_mostat |= (UART_MCR_DTR); } } else { int iindex = 0; int jindex = 0; ulong bauds[4][16] = { { /* slowbaud */ 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400 }, { /* slowbaud & CBAUDEX */ 0, 57600, 115200, 230400, 460800, 150, 200, 921600, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400 }, { /* fastbaud */ 0, 57600, 76800, 115200, 131657, 153600, 230400, 460800, 921600, 1200, 1800, 2400, 4800, 9600, 19200, 38400 }, { /* fastbaud & CBAUDEX */ 0, 57600, 115200, 230400, 460800, 150, 200, 921600, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400 } }; /* Only use the TXPrint baud rate if the terminal unit is NOT open */ if (!(ch->ch_tun.un_flags & UN_ISOPEN) && (un->un_type == DGNC_PRINT)) baud = C_BAUD(ch->ch_pun.un_tty) & 0xff; else baud = C_BAUD(ch->ch_tun.un_tty) & 0xff; if (ch->ch_c_cflag & CBAUDEX) iindex = 1; if (ch->ch_digi.digi_flags & DIGI_FAST) iindex += 2; jindex = baud; if ((iindex >= 0) && (iindex < 4) && (jindex >= 0) && (jindex < 16)) baud = bauds[iindex][jindex]; else baud = 0; if (baud == 0) baud = 9600; /* Handle transition from B0 */ if (ch->ch_flags & CH_BAUD0) { ch->ch_flags &= ~(CH_BAUD0); /* * Bring back up RTS and DTR... * Also handle RTS or DTR toggle if set. */ if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE)) ch->ch_mostat |= (UART_MCR_RTS); if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE)) ch->ch_mostat |= (UART_MCR_DTR); } } if (ch->ch_c_cflag & PARENB) lcr |= UART_LCR_PARITY; if (!(ch->ch_c_cflag & PARODD)) lcr |= UART_LCR_EPAR; /* * Not all platforms support mark/space parity, * so this will hide behind an ifdef. */ #ifdef CMSPAR if (ch->ch_c_cflag & CMSPAR) lcr |= UART_LCR_SPAR; #endif if (ch->ch_c_cflag & CSTOPB) lcr |= UART_LCR_STOP; switch (ch->ch_c_cflag & CSIZE) { case CS5: lcr |= UART_LCR_WLEN5; break; case CS6: lcr |= UART_LCR_WLEN6; break; case CS7: lcr |= UART_LCR_WLEN7; break; case CS8: default: lcr |= UART_LCR_WLEN8; break; } uart_ier = readb(&ch->ch_neo_uart->ier); ier = uart_ier; uart_lcr = readb(&ch->ch_neo_uart->lcr); if (baud == 0) baud = 9600; quot = ch->ch_bd->bd_dividend / baud; if (quot != 0 && ch->ch_old_baud != baud) { ch->ch_old_baud = baud; writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); writeb((quot & 0xff), &ch->ch_neo_uart->txrx); writeb((quot >> 8), &ch->ch_neo_uart->ier); writeb(lcr, &ch->ch_neo_uart->lcr); } if (uart_lcr != lcr) writeb(lcr, &ch->ch_neo_uart->lcr); if (ch->ch_c_cflag & CREAD) ier |= (UART_IER_RDI | UART_IER_RLSI); else ier &= ~(UART_IER_RDI | UART_IER_RLSI); /* * Have the UART interrupt on modem signal changes ONLY when * we are in hardware flow control mode, or CLOCAL/FORCEDCD is not set. */ if ((ch->ch_digi.digi_flags & CTSPACE) || (ch->ch_digi.digi_flags & RTSPACE) || (ch->ch_c_cflag & CRTSCTS) || !(ch->ch_digi.digi_flags & DIGI_FORCEDCD) || !(ch->ch_c_cflag & CLOCAL)) ier |= UART_IER_MSI; else ier &= ~UART_IER_MSI; ier |= UART_IER_THRI; if (ier != uart_ier) writeb(ier, &ch->ch_neo_uart->ier); /* Set new start/stop chars */ neo_set_new_start_stop_chars(ch); if (ch->ch_digi.digi_flags & CTSPACE || ch->ch_c_cflag & CRTSCTS) { neo_set_cts_flow_control(ch); } else if (ch->ch_c_iflag & IXON) { /* If start/stop is set to disable, then we should disable flow control */ if ((ch->ch_startc == _POSIX_VDISABLE) || (ch->ch_stopc == _POSIX_VDISABLE)) neo_set_no_output_flow_control(ch); else neo_set_ixon_flow_control(ch); } else { neo_set_no_output_flow_control(ch); } if (ch->ch_digi.digi_flags & RTSPACE || ch->ch_c_cflag & CRTSCTS) { neo_set_rts_flow_control(ch); } else if (ch->ch_c_iflag & IXOFF) { /* If start/stop is set to disable, then we should disable flow control */ if ((ch->ch_startc == _POSIX_VDISABLE) || (ch->ch_stopc == _POSIX_VDISABLE)) neo_set_no_input_flow_control(ch); else neo_set_ixoff_flow_control(ch); } else { neo_set_no_input_flow_control(ch); } /* * Adjust the RX FIFO Trigger level if baud is less than 9600. * Not exactly elegant, but this is needed because of the Exar chip's * delay on firing off the RX FIFO interrupt on slower baud rates. */ if (baud < 9600) { writeb(1, &ch->ch_neo_uart->rfifo); ch->ch_r_tlevel = 1; } neo_assert_modem_signals(ch); /* Get current status of the modem signals now */ neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); } /* * Our board poller function. */ static void neo_tasklet(unsigned long data) { struct dgnc_board *bd = (struct dgnc_board *)data; struct channel_t *ch; unsigned long flags; int i; int state = 0; int ports = 0; if (!bd || bd->magic != DGNC_BOARD_MAGIC) return; /* Cache a couple board values */ spin_lock_irqsave(&bd->bd_lock, flags); state = bd->state; ports = bd->nasync; spin_unlock_irqrestore(&bd->bd_lock, flags); /* * Do NOT allow the interrupt routine to read the intr registers * Until we release this lock. */ spin_lock_irqsave(&bd->bd_intr_lock, flags); /* * If board is ready, parse deeper to see if there is anything to do. */ if ((state == BOARD_READY) && (ports > 0)) { /* Loop on each port */ for (i = 0; i < ports; i++) { ch = bd->channels[i]; /* Just being careful... */ if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) continue; /* * NOTE: Remember you CANNOT hold any channel * locks when calling the input routine. * * During input processing, its possible we * will call the Linux ld, which might in turn, * do a callback right back into us, resulting * in us trying to grab the channel lock twice! */ dgnc_input(ch); /* * Channel lock is grabbed and then released * inside both of these routines, but neither * call anything else that could call back into us. */ neo_copy_data_from_queue_to_uart(ch); dgnc_wakeup_writes(ch); /* * Call carrier carrier function, in case something * has changed. */ dgnc_carrier(ch); /* * Check to see if we need to turn off a sending break. * The timing check is done inside clear_break() */ if (ch->ch_stop_sending_break) neo_clear_break(ch, 0); } } /* Allow interrupt routine to access the interrupt register again */ spin_unlock_irqrestore(&bd->bd_intr_lock, flags); } /* * dgnc_neo_intr() * * Neo specific interrupt handler. */ static irqreturn_t neo_intr(int irq, void *voidbrd) { struct dgnc_board *brd = voidbrd; struct channel_t *ch; int port = 0; int type = 0; int current_port; u32 tmp; u32 uart_poll; unsigned long flags; unsigned long flags2; /* * Check to make sure it didn't receive interrupt with a null board * associated or a board pointer that wasn't ours. */ if (!brd || brd->magic != DGNC_BOARD_MAGIC) return IRQ_NONE; brd->intr_count++; /* Lock out the slow poller from running on this board. */ spin_lock_irqsave(&brd->bd_intr_lock, flags); /* * Read in "extended" IRQ information from the 32bit Neo register. * Bits 0-7: What port triggered the interrupt. * Bits 8-31: Each 3bits indicate what type of interrupt occurred. */ uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); /* * If 0, no interrupts pending. * This can happen if the IRQ is shared among a couple Neo/Classic boards. */ if (!uart_poll) { spin_unlock_irqrestore(&brd->bd_intr_lock, flags); return IRQ_NONE; } /* At this point, we have at least SOMETHING to service, dig further... */ current_port = 0; /* Loop on each port */ while ((uart_poll & 0xff) != 0) { tmp = uart_poll; /* Check current port to see if it has interrupt pending */ if ((tmp & dgnc_offset_table[current_port]) != 0) { port = current_port; type = tmp >> (8 + (port * 3)); type &= 0x7; } else { current_port++; continue; } /* Remove this port + type from uart_poll */ uart_poll &= ~(dgnc_offset_table[port]); if (!type) { /* If no type, just ignore it, and move onto next port */ continue; } /* Switch on type of interrupt we have */ switch (type) { case UART_17158_RXRDY_TIMEOUT: /* * RXRDY Time-out is cleared by reading data in the * RX FIFO until it falls below the trigger level. */ /* Verify the port is in range. */ if (port >= brd->nasync) continue; ch = brd->channels[port]; neo_copy_data_from_uart_to_queue(ch); /* Call our tty layer to enforce queue flow control if needed. */ spin_lock_irqsave(&ch->ch_lock, flags2); dgnc_check_queue_flow_control(ch); spin_unlock_irqrestore(&ch->ch_lock, flags2); continue; case UART_17158_RX_LINE_STATUS: /* * RXRDY and RX LINE Status (logic OR of LSR[4:1]) */ neo_parse_lsr(brd, port); continue; case UART_17158_TXRDY: /* * TXRDY interrupt clears after reading ISR register for the UART channel. */ /* * Yes, this is odd... * Why would I check EVERY possibility of type of * interrupt, when we know its TXRDY??? * Becuz for some reason, even tho we got triggered for TXRDY, * it seems to be occasionally wrong. Instead of TX, which * it should be, I was getting things like RXDY too. Weird. */ neo_parse_isr(brd, port); continue; case UART_17158_MSR: /* * MSR or flow control was seen. */ neo_parse_isr(brd, port); continue; default: /* * The UART triggered us with a bogus interrupt type. * It appears the Exar chip, when REALLY bogged down, will throw * these once and awhile. * Its harmless, just ignore it and move on. */ continue; } } /* * Schedule tasklet to more in-depth servicing at a better time. */ tasklet_schedule(&brd->helper_tasklet); spin_unlock_irqrestore(&brd->bd_intr_lock, flags); return IRQ_HANDLED; } /* * Neo specific way of turning off the receiver. * Used as a way to enforce queue flow control when in * hardware flow control mode. */ static void neo_disable_receiver(struct channel_t *ch) { unsigned char tmp = readb(&ch->ch_neo_uart->ier); tmp &= ~(UART_IER_RDI); writeb(tmp, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } /* * Neo specific way of turning on the receiver. * Used as a way to un-enforce queue flow control when in * hardware flow control mode. */ static void neo_enable_receiver(struct channel_t *ch) { unsigned char tmp = readb(&ch->ch_neo_uart->ier); tmp |= (UART_IER_RDI); writeb(tmp, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } static void neo_copy_data_from_uart_to_queue(struct channel_t *ch) { int qleft = 0; unsigned char linestatus = 0; unsigned char error_mask = 0; int n = 0; int total = 0; ushort head; ushort tail; unsigned long flags; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; spin_lock_irqsave(&ch->ch_lock, flags); /* cache head and tail of queue */ head = ch->ch_r_head & RQUEUEMASK; tail = ch->ch_r_tail & RQUEUEMASK; /* Get our cached LSR */ linestatus = ch->ch_cached_lsr; ch->ch_cached_lsr = 0; /* Store how much space we have left in the queue */ qleft = tail - head - 1; if (qleft < 0) qleft += RQUEUEMASK + 1; /* * If the UART is not in FIFO mode, force the FIFO copy to * NOT be run, by setting total to 0. * * On the other hand, if the UART IS in FIFO mode, then ask * the UART to give us an approximation of data it has RX'ed. */ if (!(ch->ch_flags & CH_FIFO_ENABLED)) total = 0; else { total = readb(&ch->ch_neo_uart->rfifo); /* * EXAR chip bug - RX FIFO COUNT - Fudge factor. * * This resolves a problem/bug with the Exar chip that sometimes * returns a bogus value in the rfifo register. * The count can be any where from 0-3 bytes "off". * Bizarre, but true. */ if ((ch->ch_bd->dvid & 0xf0) >= UART_XR17E158_DVID) total -= 1; else total -= 3; } /* * Finally, bound the copy to make sure we don't overflow * our own queue... * The byte by byte copy loop below this loop this will * deal with the queue overflow possibility. */ total = min(total, qleft); while (total > 0) { /* * Grab the linestatus register, we need to check * to see if there are any errors in the FIFO. */ linestatus = readb(&ch->ch_neo_uart->lsr); /* * Break out if there is a FIFO error somewhere. * This will allow us to go byte by byte down below, * finding the exact location of the error. */ if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) break; /* Make sure we don't go over the end of our queue */ n = min(((uint)total), (RQUEUESIZE - (uint)head)); /* * Cut down n even further if needed, this is to fix * a problem with memcpy_fromio() with the Neo on the * IBM pSeries platform. * 15 bytes max appears to be the magic number. */ n = min_t(uint, n, 12); /* * Since we are grabbing the linestatus register, which * will reset some bits after our read, we need to ensure * we don't miss our TX FIFO emptys. */ if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); linestatus = 0; /* Copy data from uart to the queue */ memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); /* * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed * that all the data currently in the FIFO is free of * breaks and parity/frame/orun errors. */ memset(ch->ch_equeue + head, 0, n); /* Add to and flip head if needed */ head = (head + n) & RQUEUEMASK; total -= n; qleft -= n; ch->ch_rxcount += n; } /* * Create a mask to determine whether we should * insert the character (if any) into our queue. */ if (ch->ch_c_iflag & IGNBRK) error_mask |= UART_LSR_BI; /* * Now cleanup any leftover bytes still in the UART. * Also deal with any possible queue overflow here as well. */ while (1) { /* * Its possible we have a linestatus from the loop above * this, so we "OR" on any extra bits. */ linestatus |= readb(&ch->ch_neo_uart->lsr); /* * If the chip tells us there is no more data pending to * be read, we can then leave. * But before we do, cache the linestatus, just in case. */ if (!(linestatus & UART_LSR_DR)) { ch->ch_cached_lsr = linestatus; break; } /* No need to store this bit */ linestatus &= ~UART_LSR_DR; /* * Since we are grabbing the linestatus register, which * will reset some bits after our read, we need to ensure * we don't miss our TX FIFO emptys. */ if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); } /* * Discard character if we are ignoring the error mask. */ if (linestatus & error_mask) { unsigned char discard; linestatus = 0; memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); continue; } /* * If our queue is full, we have no choice but to drop some data. * The assumption is that HWFLOW or SWFLOW should have stopped * things way way before we got to this point. * * I decided that I wanted to ditch the oldest data first, * I hope thats okay with everyone? Yes? Good. */ while (qleft < 1) { tail = (tail + 1) & RQUEUEMASK; ch->ch_r_tail = tail; ch->ch_err_overrun++; qleft++; } memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); ch->ch_equeue[head] = (unsigned char)linestatus; /* Ditch any remaining linestatus value. */ linestatus = 0; /* Add to and flip head if needed */ head = (head + 1) & RQUEUEMASK; qleft--; ch->ch_rxcount++; } /* * Write new final heads to channel structure. */ ch->ch_r_head = head & RQUEUEMASK; ch->ch_e_head = head & EQUEUEMASK; spin_unlock_irqrestore(&ch->ch_lock, flags); } /* * This function basically goes to sleep for secs, or until * it gets signalled that the port has fully drained. */ static int neo_drain(struct tty_struct *tty, uint seconds) { unsigned long flags; struct channel_t *ch; struct un_t *un; int rc = 0; if (!tty || tty->magic != TTY_MAGIC) return -ENXIO; un = (struct un_t *)tty->driver_data; if (!un || un->magic != DGNC_UNIT_MAGIC) return -ENXIO; ch = un->un_ch; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return -ENXIO; spin_lock_irqsave(&ch->ch_lock, flags); un->un_flags |= UN_EMPTY; spin_unlock_irqrestore(&ch->ch_lock, flags); /* * Go to sleep waiting for the tty layer to wake me back up when * the empty flag goes away. * * NOTE: TODO: Do something with time passed in. */ rc = wait_event_interruptible(un->un_flags_wait, ((un->un_flags & UN_EMPTY) == 0)); /* If ret is non-zero, user ctrl-c'ed us */ return rc; } /* * Flush the WRITE FIFO on the Neo. * * NOTE: Channel lock MUST be held before calling this function! */ static void neo_flush_uart_write(struct channel_t *ch) { unsigned char tmp = 0; int i = 0; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); neo_pci_posting_flush(ch->ch_bd); for (i = 0; i < 10; i++) { /* Check to see if the UART feels it completely flushed the FIFO. */ tmp = readb(&ch->ch_neo_uart->isr_fcr); if (tmp & 4) udelay(10); else break; } ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); } /* * Flush the READ FIFO on the Neo. * * NOTE: Channel lock MUST be held before calling this function! */ static void neo_flush_uart_read(struct channel_t *ch) { unsigned char tmp = 0; int i = 0; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); neo_pci_posting_flush(ch->ch_bd); for (i = 0; i < 10; i++) { /* Check to see if the UART feels it completely flushed the FIFO. */ tmp = readb(&ch->ch_neo_uart->isr_fcr); if (tmp & 2) udelay(10); else break; } } static void neo_copy_data_from_queue_to_uart(struct channel_t *ch) { ushort head; ushort tail; int n; int s; int qlen; uint len_written = 0; unsigned long flags; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; spin_lock_irqsave(&ch->ch_lock, flags); /* No data to write to the UART */ if (ch->ch_w_tail == ch->ch_w_head) goto exit_unlock; /* If port is "stopped", don't send any data to the UART */ if ((ch->ch_flags & CH_FORCED_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) goto exit_unlock; /* * If FIFOs are disabled. Send data directly to txrx register */ if (!(ch->ch_flags & CH_FIFO_ENABLED)) { unsigned char lsrbits = readb(&ch->ch_neo_uart->lsr); /* Cache the LSR bits for later parsing */ ch->ch_cached_lsr |= lsrbits; if (ch->ch_cached_lsr & UART_LSR_THRE) { ch->ch_cached_lsr &= ~(UART_LSR_THRE); /* * If RTS Toggle mode is on, turn on RTS now if not already set, * and make sure we get an event when the data transfer has completed. */ if (ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) { if (!(ch->ch_mostat & UART_MCR_RTS)) { ch->ch_mostat |= (UART_MCR_RTS); neo_assert_modem_signals(ch); } ch->ch_tun.un_flags |= (UN_EMPTY); } /* * If DTR Toggle mode is on, turn on DTR now if not already set, * and make sure we get an event when the data transfer has completed. */ if (ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) { if (!(ch->ch_mostat & UART_MCR_DTR)) { ch->ch_mostat |= (UART_MCR_DTR); neo_assert_modem_signals(ch); } ch->ch_tun.un_flags |= (UN_EMPTY); } writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx); ch->ch_w_tail++; ch->ch_w_tail &= WQUEUEMASK; ch->ch_txcount++; } goto exit_unlock; } /* * We have to do it this way, because of the EXAR TXFIFO count bug. */ if ((ch->ch_bd->dvid & 0xf0) < UART_XR17E158_DVID) { if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) goto exit_unlock; len_written = 0; n = readb(&ch->ch_neo_uart->tfifo); if ((unsigned int)n > ch->ch_t_tlevel) goto exit_unlock; n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; } else { n = UART_17158_TX_FIFOSIZE - readb(&ch->ch_neo_uart->tfifo); } /* cache head and tail of queue */ head = ch->ch_w_head & WQUEUEMASK; tail = ch->ch_w_tail & WQUEUEMASK; qlen = (head - tail) & WQUEUEMASK; /* Find minimum of the FIFO space, versus queue length */ n = min(n, qlen); while (n > 0) { s = ((head >= tail) ? head : WQUEUESIZE) - tail; s = min(s, n); if (s <= 0) break; /* * If RTS Toggle mode is on, turn on RTS now if not already set, * and make sure we get an event when the data transfer has completed. */ if (ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) { if (!(ch->ch_mostat & UART_MCR_RTS)) { ch->ch_mostat |= (UART_MCR_RTS); neo_assert_modem_signals(ch); } ch->ch_tun.un_flags |= (UN_EMPTY); } /* * If DTR Toggle mode is on, turn on DTR now if not already set, * and make sure we get an event when the data transfer has completed. */ if (ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) { if (!(ch->ch_mostat & UART_MCR_DTR)) { ch->ch_mostat |= (UART_MCR_DTR); neo_assert_modem_signals(ch); } ch->ch_tun.un_flags |= (UN_EMPTY); } memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s); /* Add and flip queue if needed */ tail = (tail + s) & WQUEUEMASK; n -= s; ch->ch_txcount += s; len_written += s; } /* Update the final tail */ ch->ch_w_tail = tail & WQUEUEMASK; if (len_written > 0) { neo_pci_posting_flush(ch->ch_bd); ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); } exit_unlock: spin_unlock_irqrestore(&ch->ch_lock, flags); } static void neo_parse_modem(struct channel_t *ch, unsigned char signals) { unsigned char msignals = signals; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; /* * Do altpin switching. Altpin switches DCD and DSR. * This prolly breaks DSRPACE, so we should be more clever here. */ if (ch->ch_digi.digi_flags & DIGI_ALTPIN) { unsigned char mswap = msignals; if (mswap & UART_MSR_DDCD) { msignals &= ~UART_MSR_DDCD; msignals |= UART_MSR_DDSR; } if (mswap & UART_MSR_DDSR) { msignals &= ~UART_MSR_DDSR; msignals |= UART_MSR_DDCD; } if (mswap & UART_MSR_DCD) { msignals &= ~UART_MSR_DCD; msignals |= UART_MSR_DSR; } if (mswap & UART_MSR_DSR) { msignals &= ~UART_MSR_DSR; msignals |= UART_MSR_DCD; } } /* Scrub off lower bits. They signify delta's, which I don't care about */ msignals &= 0xf0; if (msignals & UART_MSR_DCD) ch->ch_mistat |= UART_MSR_DCD; else ch->ch_mistat &= ~UART_MSR_DCD; if (msignals & UART_MSR_DSR) ch->ch_mistat |= UART_MSR_DSR; else ch->ch_mistat &= ~UART_MSR_DSR; if (msignals & UART_MSR_RI) ch->ch_mistat |= UART_MSR_RI; else ch->ch_mistat &= ~UART_MSR_RI; if (msignals & UART_MSR_CTS) ch->ch_mistat |= UART_MSR_CTS; else ch->ch_mistat &= ~UART_MSR_CTS; } /* Make the UART raise any of the output signals we want up */ static void neo_assert_modem_signals(struct channel_t *ch) { unsigned char out; if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; out = ch->ch_mostat; if (ch->ch_flags & CH_LOOPBACK) out |= UART_MCR_LOOP; writeb(out, &ch->ch_neo_uart->mcr); neo_pci_posting_flush(ch->ch_bd); /* Give time for the UART to actually raise/drop the signals */ udelay(10); } static void neo_send_start_character(struct channel_t *ch) { if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; if (ch->ch_startc != _POSIX_VDISABLE) { ch->ch_xon_sends++; writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); neo_pci_posting_flush(ch->ch_bd); udelay(10); } } static void neo_send_stop_character(struct channel_t *ch) { if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; if (ch->ch_stopc != _POSIX_VDISABLE) { ch->ch_xoff_sends++; writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); neo_pci_posting_flush(ch->ch_bd); udelay(10); } } /* * neo_uart_init */ static void neo_uart_init(struct channel_t *ch) { writeb(0, &ch->ch_neo_uart->ier); writeb(0, &ch->ch_neo_uart->efr); writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); /* Clear out UART and FIFO */ readb(&ch->ch_neo_uart->txrx); writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); readb(&ch->ch_neo_uart->lsr); readb(&ch->ch_neo_uart->msr); ch->ch_flags |= CH_FIFO_ENABLED; /* Assert any signals we want up */ writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); neo_pci_posting_flush(ch->ch_bd); } /* * Make the UART completely turn off. */ static void neo_uart_off(struct channel_t *ch) { /* Turn off UART enhanced bits */ writeb(0, &ch->ch_neo_uart->efr); /* Stop all interrupts from occurring. */ writeb(0, &ch->ch_neo_uart->ier); neo_pci_posting_flush(ch->ch_bd); } static uint neo_get_uart_bytes_left(struct channel_t *ch) { unsigned char left = 0; unsigned char lsr = readb(&ch->ch_neo_uart->lsr); /* We must cache the LSR as some of the bits get reset once read... */ ch->ch_cached_lsr |= lsr; /* Determine whether the Transmitter is empty or not */ if (!(lsr & UART_LSR_TEMT)) { if (ch->ch_flags & CH_TX_FIFO_EMPTY) tasklet_schedule(&ch->ch_bd->helper_tasklet); left = 1; } else { ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); left = 0; } return left; } /* Channel lock MUST be held by the calling function! */ static void neo_send_break(struct channel_t *ch, int msecs) { /* * If we receive a time of 0, this means turn off the break. */ if (msecs == 0) { if (ch->ch_flags & CH_BREAK_SENDING) { unsigned char temp = readb(&ch->ch_neo_uart->lcr); writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); neo_pci_posting_flush(ch->ch_bd); ch->ch_flags &= ~(CH_BREAK_SENDING); ch->ch_stop_sending_break = 0; } return; } /* * Set the time we should stop sending the break. * If we are already sending a break, toss away the existing * time to stop, and use this new value instead. */ ch->ch_stop_sending_break = jiffies + dgnc_jiffies_from_ms(msecs); /* Tell the UART to start sending the break */ if (!(ch->ch_flags & CH_BREAK_SENDING)) { unsigned char temp = readb(&ch->ch_neo_uart->lcr); writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); neo_pci_posting_flush(ch->ch_bd); ch->ch_flags |= (CH_BREAK_SENDING); } } /* * neo_send_immediate_char. * * Sends a specific character as soon as possible to the UART, * jumping over any bytes that might be in the write queue. * * The channel lock MUST be held by the calling function. */ static void neo_send_immediate_char(struct channel_t *ch, unsigned char c) { if (!ch || ch->magic != DGNC_CHANNEL_MAGIC) return; writeb(c, &ch->ch_neo_uart->txrx); neo_pci_posting_flush(ch->ch_bd); } static unsigned int neo_read_eeprom(unsigned char __iomem *base, unsigned int address) { unsigned int enable; unsigned int bits; unsigned int databit; unsigned int val; /* enable chip select */ writeb(NEO_EECS, base + NEO_EEREG); /* READ */ enable = (address | 0x180); for (bits = 9; bits--; ) { databit = (enable & (1 << bits)) ? NEO_EEDI : 0; /* Set read address */ writeb(databit | NEO_EECS, base + NEO_EEREG); writeb(databit | NEO_EECS | NEO_EECK, base + NEO_EEREG); } val = 0; for (bits = 17; bits--; ) { /* clock to EEPROM */ writeb(NEO_EECS, base + NEO_EEREG); writeb(NEO_EECS | NEO_EECK, base + NEO_EEREG); val <<= 1; /* read EEPROM */ if (readb(base + NEO_EEREG) & NEO_EEDO) val |= 1; } /* clock falling edge */ writeb(NEO_EECS, base + NEO_EEREG); /* drop chip select */ writeb(0x00, base + NEO_EEREG); return val; } static void neo_vpd(struct dgnc_board *brd) { unsigned int i = 0; unsigned int a; if (!brd || brd->magic != DGNC_BOARD_MAGIC) return; if (!brd->re_map_membase) return; /* Store the VPD into our buffer */ for (i = 0; i < NEO_VPD_IMAGESIZE; i++) { a = neo_read_eeprom(brd->re_map_membase, i); brd->vpd[i*2] = a & 0xff; brd->vpd[(i*2)+1] = (a >> 8) & 0xff; } if (((brd->vpd[0x08] != 0x82) /* long resource name tag */ && (brd->vpd[0x10] != 0x82)) /* long resource name tag (PCI-66 files)*/ || (brd->vpd[0x7F] != 0x78)) { /* small resource end tag */ memset(brd->vpd, '\0', NEO_VPD_IMAGESIZE); } else { /* Search for the serial number */ for (i = 0; i < NEO_VPD_IMAGEBYTES - 3; i++) if (brd->vpd[i] == 'S' && brd->vpd[i + 1] == 'N') strncpy(brd->serial_num, &brd->vpd[i + 3], 9); } }