/* ////////////////////////////////////////////////////////////////////////// */
/*  */
/* Copyright (c) Atmel Corporation.  All rights reserved. */
/*  */
/* Module Name:  wilc_wlan.c */
/*  */
/*  */
/* //////////////////////////////////////////////////////////////////////////// */

#include "wilc_wlan_if.h"
#include "wilc_wfi_netdevice.h"
#include "wilc_wlan_cfg.h"

/********************************************
 *
 *      Global
 *
 ********************************************/
extern wilc_hif_func_t hif_sdio;
extern wilc_hif_func_t hif_spi;
u32 wilc_get_chipid(u8 update);



typedef struct {
	int quit;

	/**
	 *      input interface functions
	 **/
	wilc_wlan_io_func_t io_func;

	/**
	 *      host interface functions
	 **/
	wilc_hif_func_t hif_func;

	/**
	 *      configuration interface functions
	 **/
	int cfg_frame_in_use;
	wilc_cfg_frame_t cfg_frame;
	u32 cfg_frame_offset;
	int cfg_seq_no;

	/**
	 *      RX buffer
	 **/
	#ifdef MEMORY_STATIC
	u8 *rx_buffer;
	u32 rx_buffer_offset;
	#endif
	/**
	 *      TX buffer
	 **/
	u8 *tx_buffer;
	u32 tx_buffer_offset;

	/**
	 *      TX queue
	 **/

	unsigned long txq_spinlock_flags;

	struct txq_entry_t *txq_head;
	struct txq_entry_t *txq_tail;
	int txq_entries;
	int txq_exit;

	/**
	 *      RX queue
	 **/
	struct rxq_entry_t *rxq_head;
	struct rxq_entry_t *rxq_tail;
	int rxq_entries;
	int rxq_exit;


} wilc_wlan_dev_t;

static wilc_wlan_dev_t g_wlan;

static inline void chip_allow_sleep(void);
static inline void chip_wakeup(void);
/********************************************
 *
 *      Debug
 *
 ********************************************/

static u32 dbgflag = N_INIT | N_ERR | N_INTR | N_TXQ | N_RXQ;

static void wilc_debug(u32 flag, char *fmt, ...)
{
	char buf[256];
	va_list args;

	if (flag & dbgflag) {
		va_start(args, fmt);
		vsprintf(buf, fmt, args);
		va_end(args);

		linux_wlan_dbg(buf);
	}
}

static CHIP_PS_STATE_T genuChipPSstate = CHIP_WAKEDUP;

/*acquire_bus() and release_bus() are made static inline functions*/
/*as a temporary workaround to fix a problem of receiving*/
/*unknown interrupt from FW*/
static inline void acquire_bus(BUS_ACQUIRE_T acquire)
{

	mutex_lock(&g_linux_wlan->hif_cs);
	#ifndef WILC_OPTIMIZE_SLEEP_INT
	if (genuChipPSstate != CHIP_WAKEDUP)
	#endif
	{
		if (acquire == ACQUIRE_AND_WAKEUP)
			chip_wakeup();
	}

}
static inline void release_bus(BUS_RELEASE_T release)
{
	#ifdef WILC_OPTIMIZE_SLEEP_INT
	if (release == RELEASE_ALLOW_SLEEP)
		chip_allow_sleep();
	#endif
	mutex_unlock(&g_linux_wlan->hif_cs);
}
/********************************************
 *
 *      Queue
 *
 ********************************************/

static void wilc_wlan_txq_remove(struct txq_entry_t *tqe)
{

	wilc_wlan_dev_t *p = &g_wlan;
	if (tqe == p->txq_head)	{

		p->txq_head = tqe->next;
		if (p->txq_head)
			p->txq_head->prev = NULL;


	} else if (tqe == p->txq_tail)	    {
		p->txq_tail = (tqe->prev);
		if (p->txq_tail)
			p->txq_tail->next = NULL;
	} else {
		tqe->prev->next = tqe->next;
		tqe->next->prev = tqe->prev;
	}
	p->txq_entries -= 1;

}

static struct txq_entry_t *wilc_wlan_txq_remove_from_head(void)
{
	struct txq_entry_t *tqe;
	wilc_wlan_dev_t *p = &g_wlan;
	unsigned long flags;

	spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);
	if (p->txq_head) {
		tqe = p->txq_head;
		p->txq_head = tqe->next;
		if (p->txq_head)
			p->txq_head->prev = NULL;

		p->txq_entries -= 1;




	} else {
		tqe = NULL;
	}
	spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
	return tqe;
}

static void wilc_wlan_txq_add_to_tail(struct txq_entry_t *tqe)
{
	wilc_wlan_dev_t *p = &g_wlan;
	unsigned long flags;
	spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);

	if (p->txq_head == NULL) {
		tqe->next = NULL;
		tqe->prev = NULL;
		p->txq_head = tqe;
		p->txq_tail = tqe;
	} else {
		tqe->next = NULL;
		tqe->prev = p->txq_tail;
		p->txq_tail->next = tqe;
		p->txq_tail = tqe;
	}
	p->txq_entries += 1;
	PRINT_D(TX_DBG, "Number of entries in TxQ = %d\n", p->txq_entries);

	spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);

	/**
	 *      wake up TX queue
	 **/
	PRINT_D(TX_DBG, "Wake the txq_handling\n");

	up(&g_linux_wlan->txq_event);
}

static int wilc_wlan_txq_add_to_head(struct txq_entry_t *tqe)
{
	wilc_wlan_dev_t *p = &g_wlan;
	unsigned long flags;
	if (linux_wlan_lock_timeout(&g_linux_wlan->txq_add_to_head_cs,
				    CFG_PKTS_TIMEOUT))
		return -1;

	spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);

	if (p->txq_head == NULL) {
		tqe->next = NULL;
		tqe->prev = NULL;
		p->txq_head = tqe;
		p->txq_tail = tqe;
	} else {
		tqe->next = p->txq_head;
		tqe->prev = NULL;
		p->txq_head->prev = tqe;
		p->txq_head = tqe;
	}
	p->txq_entries += 1;
	PRINT_D(TX_DBG, "Number of entries in TxQ = %d\n", p->txq_entries);

	spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
	up(&g_linux_wlan->txq_add_to_head_cs);


	/**
	 *      wake up TX queue
	 **/
	up(&g_linux_wlan->txq_event);
	PRINT_D(TX_DBG, "Wake up the txq_handler\n");

	return 0;

}

u32 Statisitcs_totalAcks = 0, Statisitcs_DroppedAcks = 0;

#ifdef	TCP_ACK_FILTER
struct Ack_session_info;
struct Ack_session_info {
	u32 Ack_seq_num;
	u32 Bigger_Ack_num;
	u16 src_port;
	u16 dst_port;
	u16 status;
};

typedef struct {
	u32 ack_num;
	u32 Session_index;
	struct txq_entry_t  *txqe;
} Pending_Acks_info_t /*Ack_info_t*/;




struct Ack_session_info *Free_head;
struct Ack_session_info *Alloc_head;

#define NOT_TCP_ACK			(-1)

#define MAX_TCP_SESSION		25
#define MAX_PENDING_ACKS		256
struct Ack_session_info Acks_keep_track_info[2 * MAX_TCP_SESSION];
Pending_Acks_info_t Pending_Acks_info[MAX_PENDING_ACKS];

u32 PendingAcks_arrBase;
u32 Opened_TCP_session;
u32 Pending_Acks;



static inline int Init_TCP_tracking(void)
{

	return 0;

}
static inline int add_TCP_track_session(u32 src_prt, u32 dst_prt, u32 seq)
{
	Acks_keep_track_info[Opened_TCP_session].Ack_seq_num = seq;
	Acks_keep_track_info[Opened_TCP_session].Bigger_Ack_num = 0;
	Acks_keep_track_info[Opened_TCP_session].src_port = src_prt;
	Acks_keep_track_info[Opened_TCP_session].dst_port = dst_prt;
	Opened_TCP_session++;

	PRINT_D(TCP_ENH, "TCP Session %d to Ack %d\n", Opened_TCP_session, seq);
	return 0;
}

static inline int Update_TCP_track_session(u32 index, u32 Ack)
{

	if (Ack > Acks_keep_track_info[index].Bigger_Ack_num)
		Acks_keep_track_info[index].Bigger_Ack_num = Ack;
	return 0;

}
static inline int add_TCP_Pending_Ack(u32 Ack, u32 Session_index, struct txq_entry_t  *txqe)
{
	Statisitcs_totalAcks++;
	if (Pending_Acks < MAX_PENDING_ACKS) {
		Pending_Acks_info[PendingAcks_arrBase + Pending_Acks].ack_num = Ack;
		Pending_Acks_info[PendingAcks_arrBase + Pending_Acks].txqe = txqe;
		Pending_Acks_info[PendingAcks_arrBase + Pending_Acks].Session_index = Session_index;
		txqe->tcp_PendingAck_index = PendingAcks_arrBase + Pending_Acks;
		Pending_Acks++;

	} else {

	}
	return 0;
}
static inline int remove_TCP_related(void)
{
	wilc_wlan_dev_t *p = &g_wlan;
	unsigned long flags;

	spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);

	spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
	return 0;
}

static inline int tcp_process(struct net_device *dev, struct txq_entry_t *tqe)
{
	int ret;
	u8 *eth_hdr_ptr;
	u8 *buffer = tqe->buffer;
	unsigned short h_proto;
	int i;
	wilc_wlan_dev_t *p = &g_wlan;
	unsigned long flags;
	perInterface_wlan_t *nic;
	struct wilc *wilc;

	nic = netdev_priv(dev);
	wilc = nic->wilc;

	spin_lock_irqsave(&wilc->txq_spinlock, flags);

	eth_hdr_ptr = &buffer[0];
	h_proto = ntohs(*((unsigned short *)&eth_hdr_ptr[12]));
	if (h_proto == 0x0800) { /* IP */
		u8 *ip_hdr_ptr;
		u8 protocol;

		ip_hdr_ptr = &buffer[ETHERNET_HDR_LEN];
		protocol = ip_hdr_ptr[9];


		if (protocol == 0x06) {
			u8 *tcp_hdr_ptr;
			u32 IHL, Total_Length, Data_offset;

			tcp_hdr_ptr = &ip_hdr_ptr[IP_HDR_LEN];
			IHL = (ip_hdr_ptr[0] & 0xf) << 2;
			Total_Length = (((u32)ip_hdr_ptr[2]) << 8) + ((u32)ip_hdr_ptr[3]);
			Data_offset = (((u32)tcp_hdr_ptr[12] & 0xf0) >> 2);
			if (Total_Length == (IHL + Data_offset)) { /*we want to recognize the clear Acks(packet only carry Ack infos not with data) so data size must be equal zero*/
				u32 seq_no, Ack_no;

				seq_no	= (((u32)tcp_hdr_ptr[4]) << 24) + (((u32)tcp_hdr_ptr[5]) << 16) + (((u32)tcp_hdr_ptr[6]) << 8) + ((u32)tcp_hdr_ptr[7]);

				Ack_no	= (((u32)tcp_hdr_ptr[8]) << 24) + (((u32)tcp_hdr_ptr[9]) << 16) + (((u32)tcp_hdr_ptr[10]) << 8) + ((u32)tcp_hdr_ptr[11]);


				for (i = 0; i < Opened_TCP_session; i++) {
					if (Acks_keep_track_info[i].Ack_seq_num == seq_no) {
						Update_TCP_track_session(i, Ack_no);
						break;
					}
				}
				if (i == Opened_TCP_session)
					add_TCP_track_session(0, 0, seq_no);

				add_TCP_Pending_Ack(Ack_no, i, tqe);


			}

		} else {
			ret = 0;
		}
	} else {
		ret = 0;
	}
	spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
	return ret;
}


static int wilc_wlan_txq_filter_dup_tcp_ack(struct net_device *dev)
{
	perInterface_wlan_t *nic;
	struct wilc *wilc;
	u32 i = 0;
	u32 Dropped = 0;
	wilc_wlan_dev_t *p = &g_wlan;

	nic = netdev_priv(dev);
	wilc = nic->wilc;

	spin_lock_irqsave(&wilc->txq_spinlock, p->txq_spinlock_flags);
	for (i = PendingAcks_arrBase; i < (PendingAcks_arrBase + Pending_Acks); i++) {
		if (Pending_Acks_info[i].ack_num < Acks_keep_track_info[Pending_Acks_info[i].Session_index].Bigger_Ack_num) {
			struct txq_entry_t *tqe;

			PRINT_D(TCP_ENH, "DROP ACK: %u\n", Pending_Acks_info[i].ack_num);
			tqe = Pending_Acks_info[i].txqe;
			if (tqe) {
				wilc_wlan_txq_remove(tqe);
				Statisitcs_DroppedAcks++;
				tqe->status = 1;                                /* mark the packet send */
				if (tqe->tx_complete_func)
					tqe->tx_complete_func(tqe->priv, tqe->status);
				kfree(tqe);
				Dropped++;
			}
		}
	}
	Pending_Acks = 0;
	Opened_TCP_session = 0;

	if (PendingAcks_arrBase == 0)
		PendingAcks_arrBase = MAX_TCP_SESSION;
	else
		PendingAcks_arrBase = 0;


	spin_unlock_irqrestore(&wilc->txq_spinlock, p->txq_spinlock_flags);

	while (Dropped > 0) {
		/*consume the semaphore count of the removed packet*/
		linux_wlan_lock_timeout(&wilc->txq_event, 1);
		Dropped--;
	}

	return 1;
}
#endif

bool EnableTCPAckFilter = false;

void Enable_TCP_ACK_Filter(bool value)
{
	EnableTCPAckFilter = value;
}

bool is_TCP_ACK_Filter_Enabled(void)
{
	return EnableTCPAckFilter;
}

static int wilc_wlan_txq_add_cfg_pkt(u8 *buffer, u32 buffer_size)
{
	wilc_wlan_dev_t *p = &g_wlan;
	struct txq_entry_t *tqe;

	PRINT_D(TX_DBG, "Adding config packet ...\n");
	if (p->quit) {
		PRINT_D(TX_DBG, "Return due to clear function\n");
		up(&g_linux_wlan->cfg_event);
		return 0;
	}

	tqe = kmalloc(sizeof(struct txq_entry_t), GFP_ATOMIC);
	if (tqe == NULL) {
		PRINT_ER("Failed to allocate memory\n");
		return 0;
	}

	tqe->type = WILC_CFG_PKT;
	tqe->buffer = buffer;
	tqe->buffer_size = buffer_size;
	tqe->tx_complete_func = NULL;
	tqe->priv = NULL;
#ifdef TCP_ACK_FILTER
	tqe->tcp_PendingAck_index = NOT_TCP_ACK;
#endif
	/**
	 *      Configuration packet always at the front
	 **/
	PRINT_D(TX_DBG, "Adding the config packet at the Queue tail\n");

	if (wilc_wlan_txq_add_to_head(tqe))
		return 0;
	return 1;
}

int wilc_wlan_txq_add_net_pkt(struct net_device *dev, void *priv, u8 *buffer,
			      u32 buffer_size, wilc_tx_complete_func_t func)
{
	wilc_wlan_dev_t *p = &g_wlan;
	struct txq_entry_t *tqe;

	if (p->quit)
		return 0;

	tqe = kmalloc(sizeof(struct txq_entry_t), GFP_ATOMIC);

	if (tqe == NULL)
		return 0;
	tqe->type = WILC_NET_PKT;
	tqe->buffer = buffer;
	tqe->buffer_size = buffer_size;
	tqe->tx_complete_func = func;
	tqe->priv = priv;

	PRINT_D(TX_DBG, "Adding mgmt packet at the Queue tail\n");
#ifdef TCP_ACK_FILTER
	tqe->tcp_PendingAck_index = NOT_TCP_ACK;
	if (is_TCP_ACK_Filter_Enabled())
		tcp_process(dev, tqe);
#endif
	wilc_wlan_txq_add_to_tail(tqe);
	/*return number of itemes in the queue*/
	return p->txq_entries;
}

int wilc_wlan_txq_add_mgmt_pkt(void *priv, u8 *buffer, u32 buffer_size, wilc_tx_complete_func_t func)
{

	wilc_wlan_dev_t *p = &g_wlan;
	struct txq_entry_t *tqe;

	if (p->quit)
		return 0;

	tqe = kmalloc(sizeof(struct txq_entry_t), GFP_KERNEL);

	if (tqe == NULL)
		return 0;
	tqe->type = WILC_MGMT_PKT;
	tqe->buffer = buffer;
	tqe->buffer_size = buffer_size;
	tqe->tx_complete_func = func;
	tqe->priv = priv;
#ifdef TCP_ACK_FILTER
	tqe->tcp_PendingAck_index = NOT_TCP_ACK;
#endif
	PRINT_D(TX_DBG, "Adding Network packet at the Queue tail\n");
	wilc_wlan_txq_add_to_tail(tqe);
	return 1;
}

static struct txq_entry_t *wilc_wlan_txq_get_first(void)
{
	wilc_wlan_dev_t *p = &g_wlan;
	struct txq_entry_t *tqe;
	unsigned long flags;

	spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);

	tqe = p->txq_head;

	spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);


	return tqe;
}

static struct txq_entry_t *wilc_wlan_txq_get_next(struct wilc *wilc,
						  struct txq_entry_t *tqe)
{
	unsigned long flags;
	spin_lock_irqsave(&wilc->txq_spinlock, flags);

	tqe = tqe->next;
	spin_unlock_irqrestore(&wilc->txq_spinlock, flags);


	return tqe;
}

static int wilc_wlan_rxq_add(struct wilc *wilc, struct rxq_entry_t *rqe)
{
	wilc_wlan_dev_t *p = &g_wlan;

	if (p->quit)
		return 0;

	mutex_lock(&wilc->rxq_cs);
	if (p->rxq_head == NULL) {
		PRINT_D(RX_DBG, "Add to Queue head\n");
		rqe->next = NULL;
		p->rxq_head = rqe;
		p->rxq_tail = rqe;
	} else {
		PRINT_D(RX_DBG, "Add to Queue tail\n");
		p->rxq_tail->next = rqe;
		rqe->next = NULL;
		p->rxq_tail = rqe;
	}
	p->rxq_entries += 1;
	PRINT_D(RX_DBG, "Number of queue entries: %d\n", p->rxq_entries);
	mutex_unlock(&wilc->rxq_cs);
	return p->rxq_entries;
}

static struct rxq_entry_t *wilc_wlan_rxq_remove(struct wilc *wilc)
{
	wilc_wlan_dev_t *p = &g_wlan;

	PRINT_D(RX_DBG, "Getting rxQ element\n");
	if (p->rxq_head) {
		struct rxq_entry_t *rqe;

		mutex_lock(&wilc->rxq_cs);
		rqe = p->rxq_head;
		p->rxq_head = p->rxq_head->next;
		p->rxq_entries -= 1;
		PRINT_D(RX_DBG, "RXQ entries decreased\n");
		mutex_unlock(&wilc->rxq_cs);
		return rqe;
	}
	PRINT_D(RX_DBG, "Nothing to get from Q\n");
	return NULL;
}


/********************************************
 *
 *      Power Save handle functions
 *
 ********************************************/



#ifdef WILC_OPTIMIZE_SLEEP_INT

static inline void chip_allow_sleep(void)
{
	u32 reg = 0;

	/* Clear bit 1 */
	g_wlan.hif_func.hif_read_reg(0xf0, &reg);

	g_wlan.hif_func.hif_write_reg(0xf0, reg & ~BIT(0));
}

static inline void chip_wakeup(void)
{
	u32 reg, clk_status_reg, trials = 0;
	u32 sleep_time;

	if ((g_wlan.io_func.io_type & 0x1) == HIF_SPI) {
		do {
			g_wlan.hif_func.hif_read_reg(1, &reg);
			/* Set bit 1 */
			g_wlan.hif_func.hif_write_reg(1, reg | BIT(1));

			/* Clear bit 1*/
			g_wlan.hif_func.hif_write_reg(1, reg & ~BIT(1));

			do {
				/* Wait for the chip to stabilize*/
				usleep_range(2 * 1000, 2 * 1000);
				/* Make sure chip is awake. This is an extra step that can be removed */
				/* later to avoid the bus access overhead */
				if ((wilc_get_chipid(true) == 0))
					wilc_debug(N_ERR, "Couldn't read chip id. Wake up failed\n");

			} while ((wilc_get_chipid(true) == 0) && ((++trials % 3) == 0));

		} while (wilc_get_chipid(true) == 0);
	} else if ((g_wlan.io_func.io_type & 0x1) == HIF_SDIO)	 {
		g_wlan.hif_func.hif_read_reg(0xf0, &reg);
		do {
			/* Set bit 1 */
			g_wlan.hif_func.hif_write_reg(0xf0, reg | BIT(0));

			/* Check the clock status */
			g_wlan.hif_func.hif_read_reg(0xf1, &clk_status_reg);

			/* in case of clocks off, wait 2ms, and check it again. */
			/* if still off, wait for another 2ms, for a total wait of 6ms. */
			/* If still off, redo the wake up sequence */
			while (((clk_status_reg & 0x1) == 0) && (((++trials) % 3) == 0)) {
				/* Wait for the chip to stabilize*/
				usleep_range(2 * 1000, 2 * 1000);

				/* Make sure chip is awake. This is an extra step that can be removed */
				/* later to avoid the bus access overhead */
				g_wlan.hif_func.hif_read_reg(0xf1, &clk_status_reg);

				if ((clk_status_reg & 0x1) == 0)
					wilc_debug(N_ERR, "clocks still OFF. Wake up failed\n");

			}
			/* in case of failure, Reset the wakeup bit to introduce a new edge on the next loop */
			if ((clk_status_reg & 0x1) == 0) {
				/* Reset bit 0 */
				g_wlan.hif_func.hif_write_reg(0xf0, reg &
							      (~BIT(0)));
			}
		} while ((clk_status_reg & 0x1) == 0);
	}


	if (genuChipPSstate == CHIP_SLEEPING_MANUAL) {
		g_wlan.hif_func.hif_read_reg(0x1C0C, &reg);
		reg &= ~BIT(0);
		g_wlan.hif_func.hif_write_reg(0x1C0C, reg);

		if (wilc_get_chipid(false) >= 0x1002b0) {
			/* Enable PALDO back right after wakeup */
			u32 val32;

			g_wlan.hif_func.hif_read_reg(0x1e1c, &val32);
			val32 |= BIT(6);
			g_wlan.hif_func.hif_write_reg(0x1e1c, val32);

			g_wlan.hif_func.hif_read_reg(0x1e9c, &val32);
			val32 |= BIT(6);
			g_wlan.hif_func.hif_write_reg(0x1e9c, val32);
		}
	}
	genuChipPSstate = CHIP_WAKEDUP;
}
#else
static inline void chip_wakeup(void)
{
	u32 reg, trials = 0;

	do {
		if ((g_wlan.io_func.io_type & 0x1) == HIF_SPI) {
			g_wlan.hif_func.hif_read_reg(1, &reg);
			/* Make sure bit 1 is 0 before we start. */
			g_wlan.hif_func.hif_write_reg(1, reg & ~BIT(1));
			/* Set bit 1 */
			g_wlan.hif_func.hif_write_reg(1, reg | BIT(1));
			/* Clear bit 1*/
			g_wlan.hif_func.hif_write_reg(1, reg  & ~BIT(1));
		} else if ((g_wlan.io_func.io_type & 0x1) == HIF_SDIO)	 {
			/* Make sure bit 0 is 0 before we start. */
			g_wlan.hif_func.hif_read_reg(0xf0, &reg);
			g_wlan.hif_func.hif_write_reg(0xf0, reg & ~BIT(0));
			/* Set bit 1 */
			g_wlan.hif_func.hif_write_reg(0xf0, reg | BIT(0));
			/* Clear bit 1 */
			g_wlan.hif_func.hif_write_reg(0xf0, reg  & ~BIT(0));
		}

		do {
			/* Wait for the chip to stabilize*/
			mdelay(3);

			/* Make sure chip is awake. This is an extra step that can be removed */
			/* later to avoid the bus access overhead */
			if ((wilc_get_chipid(true) == 0))
				wilc_debug(N_ERR, "Couldn't read chip id. Wake up failed\n");

		} while ((wilc_get_chipid(true) == 0) && ((++trials % 3) == 0));

	} while (wilc_get_chipid(true) == 0);

	if (genuChipPSstate == CHIP_SLEEPING_MANUAL) {
		g_wlan.hif_func.hif_read_reg(0x1C0C, &reg);
		reg &= ~BIT(0);
		g_wlan.hif_func.hif_write_reg(0x1C0C, reg);

		if (wilc_get_chipid(false) >= 0x1002b0) {
			/* Enable PALDO back right after wakeup */
			u32 val32;

			g_wlan.hif_func.hif_read_reg(0x1e1c, &val32);
			val32 |= BIT(6);
			g_wlan.hif_func.hif_write_reg(0x1e1c, val32);

			g_wlan.hif_func.hif_read_reg(0x1e9c, &val32);
			val32 |= BIT(6);
			g_wlan.hif_func.hif_write_reg(0x1e9c, val32);
		}
	}
	genuChipPSstate = CHIP_WAKEDUP;
}
#endif
void chip_sleep_manually(u32 u32SleepTime)
{
	if (genuChipPSstate != CHIP_WAKEDUP) {
		/* chip is already sleeping. Do nothing */
		return;
	}
	acquire_bus(ACQUIRE_ONLY);

#ifdef WILC_OPTIMIZE_SLEEP_INT
	chip_allow_sleep();
#endif

	/* Trigger the manual sleep interrupt */
	g_wlan.hif_func.hif_write_reg(0x10a8, 1);

	genuChipPSstate = CHIP_SLEEPING_MANUAL;
	release_bus(RELEASE_ONLY);

}


/********************************************
 *
 *      Tx, Rx queue handle functions
 *
 ********************************************/
int wilc_wlan_handle_txq(struct net_device *dev, u32 *pu32TxqCount)
{
	wilc_wlan_dev_t *p = (wilc_wlan_dev_t *)&g_wlan;
	int i, entries = 0;
	u32 sum;
	u32 reg;
	u8 *txb = p->tx_buffer;
	u32 offset = 0;
	int vmm_sz = 0;
	struct txq_entry_t *tqe;
	int ret = 0;
	int counter;
	int timeout;
	u32 vmm_table[WILC_VMM_TBL_SIZE];
	perInterface_wlan_t *nic;
	struct wilc *wilc;

	nic = netdev_priv(dev);
	wilc = nic->wilc;

	p->txq_exit = 0;
	do {
		if (p->quit)
			break;

		linux_wlan_lock_timeout(&wilc->txq_add_to_head_cs,
					CFG_PKTS_TIMEOUT);
#ifdef	TCP_ACK_FILTER
		wilc_wlan_txq_filter_dup_tcp_ack(dev);
#endif
		/**
		 *      build the vmm list
		 **/
		PRINT_D(TX_DBG, "Getting the head of the TxQ\n");
		tqe = wilc_wlan_txq_get_first();
		i = 0;
		sum = 0;
		do {
			if ((tqe != NULL) && (i < (WILC_VMM_TBL_SIZE - 1)) /* reserve last entry to 0 */) {

				if (tqe->type == WILC_CFG_PKT)
					vmm_sz = ETH_CONFIG_PKT_HDR_OFFSET;

				else if (tqe->type == WILC_NET_PKT)
					vmm_sz = ETH_ETHERNET_HDR_OFFSET;

				else
					vmm_sz = HOST_HDR_OFFSET;

				vmm_sz += tqe->buffer_size;
				PRINT_D(TX_DBG, "VMM Size before alignment = %d\n", vmm_sz);
				if (vmm_sz & 0x3) {                                                                                                     /* has to be word aligned */
					vmm_sz = (vmm_sz + 4) & ~0x3;
				}
				if ((sum + vmm_sz) > LINUX_TX_SIZE)
					break;

				PRINT_D(TX_DBG, "VMM Size AFTER alignment = %d\n", vmm_sz);
				vmm_table[i] = vmm_sz / 4;                                                                                /* table take the word size */
				PRINT_D(TX_DBG, "VMMTable entry size = %d\n", vmm_table[i]);

				if (tqe->type == WILC_CFG_PKT) {
					vmm_table[i] |= BIT(10);
					PRINT_D(TX_DBG, "VMMTable entry changed for CFG packet = %d\n", vmm_table[i]);
				}
#ifdef BIG_ENDIAN
				vmm_table[i] = BYTE_SWAP(vmm_table[i]);
#endif

				i++;
				sum += vmm_sz;
				PRINT_D(TX_DBG, "sum = %d\n", sum);
				tqe = wilc_wlan_txq_get_next(wilc, tqe);
			} else {
				break;
			}
		} while (1);

		if (i == 0) {           /* nothing in the queue */
			PRINT_D(TX_DBG, "Nothing in TX-Q\n");
			break;
		} else {
			PRINT_D(TX_DBG, "Mark the last entry in VMM table - number of previous entries = %d\n", i);
			vmm_table[i] = 0x0;     /* mark the last element to 0 */
		}
		acquire_bus(ACQUIRE_AND_WAKEUP);
		counter = 0;
		do {

			ret = p->hif_func.hif_read_reg(WILC_HOST_TX_CTRL, &reg);
			if (!ret) {
				wilc_debug(N_ERR, "[wilc txq]: fail can't read reg vmm_tbl_entry..\n");
				break;
			}

			if ((reg & 0x1) == 0) {
				/**
				 *      write to vmm table
				 **/
				PRINT_D(TX_DBG, "Writing VMM table ... with Size = %d\n", ((i + 1) * 4));
				break;
			} else {
				counter++;
				if (counter > 200) {
					counter = 0;
					PRINT_D(TX_DBG, "Looping in tx ctrl , forcce quit\n");
					ret = p->hif_func.hif_write_reg(WILC_HOST_TX_CTRL, 0);
					break;
				}
				/**
				 *      wait for vmm table is ready
				 **/
				PRINT_WRN(GENERIC_DBG, "[wilc txq]: warn, vmm table not clear yet, wait...\n");
				release_bus(RELEASE_ALLOW_SLEEP);
				usleep_range(3000, 3000);
				acquire_bus(ACQUIRE_AND_WAKEUP);
			}
		} while (!p->quit);

		if (!ret)
			goto _end_;

		timeout = 200;
		do {

			/**
			 * write to vmm table
			 **/
			ret = p->hif_func.hif_block_tx(WILC_VMM_TBL_RX_SHADOW_BASE, (u8 *)vmm_table, ((i + 1) * 4));
			if (!ret) {
				wilc_debug(N_ERR, "ERR block TX of VMM table.\n");
				break;
			}


			/**
			 * interrupt firmware
			 **/
			ret = p->hif_func.hif_write_reg(WILC_HOST_VMM_CTL, 0x2);
			if (!ret) {
				wilc_debug(N_ERR, "[wilc txq]: fail can't write reg host_vmm_ctl..\n");
				break;
			}

			/**
			 *      wait for confirm...
			 **/

			do {
				ret = p->hif_func.hif_read_reg(WILC_HOST_VMM_CTL, &reg);
				if (!ret) {
					wilc_debug(N_ERR, "[wilc txq]: fail can't read reg host_vmm_ctl..\n");
					break;
				}
				if ((reg >> 2) & 0x1) {
					/**
					 *      Get the entries
					 **/
					entries = ((reg >> 3) & 0x3f);
					break;
				} else {
					release_bus(RELEASE_ALLOW_SLEEP);
					usleep_range(3000, 3000);
					acquire_bus(ACQUIRE_AND_WAKEUP);
					PRINT_WRN(GENERIC_DBG, "Can't get VMM entery - reg = %2x\n", reg);
				}
			} while (--timeout);
			if (timeout <= 0) {
				ret = p->hif_func.hif_write_reg(WILC_HOST_VMM_CTL, 0x0);
				break;
			}

			if (!ret)
				break;

			if (entries == 0) {
				PRINT_WRN(GENERIC_DBG, "[wilc txq]: no more buffer in the chip (reg: %08x), retry later [[ %d, %x ]]\n", reg, i, vmm_table[i - 1]);

				/* undo the transaction. */
				ret = p->hif_func.hif_read_reg(WILC_HOST_TX_CTRL, &reg);
				if (!ret) {
					wilc_debug(N_ERR, "[wilc txq]: fail can't read reg WILC_HOST_TX_CTRL..\n");
					break;
				}
				reg &= ~BIT(0);
				ret = p->hif_func.hif_write_reg(WILC_HOST_TX_CTRL, reg);
				if (!ret) {
					wilc_debug(N_ERR, "[wilc txq]: fail can't write reg WILC_HOST_TX_CTRL..\n");
					break;
				}
				break;
			} else {
				break;
			}
		} while (1);

		if (!ret)
			goto _end_;

		if (entries == 0) {
			ret = WILC_TX_ERR_NO_BUF;
			goto _end_;
		}

		/* since copying data into txb takes some time, then
		 * allow the bus lock to be released let the RX task go. */
		release_bus(RELEASE_ALLOW_SLEEP);

		/**
		 *      Copy data to the TX buffer
		 **/
		offset = 0;
		i = 0;
		do {
			tqe = wilc_wlan_txq_remove_from_head();
			if (tqe != NULL && (vmm_table[i] != 0)) {
				u32 header, buffer_offset;

#ifdef BIG_ENDIAN
				vmm_table[i] = BYTE_SWAP(vmm_table[i]);
#endif
				vmm_sz = (vmm_table[i] & 0x3ff);        /* in word unit */
				vmm_sz *= 4;
				header = (tqe->type << 31) | (tqe->buffer_size << 15) | vmm_sz;
				if (tqe->type == WILC_MGMT_PKT)
					header |= BIT(30);
				else
					header &= ~BIT(30);

#ifdef BIG_ENDIAN
				header = BYTE_SWAP(header);
#endif
				memcpy(&txb[offset], &header, 4);
				if (tqe->type == WILC_CFG_PKT) {
					buffer_offset = ETH_CONFIG_PKT_HDR_OFFSET;
				}
				else if (tqe->type == WILC_NET_PKT) {
					char *pBSSID = ((struct tx_complete_data *)(tqe->priv))->pBssid;

					buffer_offset = ETH_ETHERNET_HDR_OFFSET;
					/* copy the bssid at the sart of the buffer */
					memcpy(&txb[offset + 4], pBSSID, 6);
				}
				else {
					buffer_offset = HOST_HDR_OFFSET;
				}

				memcpy(&txb[offset + buffer_offset], tqe->buffer, tqe->buffer_size);
				offset += vmm_sz;
				i++;
				tqe->status = 1;                                /* mark the packet send */
				if (tqe->tx_complete_func)
					tqe->tx_complete_func(tqe->priv, tqe->status);
				#ifdef TCP_ACK_FILTER
				if (tqe->tcp_PendingAck_index != NOT_TCP_ACK)
					Pending_Acks_info[tqe->tcp_PendingAck_index].txqe = NULL;
				#endif
				kfree(tqe);
			} else {
				break;
			}
		} while (--entries);

		/**
		 *      lock the bus
		 **/
		acquire_bus(ACQUIRE_AND_WAKEUP);

		ret = p->hif_func.hif_clear_int_ext(ENABLE_TX_VMM);
		if (!ret) {
			wilc_debug(N_ERR, "[wilc txq]: fail can't start tx VMM ...\n");
			goto _end_;
		}

		/**
		 *      transfer
		 **/
		ret = p->hif_func.hif_block_tx_ext(0, txb, offset);
		if (!ret) {
			wilc_debug(N_ERR, "[wilc txq]: fail can't block tx ext...\n");
			goto _end_;
		}

_end_:

		release_bus(RELEASE_ALLOW_SLEEP);
		if (ret != 1)
			break;
	} while (0);
	up(&wilc->txq_add_to_head_cs);

	p->txq_exit = 1;
	PRINT_D(TX_DBG, "THREAD: Exiting txq\n");
	/* return tx[]q count */
	*pu32TxqCount = p->txq_entries;
	return ret;
}

static void wilc_wlan_handle_rxq(struct wilc *wilc)
{
	wilc_wlan_dev_t *p = &g_wlan;
	int offset = 0, size, has_packet = 0;
	u8 *buffer;
	struct rxq_entry_t *rqe;

	p->rxq_exit = 0;




	do {
		if (p->quit) {
			PRINT_D(RX_DBG, "exit 1st do-while due to Clean_UP function\n");
			up(&wilc->cfg_event);
			break;
		}
		rqe = wilc_wlan_rxq_remove(wilc);
		if (rqe == NULL) {
			PRINT_D(RX_DBG, "nothing in the queue - exit 1st do-while\n");
			break;
		}
		buffer = rqe->buffer;
		size = rqe->buffer_size;
		PRINT_D(RX_DBG, "rxQ entery Size = %d - Address = %p\n", size, buffer);
		offset = 0;



		do {
			u32 header;
			u32 pkt_len, pkt_offset, tp_len;
			int is_cfg_packet;

			PRINT_D(RX_DBG, "In the 2nd do-while\n");
			memcpy(&header, &buffer[offset], 4);
#ifdef BIG_ENDIAN
			header = BYTE_SWAP(header);
#endif
			PRINT_D(RX_DBG, "Header = %04x - Offset = %d\n", header, offset);



			is_cfg_packet = (header >> 31) & 0x1;
			pkt_offset = (header >> 22) & 0x1ff;
			tp_len = (header >> 11) & 0x7ff;
			pkt_len = header & 0x7ff;

			if (pkt_len == 0 || tp_len == 0) {
				wilc_debug(N_RXQ, "[wilc rxq]: data corrupt, packet len or tp_len is 0 [%d][%d]\n", pkt_len, tp_len);
				break;
			}

			#define IS_MANAGMEMENT				0x100
			#define IS_MANAGMEMENT_CALLBACK			0x080
			#define IS_MGMT_STATUS_SUCCES			0x040


			if (pkt_offset & IS_MANAGMEMENT) {
				/* reset mgmt indicator bit, to use pkt_offeset in furthur calculations */
				pkt_offset &= ~(IS_MANAGMEMENT | IS_MANAGMEMENT_CALLBACK | IS_MGMT_STATUS_SUCCES);

				WILC_WFI_mgmt_rx(wilc, &buffer[offset + HOST_HDR_OFFSET], pkt_len);
			}
			else
			{

				if (!is_cfg_packet) {
					if (pkt_len > 0) {
						frmw_to_linux(wilc,
							      &buffer[offset],
							      pkt_len,
							      pkt_offset);
						has_packet = 1;
					}
				} else {
					wilc_cfg_rsp_t rsp;



					wilc_wlan_cfg_indicate_rx(&buffer[pkt_offset + offset], pkt_len, &rsp);
					if (rsp.type == WILC_CFG_RSP) {
						/**
						 *      wake up the waiting task...
						 **/
						PRINT_D(RX_DBG, "p->cfg_seq_no = %d - rsp.seq_no = %d\n", p->cfg_seq_no, rsp.seq_no);
						if (p->cfg_seq_no == rsp.seq_no)
							up(&wilc->cfg_event);
					} else if (rsp.type == WILC_CFG_RSP_STATUS) {
						/**
						 *      Call back to indicate status...
						 **/
						linux_wlan_mac_indicate(wilc, WILC_MAC_INDICATE_STATUS);

					} else if (rsp.type == WILC_CFG_RSP_SCAN) {
						linux_wlan_mac_indicate(wilc, WILC_MAC_INDICATE_SCAN);
					}
				}
			}
			offset += tp_len;
			if (offset >= size)
				break;
		} while (1);


#ifndef MEMORY_STATIC
		kfree(buffer);
#endif
		kfree(rqe);

		if (has_packet)
			linux_wlan_rx_complete();

	} while (1);

	p->rxq_exit = 1;
	PRINT_D(RX_DBG, "THREAD: Exiting RX thread\n");
}

/********************************************
 *
 *      Fast DMA Isr
 *
 ********************************************/
static void wilc_unknown_isr_ext(void)
{
	g_wlan.hif_func.hif_clear_int_ext(0);
}
static void wilc_pllupdate_isr_ext(u32 int_stats)
{

	int trials = 10;

	g_wlan.hif_func.hif_clear_int_ext(PLL_INT_CLR);

	/* Waiting for PLL */
	mdelay(WILC_PLL_TO);

	/* poll till read a valid data */
	while (!(ISWILC1000(wilc_get_chipid(true)) && --trials)) {
		PRINT_D(TX_DBG, "PLL update retrying\n");
		mdelay(1);
	}
}

static void wilc_sleeptimer_isr_ext(u32 int_stats1)
{
	g_wlan.hif_func.hif_clear_int_ext(SLEEP_INT_CLR);
#ifndef WILC_OPTIMIZE_SLEEP_INT
	genuChipPSstate = CHIP_SLEEPING_AUTO;
#endif
}

static void wilc_wlan_handle_isr_ext(struct wilc *wilc, u32 int_status)
{
	wilc_wlan_dev_t *p = &g_wlan;
#ifdef MEMORY_STATIC
	u32 offset = p->rx_buffer_offset;
#endif
	u8 *buffer = NULL;
	u32 size;
	u32 retries = 0;
	int ret = 0;
	struct rxq_entry_t *rqe;


	/**
	 *      Get the rx size
	 **/

	size = ((int_status & 0x7fff) << 2);

	while (!size && retries < 10) {
		u32 time = 0;
		/*looping more secure*/
		/*zero size make a crashe because the dma will not happen and that will block the firmware*/
		wilc_debug(N_ERR, "RX Size equal zero ... Trying to read it again for %d time\n", time++);
		p->hif_func.hif_read_size(&size);
		size = ((size & 0x7fff) << 2);
		retries++;

	}

	if (size > 0) {
#ifdef MEMORY_STATIC
		if (LINUX_RX_SIZE - offset < size)
			offset = 0;

		if (p->rx_buffer)
			buffer = &p->rx_buffer[offset];
		else {
			wilc_debug(N_ERR, "[wilc isr]: fail Rx Buffer is NULL...drop the packets (%d)\n", size);
			goto _end_;
		}

#else
		buffer = kmalloc(size, GFP_KERNEL);
		if (buffer == NULL) {
			wilc_debug(N_ERR, "[wilc isr]: fail alloc host memory...drop the packets (%d)\n", size);
			usleep_range(100 * 1000, 100 * 1000);
			goto _end_;
		}
#endif

		/**
		 *      clear the chip's interrupt	 after getting size some register getting corrupted after clear the interrupt
		 **/
		p->hif_func.hif_clear_int_ext(DATA_INT_CLR | ENABLE_RX_VMM);


		/**
		 * start transfer
		 **/
		ret = p->hif_func.hif_block_rx_ext(0, buffer, size);

		if (!ret) {
			wilc_debug(N_ERR, "[wilc isr]: fail block rx...\n");
			goto _end_;
		}
_end_:


		if (ret) {
#ifdef MEMORY_STATIC
			offset += size;
			p->rx_buffer_offset = offset;
#endif
			/**
			 *      add to rx queue
			 **/
			rqe = kmalloc(sizeof(struct rxq_entry_t), GFP_KERNEL);
			if (rqe != NULL) {
				rqe->buffer = buffer;
				rqe->buffer_size = size;
				PRINT_D(RX_DBG, "rxq entery Size= %d - Address = %p\n", rqe->buffer_size, rqe->buffer);
				wilc_wlan_rxq_add(wilc, rqe);
			}
		} else {
#ifndef MEMORY_STATIC
			kfree(buffer);
#endif
		}
	}
	wilc_wlan_handle_rxq(wilc);
}

void wilc_handle_isr(void *wilc)
{
	u32 int_status;

	acquire_bus(ACQUIRE_AND_WAKEUP);
	g_wlan.hif_func.hif_read_int(&int_status);

	if (int_status & PLL_INT_EXT)
		wilc_pllupdate_isr_ext(int_status);

	if (int_status & DATA_INT_EXT) {
		wilc_wlan_handle_isr_ext(wilc, int_status);
	#ifndef WILC_OPTIMIZE_SLEEP_INT
		/* Chip is up and talking*/
		genuChipPSstate = CHIP_WAKEDUP;
	#endif
	}
	if (int_status & SLEEP_INT_EXT)
		wilc_sleeptimer_isr_ext(int_status);

	if (!(int_status & (ALL_INT_EXT))) {
#ifdef WILC_SDIO
		PRINT_D(TX_DBG, ">> UNKNOWN_INTERRUPT - 0x%08x\n", int_status);
#endif
		wilc_unknown_isr_ext();
	}
	release_bus(RELEASE_ALLOW_SLEEP);
}

/********************************************
 *
 *      Firmware download
 *
 ********************************************/
int wilc_wlan_firmware_download(const u8 *buffer, u32 buffer_size)
{
	wilc_wlan_dev_t *p = &g_wlan;
	u32 offset;
	u32 addr, size, size2, blksz;
	u8 *dma_buffer;
	int ret = 0;

	blksz = BIT(12);
	/* Allocate a DMA coherent  buffer. */

	dma_buffer = kmalloc(blksz, GFP_KERNEL);
	if (dma_buffer == NULL) {
		/*EIO	5*/
		ret = -5;
		PRINT_ER("Can't allocate buffer for firmware download IO error\n ");
		goto _fail_1;
	}

	PRINT_D(INIT_DBG, "Downloading firmware size = %d ...\n", buffer_size);
	/**
	 *      load the firmware
	 **/
	offset = 0;
	do {
		memcpy(&addr, &buffer[offset], 4);
		memcpy(&size, &buffer[offset + 4], 4);
#ifdef BIG_ENDIAN
		addr = BYTE_SWAP(addr);
		size = BYTE_SWAP(size);
#endif
		acquire_bus(ACQUIRE_ONLY);
		offset += 8;
		while (((int)size) && (offset < buffer_size)) {
			if (size <= blksz)
				size2 = size;
			else
				size2 = blksz;
			/* Copy firmware into a DMA coherent buffer */
			memcpy(dma_buffer, &buffer[offset], size2);
			ret = p->hif_func.hif_block_tx(addr, dma_buffer, size2);
			if (!ret)
				break;

			addr += size2;
			offset += size2;
			size -= size2;
		}
		release_bus(RELEASE_ONLY);

		if (!ret) {
			/*EIO	5*/
			ret = -5;
			PRINT_ER("Can't download firmware IO error\n ");
			goto _fail_;
		}
		PRINT_D(INIT_DBG, "Offset = %d\n", offset);
	} while (offset < buffer_size);

_fail_:

	kfree(dma_buffer);

_fail_1:

	return (ret < 0) ? ret : 0;
}

/********************************************
 *
 *      Common
 *
 ********************************************/
int wilc_wlan_start(void)
{
	wilc_wlan_dev_t *p = &g_wlan;
	u32 reg = 0;
	int ret;
	u32 chipid;

	/**
	 *      Set the host interface
	 **/
	if (p->io_func.io_type == HIF_SDIO) {
		reg = 0;
		reg |= BIT(3); /* bug 4456 and 4557 */
	} else if (p->io_func.io_type == HIF_SPI) {
		reg = 1;
	}
	acquire_bus(ACQUIRE_ONLY);
	ret = p->hif_func.hif_write_reg(WILC_VMM_CORE_CFG, reg);
	if (!ret) {
		wilc_debug(N_ERR, "[wilc start]: fail write reg vmm_core_cfg...\n");
		release_bus(RELEASE_ONLY);
		/* EIO  5*/
		ret = -5;
		return ret;
	}
	reg = 0;
#ifdef WILC_SDIO_IRQ_GPIO
	reg |= WILC_HAVE_SDIO_IRQ_GPIO;
#endif

#ifdef WILC_DISABLE_PMU
#else
	reg |= WILC_HAVE_USE_PMU;
#endif

#ifdef WILC_SLEEP_CLK_SRC_XO
	reg |= WILC_HAVE_SLEEP_CLK_SRC_XO;
#elif defined WILC_SLEEP_CLK_SRC_RTC
	reg |= WILC_HAVE_SLEEP_CLK_SRC_RTC;
#endif

#ifdef WILC_EXT_PA_INV_TX_RX
	reg |= WILC_HAVE_EXT_PA_INV_TX_RX;
#endif

	reg |= WILC_HAVE_LEGACY_RF_SETTINGS;


/*Set oscillator frequency*/
#ifdef XTAL_24
	reg |= WILC_HAVE_XTAL_24;
#endif

/*Enable/Disable GPIO configuration for FW logs*/
#ifdef DISABLE_WILC_UART
	reg |= WILC_HAVE_DISABLE_WILC_UART;
#endif

	ret = p->hif_func.hif_write_reg(WILC_GP_REG_1, reg);
	if (!ret) {
		wilc_debug(N_ERR, "[wilc start]: fail write WILC_GP_REG_1 ...\n");
		release_bus(RELEASE_ONLY);
		/* EIO  5*/
		ret = -5;
		return ret;
	}

	/**
	 *      Bus related
	 **/
	p->hif_func.hif_sync_ext(NUM_INT_EXT);

	ret = p->hif_func.hif_read_reg(0x1000, &chipid);
	if (!ret) {
		wilc_debug(N_ERR, "[wilc start]: fail read reg 0x1000 ...\n");
		release_bus(RELEASE_ONLY);
		/* EIO  5*/
		ret = -5;
		return ret;
	}

	/**
	 *      Go...
	 **/


	p->hif_func.hif_read_reg(WILC_GLB_RESET_0, &reg);
	if ((reg & BIT(10)) == BIT(10)) {
		reg &= ~BIT(10);
		p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
		p->hif_func.hif_read_reg(WILC_GLB_RESET_0, &reg);
	}

	reg |= BIT(10);
	ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
	p->hif_func.hif_read_reg(WILC_GLB_RESET_0, &reg);
	release_bus(RELEASE_ONLY);

	return (ret < 0) ? ret : 0;
}

void wilc_wlan_global_reset(void)
{

	wilc_wlan_dev_t *p = &g_wlan;

	acquire_bus(ACQUIRE_AND_WAKEUP);
	p->hif_func.hif_write_reg(WILC_GLB_RESET_0, 0x0);
	release_bus(RELEASE_ONLY);
}
int wilc_wlan_stop(void)
{
	wilc_wlan_dev_t *p = &g_wlan;
	u32 reg = 0;
	int ret;
	u8 timeout = 10;
	/**
	 *      TODO: stop the firmware, need a re-download
	 **/
	acquire_bus(ACQUIRE_AND_WAKEUP);

	ret = p->hif_func.hif_read_reg(WILC_GLB_RESET_0, &reg);
	if (!ret) {
		PRINT_ER("Error while reading reg\n");
		release_bus(RELEASE_ALLOW_SLEEP);
		return ret;
	}

	reg &= ~BIT(10);


	ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
	if (!ret) {
		PRINT_ER("Error while writing reg\n");
		release_bus(RELEASE_ALLOW_SLEEP);
		return ret;
	}



	do {
		ret = p->hif_func.hif_read_reg(WILC_GLB_RESET_0, &reg);
		if (!ret) {
			PRINT_ER("Error while reading reg\n");
			release_bus(RELEASE_ALLOW_SLEEP);
			return ret;
		}
		PRINT_D(GENERIC_DBG, "Read RESET Reg %x : Retry%d\n", reg, timeout);
		/*Workaround to ensure that the chip is actually reset*/
		if ((reg & BIT(10))) {
			PRINT_D(GENERIC_DBG, "Bit 10 not reset : Retry %d\n", timeout);
			reg &= ~BIT(10);
			ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
			timeout--;
		} else {
			PRINT_D(GENERIC_DBG, "Bit 10 reset after : Retry %d\n", timeout);
			ret = p->hif_func.hif_read_reg(WILC_GLB_RESET_0, &reg);
			if (!ret) {
				PRINT_ER("Error while reading reg\n");
				release_bus(RELEASE_ALLOW_SLEEP);
				return ret;
			}
			PRINT_D(GENERIC_DBG, "Read RESET Reg %x : Retry%d\n", reg, timeout);
			break;
		}

	} while (timeout);
	reg = (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(8) | BIT(9) | BIT(26) |
	       BIT(29) | BIT(30) | BIT(31));

	p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
	reg = (u32)~BIT(10);

	ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);

	release_bus(RELEASE_ALLOW_SLEEP);

	return ret;
}

void wilc_wlan_cleanup(struct net_device *dev)
{
	wilc_wlan_dev_t *p = &g_wlan;
	struct txq_entry_t *tqe;
	struct rxq_entry_t *rqe;
	u32 reg = 0;
	int ret;
	perInterface_wlan_t *nic;
	struct wilc *wilc;

	nic = netdev_priv(dev);
	wilc = nic->wilc;

	p->quit = 1;
	do {
		tqe = wilc_wlan_txq_remove_from_head();
		if (tqe == NULL)
			break;
		if (tqe->tx_complete_func)
			tqe->tx_complete_func(tqe->priv, 0);
		kfree(tqe);
	} while (1);

	do {
		rqe = wilc_wlan_rxq_remove(wilc);
		if (rqe == NULL)
			break;
#ifndef MEMORY_STATIC
		kfree(rqe->buffer);
#endif
		kfree(rqe);
	} while (1);

	/**
	 *      clean up buffer
	 **/

	#ifdef MEMORY_STATIC
	kfree(p->rx_buffer);
	p->rx_buffer = NULL;
	#endif
	kfree(p->tx_buffer);

	acquire_bus(ACQUIRE_AND_WAKEUP);


	ret = p->hif_func.hif_read_reg(WILC_GP_REG_0, &reg);
	if (!ret) {
		PRINT_ER("Error while reading reg\n");
		release_bus(RELEASE_ALLOW_SLEEP);
	}
	PRINT_ER("Writing ABORT reg\n");
	ret = p->hif_func.hif_write_reg(WILC_GP_REG_0, (reg | ABORT_INT));
	if (!ret) {
		PRINT_ER("Error while writing reg\n");
		release_bus(RELEASE_ALLOW_SLEEP);
	}
	release_bus(RELEASE_ALLOW_SLEEP);
	/**
	 *      io clean up
	 **/
	p->hif_func.hif_deinit(NULL);

}

static int wilc_wlan_cfg_commit(int type, u32 drvHandler)
{
	wilc_wlan_dev_t *p = &g_wlan;
	wilc_cfg_frame_t *cfg = &p->cfg_frame;
	int total_len = p->cfg_frame_offset + 4 + DRIVER_HANDLER_SIZE;
	int seq_no = p->cfg_seq_no % 256;
	int driver_handler = (u32)drvHandler;


	/**
	 *      Set up header
	 **/
	if (type == WILC_CFG_SET) {             /* Set */
		cfg->wid_header[0] = 'W';
	} else {                                        /* Query */
		cfg->wid_header[0] = 'Q';
	}
	cfg->wid_header[1] = seq_no;    /* sequence number */
	cfg->wid_header[2] = (u8)total_len;
	cfg->wid_header[3] = (u8)(total_len >> 8);
	cfg->wid_header[4] = (u8)driver_handler;
	cfg->wid_header[5] = (u8)(driver_handler >> 8);
	cfg->wid_header[6] = (u8)(driver_handler >> 16);
	cfg->wid_header[7] = (u8)(driver_handler >> 24);
	p->cfg_seq_no = seq_no;

	/**
	 *      Add to TX queue
	 **/

	if (!wilc_wlan_txq_add_cfg_pkt(&cfg->wid_header[0], total_len))
		return -1;

	return 0;
}

int wilc_wlan_cfg_set(int start, u32 wid, u8 *buffer, u32 buffer_size,
		      int commit, u32 drvHandler)
{
	wilc_wlan_dev_t *p = &g_wlan;
	u32 offset;
	int ret_size;


	if (p->cfg_frame_in_use)
		return 0;

	if (start)
		p->cfg_frame_offset = 0;

	offset = p->cfg_frame_offset;
	ret_size = wilc_wlan_cfg_set_wid(p->cfg_frame.frame, offset, (u16)wid,
					 buffer, buffer_size);
	offset += ret_size;
	p->cfg_frame_offset = offset;

	if (commit) {
		PRINT_D(TX_DBG, "[WILC]PACKET Commit with sequence number %d\n", p->cfg_seq_no);
		PRINT_D(RX_DBG, "Processing cfg_set()\n");
		p->cfg_frame_in_use = 1;

		if (wilc_wlan_cfg_commit(WILC_CFG_SET, drvHandler))
			ret_size = 0;

		if (linux_wlan_lock_timeout(&g_linux_wlan->cfg_event,
					    CFG_PKTS_TIMEOUT)) {
			PRINT_D(TX_DBG, "Set Timed Out\n");
			ret_size = 0;
		}
		p->cfg_frame_in_use = 0;
		p->cfg_frame_offset = 0;
		p->cfg_seq_no += 1;

	}

	return ret_size;
}
int wilc_wlan_cfg_get(int start, u32 wid, int commit, u32 drvHandler)
{
	wilc_wlan_dev_t *p = &g_wlan;
	u32 offset;
	int ret_size;


	if (p->cfg_frame_in_use)
		return 0;

	if (start)
		p->cfg_frame_offset = 0;

	offset = p->cfg_frame_offset;
	ret_size = wilc_wlan_cfg_get_wid(p->cfg_frame.frame, offset, (u16)wid);
	offset += ret_size;
	p->cfg_frame_offset = offset;

	if (commit) {
		p->cfg_frame_in_use = 1;

		if (wilc_wlan_cfg_commit(WILC_CFG_QUERY, drvHandler))
			ret_size = 0;


		if (linux_wlan_lock_timeout(&g_linux_wlan->cfg_event,
					    CFG_PKTS_TIMEOUT)) {
			PRINT_D(TX_DBG, "Get Timed Out\n");
			ret_size = 0;
		}
		PRINT_D(GENERIC_DBG, "[WILC]Get Response received\n");
		p->cfg_frame_in_use = 0;
		p->cfg_frame_offset = 0;
		p->cfg_seq_no += 1;
	}

	return ret_size;
}

int wilc_wlan_cfg_get_val(u32 wid, u8 *buffer, u32 buffer_size)
{
	int ret;

	ret = wilc_wlan_cfg_get_wid_value((u16)wid, buffer, buffer_size);

	return ret;
}

void wilc_bus_set_max_speed(void)
{

	/* Increase bus speed to max possible.  */
	g_wlan.hif_func.hif_set_max_bus_speed();
}

void wilc_bus_set_default_speed(void)
{

	/* Restore bus speed to default.  */
	g_wlan.hif_func.hif_set_default_bus_speed();
}
u32 init_chip(void)
{
	u32 chipid;
	u32 reg, ret = 0;

	acquire_bus(ACQUIRE_ONLY);

	chipid = wilc_get_chipid(true);



	if ((chipid & 0xfff) != 0xa0) {
		/**
		 * Avoid booting from boot ROM. Make sure that Drive IRQN [SDIO platform]
		 * or SD_DAT3 [SPI platform] to ?1?
		 **/
		/* Set cortus reset register to register control. */
		ret = g_wlan.hif_func.hif_read_reg(0x1118, &reg);
		if (!ret) {
			wilc_debug(N_ERR, "[wilc start]: fail read reg 0x1118 ...\n");
			return ret;
		}
		reg |= BIT(0);
		ret = g_wlan.hif_func.hif_write_reg(0x1118, reg);
		if (!ret) {
			wilc_debug(N_ERR, "[wilc start]: fail write reg 0x1118 ...\n");
			return ret;
		}
		/**
		 * Write branch intruction to IRAM (0x71 trap) at location 0xFFFF0000
		 * (Cortus map) or C0000 (AHB map).
		 **/
		ret = g_wlan.hif_func.hif_write_reg(0xc0000, 0x71);
		if (!ret) {
			wilc_debug(N_ERR, "[wilc start]: fail write reg 0xc0000 ...\n");
			return ret;
		}
	}

	release_bus(RELEASE_ONLY);

	return ret;

}

u32 wilc_get_chipid(u8 update)
{
	static u32 chipid;
	/* SDIO can't read into global variables */
	/* Use this variable as a temp, then copy to the global */
	u32 tempchipid = 0;
	u32 rfrevid;

	if (chipid == 0 || update != 0) {
		g_wlan.hif_func.hif_read_reg(0x1000, &tempchipid);
		g_wlan.hif_func.hif_read_reg(0x13f4, &rfrevid);
		if (!ISWILC1000(tempchipid)) {
			chipid = 0;
			goto _fail_;
		}
		if (tempchipid == 0x1002a0) {
			if (rfrevid == 0x1) { /* 1002A0 */
			} else { /* if (rfrevid == 0x2) */   /* 1002A1 */
				tempchipid = 0x1002a1;
			}
		} else if (tempchipid == 0x1002b0) {
			if (rfrevid == 3) { /* 1002B0 */
			} else if (rfrevid == 4) { /* 1002B1 */
				tempchipid = 0x1002b1;
			} else { /* if(rfrevid == 5) */   /* 1002B2 */
				tempchipid = 0x1002b2;
			}
		} else {
		}

		chipid = tempchipid;
	}
_fail_:
	return chipid;
}

int wilc_wlan_init(wilc_wlan_inp_t *inp)
{

	int ret = 0;

	PRINT_D(INIT_DBG, "Initializing WILC_Wlan ...\n");

	memset((void *)&g_wlan, 0, sizeof(wilc_wlan_dev_t));

	/**
	 *      store the input
	 **/
	memcpy((void *)&g_wlan.io_func, (void *)&inp->io_func, sizeof(wilc_wlan_io_func_t));
	/***
	 *      host interface init
	 **/
	if ((inp->io_func.io_type & 0x1) == HIF_SDIO) {
		if (!hif_sdio.hif_init(inp, wilc_debug)) {
			/* EIO	5 */
			ret = -5;
			goto _fail_;
		}
		memcpy((void *)&g_wlan.hif_func, &hif_sdio, sizeof(wilc_hif_func_t));
	} else {
		if ((inp->io_func.io_type & 0x1) == HIF_SPI) {
			/**
			 *      TODO:
			 **/
			if (!hif_spi.hif_init(inp, wilc_debug)) {
				/* EIO	5 */
				ret = -5;
				goto _fail_;
			}
			memcpy((void *)&g_wlan.hif_func, &hif_spi, sizeof(wilc_hif_func_t));
		} else {
			/* EIO	5 */
			ret = -5;
			goto _fail_;
		}
	}

	/***
	 *      mac interface init
	 **/
	if (!wilc_wlan_cfg_init(wilc_debug)) {
		/* ENOBUFS	105 */
		ret = -105;
		goto _fail_;
	}

	/**
	 *      alloc tx, rx buffer
	 **/
	if (g_wlan.tx_buffer == NULL)
		g_wlan.tx_buffer = kmalloc(LINUX_TX_SIZE, GFP_KERNEL);
	PRINT_D(TX_DBG, "g_wlan.tx_buffer = %p\n", g_wlan.tx_buffer);

	if (g_wlan.tx_buffer == NULL) {
		/* ENOBUFS	105 */
		ret = -105;
		PRINT_ER("Can't allocate Tx Buffer");
		goto _fail_;
	}

/* rx_buffer is not used unless we activate USE_MEM STATIC which is not applicable, allocating such memory is useless*/
#if defined (MEMORY_STATIC)
	if (g_wlan.rx_buffer == NULL)
		g_wlan.rx_buffer = kmalloc(LINUX_RX_SIZE, GFP_KERNEL);
	PRINT_D(TX_DBG, "g_wlan.rx_buffer =%p\n", g_wlan.rx_buffer);
	if (g_wlan.rx_buffer == NULL) {
		/* ENOBUFS	105 */
		ret = -105;
		PRINT_ER("Can't allocate Rx Buffer");
		goto _fail_;
	}
#endif

	if (!init_chip()) {
		/* EIO	5 */
		ret = -5;
		goto _fail_;
	}
#ifdef	TCP_ACK_FILTER
	Init_TCP_tracking();
#endif

	return 1;

_fail_:

  #ifdef MEMORY_STATIC
	kfree(g_wlan.rx_buffer);
	g_wlan.rx_buffer = NULL;
  #endif
	kfree(g_wlan.tx_buffer);
	g_wlan.tx_buffer = NULL;

	return ret;

}

u16 Set_machw_change_vir_if(struct net_device *dev, bool bValue)
{
	u16 ret;
	u32 reg;
	perInterface_wlan_t *nic;
	struct wilc *wilc;

	nic = netdev_priv(dev);
	wilc = nic->wilc;

	/*Reset WILC_CHANGING_VIR_IF register to allow adding futrue keys to CE H/W*/
	mutex_lock(&wilc->hif_cs);
	ret = (&g_wlan)->hif_func.hif_read_reg(WILC_CHANGING_VIR_IF, &reg);
	if (!ret)
		PRINT_ER("Error while Reading reg WILC_CHANGING_VIR_IF\n");

	if (bValue)
		reg |= BIT(31);
	else
		reg &= ~BIT(31);

	ret = (&g_wlan)->hif_func.hif_write_reg(WILC_CHANGING_VIR_IF, reg);

	if (!ret)
		PRINT_ER("Error while writing reg WILC_CHANGING_VIR_IF\n");

	mutex_unlock(&wilc->hif_cs);

	return ret;
}