/* * Driver for CSR SiRFprimaII onboard UARTs. * * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company. * * Licensed under GPLv2 or later. */ #include <linux/module.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/init.h> #include <linux/sysrq.h> #include <linux/console.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial_core.h> #include <linux/serial.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/of_gpio.h> #include <linux/dmaengine.h> #include <linux/dma-direction.h> #include <linux/dma-mapping.h> #include <asm/irq.h> #include <asm/mach/irq.h> #include "sirfsoc_uart.h" static unsigned int sirfsoc_uart_pio_tx_chars(struct sirfsoc_uart_port *sirfport, int count); static unsigned int sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count); static struct uart_driver sirfsoc_uart_drv; static void sirfsoc_uart_tx_dma_complete_callback(void *param); static const struct sirfsoc_baudrate_to_regv baudrate_to_regv[] = { {4000000, 2359296}, {3500000, 1310721}, {3000000, 1572865}, {2500000, 1245186}, {2000000, 1572866}, {1500000, 1245188}, {1152000, 1638404}, {1000000, 1572869}, {921600, 1114120}, {576000, 1245196}, {500000, 1245198}, {460800, 1572876}, {230400, 1310750}, {115200, 1310781}, {57600, 1310843}, {38400, 1114328}, {19200, 1114545}, {9600, 1114979}, }; static struct sirfsoc_uart_port *sirf_ports[SIRFSOC_UART_NR]; static inline struct sirfsoc_uart_port *to_sirfport(struct uart_port *port) { return container_of(port, struct sirfsoc_uart_port, port); } static inline unsigned int sirfsoc_uart_tx_empty(struct uart_port *port) { unsigned long reg; struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status; reg = rd_regl(port, ureg->sirfsoc_tx_fifo_status); return (reg & ufifo_st->ff_empty(port)) ? TIOCSER_TEMT : 0; } static unsigned int sirfsoc_uart_get_mctrl(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; if (!sirfport->hw_flow_ctrl || !sirfport->ms_enabled) goto cts_asserted; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { if (!(rd_regl(port, ureg->sirfsoc_afc_ctrl) & SIRFUART_AFC_CTS_STATUS)) goto cts_asserted; else goto cts_deasserted; } else { if (!gpio_get_value(sirfport->cts_gpio)) goto cts_asserted; else goto cts_deasserted; } cts_deasserted: return TIOCM_CAR | TIOCM_DSR; cts_asserted: return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS; } static void sirfsoc_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; unsigned int assert = mctrl & TIOCM_RTS; unsigned int val = assert ? SIRFUART_AFC_CTRL_RX_THD : 0x0; unsigned int current_val; if (mctrl & TIOCM_LOOP) { if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) wr_regl(port, ureg->sirfsoc_line_ctrl, rd_regl(port, ureg->sirfsoc_line_ctrl) | SIRFUART_LOOP_BACK); else wr_regl(port, ureg->sirfsoc_mode1, rd_regl(port, ureg->sirfsoc_mode1) | SIRFSOC_USP_LOOP_BACK_CTRL); } else { if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) wr_regl(port, ureg->sirfsoc_line_ctrl, rd_regl(port, ureg->sirfsoc_line_ctrl) & ~SIRFUART_LOOP_BACK); else wr_regl(port, ureg->sirfsoc_mode1, rd_regl(port, ureg->sirfsoc_mode1) & ~SIRFSOC_USP_LOOP_BACK_CTRL); } if (!sirfport->hw_flow_ctrl || !sirfport->ms_enabled) return; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { current_val = rd_regl(port, ureg->sirfsoc_afc_ctrl) & ~0xFF; val |= current_val; wr_regl(port, ureg->sirfsoc_afc_ctrl, val); } else { if (!val) gpio_set_value(sirfport->rts_gpio, 1); else gpio_set_value(sirfport->rts_gpio, 0); } } static void sirfsoc_uart_stop_tx(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; if (sirfport->tx_dma_chan) { if (sirfport->tx_dma_state == TX_DMA_RUNNING) { dmaengine_pause(sirfport->tx_dma_chan); sirfport->tx_dma_state = TX_DMA_PAUSE; } else { if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) & ~uint_en->sirfsoc_txfifo_empty_en); else wr_regl(port, ureg->sirfsoc_int_en_clr_reg, uint_en->sirfsoc_txfifo_empty_en); } } else { if (sirfport->uart_reg->uart_type == SIRF_USP_UART) wr_regl(port, ureg->sirfsoc_tx_rx_en, rd_regl(port, ureg->sirfsoc_tx_rx_en) & ~SIRFUART_TX_EN); if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) & ~uint_en->sirfsoc_txfifo_empty_en); else wr_regl(port, ureg->sirfsoc_int_en_clr_reg, uint_en->sirfsoc_txfifo_empty_en); } } static void sirfsoc_uart_tx_with_dma(struct sirfsoc_uart_port *sirfport) { struct uart_port *port = &sirfport->port; struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; struct circ_buf *xmit = &port->state->xmit; unsigned long tran_size; unsigned long tran_start; unsigned long pio_tx_size; tran_size = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE); tran_start = (unsigned long)(xmit->buf + xmit->tail); if (uart_circ_empty(xmit) || uart_tx_stopped(port) || !tran_size) return; if (sirfport->tx_dma_state == TX_DMA_PAUSE) { dmaengine_resume(sirfport->tx_dma_chan); return; } if (sirfport->tx_dma_state == TX_DMA_RUNNING) return; if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg)& ~(uint_en->sirfsoc_txfifo_empty_en)); else wr_regl(port, ureg->sirfsoc_int_en_clr_reg, uint_en->sirfsoc_txfifo_empty_en); /* * DMA requires buffer address and buffer length are both aligned with * 4 bytes, so we use PIO for * 1. if address is not aligned with 4bytes, use PIO for the first 1~3 * bytes, and move to DMA for the left part aligned with 4bytes * 2. if buffer length is not aligned with 4bytes, use DMA for aligned * part first, move to PIO for the left 1~3 bytes */ if (tran_size < 4 || BYTES_TO_ALIGN(tran_start)) { wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP); wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl)| SIRFUART_IO_MODE); if (BYTES_TO_ALIGN(tran_start)) { pio_tx_size = sirfsoc_uart_pio_tx_chars(sirfport, BYTES_TO_ALIGN(tran_start)); tran_size -= pio_tx_size; } if (tran_size < 4) sirfsoc_uart_pio_tx_chars(sirfport, tran_size); if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg)| uint_en->sirfsoc_txfifo_empty_en); else wr_regl(port, ureg->sirfsoc_int_en_reg, uint_en->sirfsoc_txfifo_empty_en); wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START); } else { /* tx transfer mode switch into dma mode */ wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP); wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl)& ~SIRFUART_IO_MODE); wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START); tran_size &= ~(0x3); sirfport->tx_dma_addr = dma_map_single(port->dev, xmit->buf + xmit->tail, tran_size, DMA_TO_DEVICE); sirfport->tx_dma_desc = dmaengine_prep_slave_single( sirfport->tx_dma_chan, sirfport->tx_dma_addr, tran_size, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!sirfport->tx_dma_desc) { dev_err(port->dev, "DMA prep slave single fail\n"); return; } sirfport->tx_dma_desc->callback = sirfsoc_uart_tx_dma_complete_callback; sirfport->tx_dma_desc->callback_param = (void *)sirfport; sirfport->transfer_size = tran_size; dmaengine_submit(sirfport->tx_dma_desc); dma_async_issue_pending(sirfport->tx_dma_chan); sirfport->tx_dma_state = TX_DMA_RUNNING; } } static void sirfsoc_uart_start_tx(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; if (sirfport->tx_dma_chan) sirfsoc_uart_tx_with_dma(sirfport); else { if (sirfport->uart_reg->uart_type == SIRF_USP_UART) wr_regl(port, ureg->sirfsoc_tx_rx_en, rd_regl(port, ureg->sirfsoc_tx_rx_en) | SIRFUART_TX_EN); wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP); sirfsoc_uart_pio_tx_chars(sirfport, port->fifosize); wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START); if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg)| uint_en->sirfsoc_txfifo_empty_en); else wr_regl(port, ureg->sirfsoc_int_en_reg, uint_en->sirfsoc_txfifo_empty_en); } } static void sirfsoc_uart_stop_rx(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0); if (sirfport->rx_dma_chan) { if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) & ~(SIRFUART_RX_DMA_INT_EN(uint_en, sirfport->uart_reg->uart_type) | uint_en->sirfsoc_rx_done_en)); else wr_regl(port, ureg->sirfsoc_int_en_clr_reg, SIRFUART_RX_DMA_INT_EN(uint_en, sirfport->uart_reg->uart_type)| uint_en->sirfsoc_rx_done_en); dmaengine_terminate_all(sirfport->rx_dma_chan); } else { if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg)& ~(SIRFUART_RX_IO_INT_EN(uint_en, sirfport->uart_reg->uart_type))); else wr_regl(port, ureg->sirfsoc_int_en_clr_reg, SIRFUART_RX_IO_INT_EN(uint_en, sirfport->uart_reg->uart_type)); } } static void sirfsoc_uart_disable_ms(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; if (!sirfport->hw_flow_ctrl) return; sirfport->ms_enabled = false; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { wr_regl(port, ureg->sirfsoc_afc_ctrl, rd_regl(port, ureg->sirfsoc_afc_ctrl) & ~0x3FF); if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg)& ~uint_en->sirfsoc_cts_en); else wr_regl(port, ureg->sirfsoc_int_en_clr_reg, uint_en->sirfsoc_cts_en); } else disable_irq(gpio_to_irq(sirfport->cts_gpio)); } static irqreturn_t sirfsoc_uart_usp_cts_handler(int irq, void *dev_id) { struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)dev_id; struct uart_port *port = &sirfport->port; spin_lock(&port->lock); if (gpio_is_valid(sirfport->cts_gpio) && sirfport->ms_enabled) uart_handle_cts_change(port, !gpio_get_value(sirfport->cts_gpio)); spin_unlock(&port->lock); return IRQ_HANDLED; } static void sirfsoc_uart_enable_ms(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; if (!sirfport->hw_flow_ctrl) return; sirfport->ms_enabled = true; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { wr_regl(port, ureg->sirfsoc_afc_ctrl, rd_regl(port, ureg->sirfsoc_afc_ctrl) | SIRFUART_AFC_TX_EN | SIRFUART_AFC_RX_EN | SIRFUART_AFC_CTRL_RX_THD); if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) | uint_en->sirfsoc_cts_en); else wr_regl(port, ureg->sirfsoc_int_en_reg, uint_en->sirfsoc_cts_en); } else enable_irq(gpio_to_irq(sirfport->cts_gpio)); } static void sirfsoc_uart_break_ctl(struct uart_port *port, int break_state) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { unsigned long ulcon = rd_regl(port, ureg->sirfsoc_line_ctrl); if (break_state) ulcon |= SIRFUART_SET_BREAK; else ulcon &= ~SIRFUART_SET_BREAK; wr_regl(port, ureg->sirfsoc_line_ctrl, ulcon); } } static unsigned int sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status; unsigned int ch, rx_count = 0; struct tty_struct *tty; tty = tty_port_tty_get(&port->state->port); if (!tty) return -ENODEV; while (!(rd_regl(port, ureg->sirfsoc_rx_fifo_status) & ufifo_st->ff_empty(port))) { ch = rd_regl(port, ureg->sirfsoc_rx_fifo_data) | SIRFUART_DUMMY_READ; if (unlikely(uart_handle_sysrq_char(port, ch))) continue; uart_insert_char(port, 0, 0, ch, TTY_NORMAL); rx_count++; if (rx_count >= max_rx_count) break; } port->icount.rx += rx_count; return rx_count; } static unsigned int sirfsoc_uart_pio_tx_chars(struct sirfsoc_uart_port *sirfport, int count) { struct uart_port *port = &sirfport->port; struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status; struct circ_buf *xmit = &port->state->xmit; unsigned int num_tx = 0; while (!uart_circ_empty(xmit) && !(rd_regl(port, ureg->sirfsoc_tx_fifo_status) & ufifo_st->ff_full(port)) && count--) { wr_regl(port, ureg->sirfsoc_tx_fifo_data, xmit->buf[xmit->tail]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); port->icount.tx++; num_tx++; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); return num_tx; } static void sirfsoc_uart_tx_dma_complete_callback(void *param) { struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)param; struct uart_port *port = &sirfport->port; struct circ_buf *xmit = &port->state->xmit; unsigned long flags; spin_lock_irqsave(&port->lock, flags); xmit->tail = (xmit->tail + sirfport->transfer_size) & (UART_XMIT_SIZE - 1); port->icount.tx += sirfport->transfer_size; if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (sirfport->tx_dma_addr) dma_unmap_single(port->dev, sirfport->tx_dma_addr, sirfport->transfer_size, DMA_TO_DEVICE); sirfport->tx_dma_state = TX_DMA_IDLE; sirfsoc_uart_tx_with_dma(sirfport); spin_unlock_irqrestore(&port->lock, flags); } static irqreturn_t sirfsoc_uart_isr(int irq, void *dev_id) { unsigned long intr_status; unsigned long cts_status; unsigned long flag = TTY_NORMAL; struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)dev_id; struct uart_port *port = &sirfport->port; struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status; struct sirfsoc_int_status *uint_st = &sirfport->uart_reg->uart_int_st; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; struct uart_state *state = port->state; struct circ_buf *xmit = &port->state->xmit; spin_lock(&port->lock); intr_status = rd_regl(port, ureg->sirfsoc_int_st_reg); wr_regl(port, ureg->sirfsoc_int_st_reg, intr_status); intr_status &= rd_regl(port, ureg->sirfsoc_int_en_reg); if (unlikely(intr_status & (SIRFUART_ERR_INT_STAT(uint_st, sirfport->uart_reg->uart_type)))) { if (intr_status & uint_st->sirfsoc_rxd_brk) { port->icount.brk++; if (uart_handle_break(port)) goto recv_char; } if (intr_status & uint_st->sirfsoc_rx_oflow) { port->icount.overrun++; flag = TTY_OVERRUN; } if (intr_status & uint_st->sirfsoc_frm_err) { port->icount.frame++; flag = TTY_FRAME; } if (intr_status & uint_st->sirfsoc_parity_err) { port->icount.parity++; flag = TTY_PARITY; } wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_RESET); wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0); wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_START); intr_status &= port->read_status_mask; uart_insert_char(port, intr_status, uint_en->sirfsoc_rx_oflow_en, 0, flag); } recv_char: if ((sirfport->uart_reg->uart_type == SIRF_REAL_UART) && (intr_status & SIRFUART_CTS_INT_ST(uint_st)) && !sirfport->tx_dma_state) { cts_status = rd_regl(port, ureg->sirfsoc_afc_ctrl) & SIRFUART_AFC_CTS_STATUS; if (cts_status != 0) cts_status = 0; else cts_status = 1; uart_handle_cts_change(port, cts_status); wake_up_interruptible(&state->port.delta_msr_wait); } if (!sirfport->rx_dma_chan && (intr_status & SIRFUART_RX_IO_INT_ST(uint_st))) { /* * chip will trigger continuous RX_TIMEOUT interrupt * in RXFIFO empty and not trigger if RXFIFO recevice * data in limit time, original method use RX_TIMEOUT * will trigger lots of useless interrupt in RXFIFO * empty.RXFIFO received one byte will trigger RX_DONE * interrupt.use RX_DONE to wait for data received * into RXFIFO, use RX_THD/RX_FULL for lots data receive * and use RX_TIMEOUT for the last left data. */ if (intr_status & uint_st->sirfsoc_rx_done) { if (!sirfport->is_atlas7) { wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) & ~(uint_en->sirfsoc_rx_done_en)); wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) | (uint_en->sirfsoc_rx_timeout_en)); } else { wr_regl(port, ureg->sirfsoc_int_en_clr_reg, uint_en->sirfsoc_rx_done_en); wr_regl(port, ureg->sirfsoc_int_en_reg, uint_en->sirfsoc_rx_timeout_en); } } else { if (intr_status & uint_st->sirfsoc_rx_timeout) { if (!sirfport->is_atlas7) { wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) & ~(uint_en->sirfsoc_rx_timeout_en)); wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) | (uint_en->sirfsoc_rx_done_en)); } else { wr_regl(port, ureg->sirfsoc_int_en_clr_reg, uint_en->sirfsoc_rx_timeout_en); wr_regl(port, ureg->sirfsoc_int_en_reg, uint_en->sirfsoc_rx_done_en); } } sirfsoc_uart_pio_rx_chars(port, port->fifosize); } } spin_unlock(&port->lock); tty_flip_buffer_push(&state->port); spin_lock(&port->lock); if (intr_status & uint_st->sirfsoc_txfifo_empty) { if (sirfport->tx_dma_chan) sirfsoc_uart_tx_with_dma(sirfport); else { if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { spin_unlock(&port->lock); return IRQ_HANDLED; } else { sirfsoc_uart_pio_tx_chars(sirfport, port->fifosize); if ((uart_circ_empty(xmit)) && (rd_regl(port, ureg->sirfsoc_tx_fifo_status) & ufifo_st->ff_empty(port))) sirfsoc_uart_stop_tx(port); } } } spin_unlock(&port->lock); return IRQ_HANDLED; } static void sirfsoc_uart_rx_dma_complete_callback(void *param) { } /* submit rx dma task into dmaengine */ static void sirfsoc_uart_start_next_rx_dma(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) & ~SIRFUART_IO_MODE); sirfport->rx_dma_items.xmit.tail = sirfport->rx_dma_items.xmit.head = 0; sirfport->rx_dma_items.desc = dmaengine_prep_dma_cyclic(sirfport->rx_dma_chan, sirfport->rx_dma_items.dma_addr, SIRFSOC_RX_DMA_BUF_SIZE, SIRFSOC_RX_DMA_BUF_SIZE / 2, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (IS_ERR_OR_NULL(sirfport->rx_dma_items.desc)) { dev_err(port->dev, "DMA slave single fail\n"); return; } sirfport->rx_dma_items.desc->callback = sirfsoc_uart_rx_dma_complete_callback; sirfport->rx_dma_items.desc->callback_param = sirfport; sirfport->rx_dma_items.cookie = dmaengine_submit(sirfport->rx_dma_items.desc); dma_async_issue_pending(sirfport->rx_dma_chan); if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) | SIRFUART_RX_DMA_INT_EN(uint_en, sirfport->uart_reg->uart_type)); else wr_regl(port, ureg->sirfsoc_int_en_reg, SIRFUART_RX_DMA_INT_EN(uint_en, sirfport->uart_reg->uart_type)); } static unsigned int sirfsoc_usp_calc_sample_div(unsigned long set_rate, unsigned long ioclk_rate, unsigned long *sample_reg) { unsigned long min_delta = ~0UL; unsigned short sample_div; unsigned long ioclk_div = 0; unsigned long temp_delta; for (sample_div = SIRF_USP_MIN_SAMPLE_DIV; sample_div <= SIRF_MAX_SAMPLE_DIV; sample_div++) { temp_delta = ioclk_rate - (ioclk_rate + (set_rate * sample_div) / 2) / (set_rate * sample_div) * set_rate * sample_div; temp_delta = (temp_delta > 0) ? temp_delta : -temp_delta; if (temp_delta < min_delta) { ioclk_div = (2 * ioclk_rate / (set_rate * sample_div) + 1) / 2 - 1; if (ioclk_div > SIRF_IOCLK_DIV_MAX) continue; min_delta = temp_delta; *sample_reg = sample_div; if (!temp_delta) break; } } return ioclk_div; } static unsigned int sirfsoc_uart_calc_sample_div(unsigned long baud_rate, unsigned long ioclk_rate, unsigned long *set_baud) { unsigned long min_delta = ~0UL; unsigned short sample_div; unsigned int regv = 0; unsigned long ioclk_div; unsigned long baud_tmp; int temp_delta; for (sample_div = SIRF_MIN_SAMPLE_DIV; sample_div <= SIRF_MAX_SAMPLE_DIV; sample_div++) { ioclk_div = (ioclk_rate / (baud_rate * (sample_div + 1))) - 1; if (ioclk_div > SIRF_IOCLK_DIV_MAX) continue; baud_tmp = ioclk_rate / ((ioclk_div + 1) * (sample_div + 1)); temp_delta = baud_tmp - baud_rate; temp_delta = (temp_delta > 0) ? temp_delta : -temp_delta; if (temp_delta < min_delta) { regv = regv & (~SIRF_IOCLK_DIV_MASK); regv = regv | ioclk_div; regv = regv & (~SIRF_SAMPLE_DIV_MASK); regv = regv | (sample_div << SIRF_SAMPLE_DIV_SHIFT); min_delta = temp_delta; *set_baud = baud_tmp; } } return regv; } static void sirfsoc_uart_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; unsigned long config_reg = 0; unsigned long baud_rate; unsigned long set_baud; unsigned long flags; unsigned long ic; unsigned int clk_div_reg = 0; unsigned long txfifo_op_reg, ioclk_rate; unsigned long rx_time_out; int threshold_div; u32 data_bit_len, stop_bit_len, len_val; unsigned long sample_div_reg = 0xf; ioclk_rate = port->uartclk; switch (termios->c_cflag & CSIZE) { default: case CS8: data_bit_len = 8; config_reg |= SIRFUART_DATA_BIT_LEN_8; break; case CS7: data_bit_len = 7; config_reg |= SIRFUART_DATA_BIT_LEN_7; break; case CS6: data_bit_len = 6; config_reg |= SIRFUART_DATA_BIT_LEN_6; break; case CS5: data_bit_len = 5; config_reg |= SIRFUART_DATA_BIT_LEN_5; break; } if (termios->c_cflag & CSTOPB) { config_reg |= SIRFUART_STOP_BIT_LEN_2; stop_bit_len = 2; } else stop_bit_len = 1; spin_lock_irqsave(&port->lock, flags); port->read_status_mask = uint_en->sirfsoc_rx_oflow_en; port->ignore_status_mask = 0; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { if (termios->c_iflag & INPCK) port->read_status_mask |= uint_en->sirfsoc_frm_err_en | uint_en->sirfsoc_parity_err_en; } else { if (termios->c_iflag & INPCK) port->read_status_mask |= uint_en->sirfsoc_frm_err_en; } if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) port->read_status_mask |= uint_en->sirfsoc_rxd_brk_en; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { if (termios->c_iflag & IGNPAR) port->ignore_status_mask |= uint_en->sirfsoc_frm_err_en | uint_en->sirfsoc_parity_err_en; if (termios->c_cflag & PARENB) { if (termios->c_cflag & CMSPAR) { if (termios->c_cflag & PARODD) config_reg |= SIRFUART_STICK_BIT_MARK; else config_reg |= SIRFUART_STICK_BIT_SPACE; } else { if (termios->c_cflag & PARODD) config_reg |= SIRFUART_STICK_BIT_ODD; else config_reg |= SIRFUART_STICK_BIT_EVEN; } } } else { if (termios->c_iflag & IGNPAR) port->ignore_status_mask |= uint_en->sirfsoc_frm_err_en; if (termios->c_cflag & PARENB) dev_warn(port->dev, "USP-UART not support parity err\n"); } if (termios->c_iflag & IGNBRK) { port->ignore_status_mask |= uint_en->sirfsoc_rxd_brk_en; if (termios->c_iflag & IGNPAR) port->ignore_status_mask |= uint_en->sirfsoc_rx_oflow_en; } if ((termios->c_cflag & CREAD) == 0) port->ignore_status_mask |= SIRFUART_DUMMY_READ; /* Hardware Flow Control Settings */ if (UART_ENABLE_MS(port, termios->c_cflag)) { if (!sirfport->ms_enabled) sirfsoc_uart_enable_ms(port); } else { if (sirfport->ms_enabled) sirfsoc_uart_disable_ms(port); } baud_rate = uart_get_baud_rate(port, termios, old, 0, 4000000); if (ioclk_rate == 150000000) { for (ic = 0; ic < SIRF_BAUD_RATE_SUPPORT_NR; ic++) if (baud_rate == baudrate_to_regv[ic].baud_rate) clk_div_reg = baudrate_to_regv[ic].reg_val; } set_baud = baud_rate; if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { if (unlikely(clk_div_reg == 0)) clk_div_reg = sirfsoc_uart_calc_sample_div(baud_rate, ioclk_rate, &set_baud); wr_regl(port, ureg->sirfsoc_divisor, clk_div_reg); } else { clk_div_reg = sirfsoc_usp_calc_sample_div(baud_rate, ioclk_rate, &sample_div_reg); sample_div_reg--; set_baud = ((ioclk_rate / (clk_div_reg+1) - 1) / (sample_div_reg + 1)); /* setting usp mode 2 */ len_val = ((1 << SIRFSOC_USP_MODE2_RXD_DELAY_OFFSET) | (1 << SIRFSOC_USP_MODE2_TXD_DELAY_OFFSET)); len_val |= ((clk_div_reg & SIRFSOC_USP_MODE2_CLK_DIVISOR_MASK) << SIRFSOC_USP_MODE2_CLK_DIVISOR_OFFSET); wr_regl(port, ureg->sirfsoc_mode2, len_val); } if (tty_termios_baud_rate(termios)) tty_termios_encode_baud_rate(termios, set_baud, set_baud); /* set receive timeout && data bits len */ rx_time_out = SIRFSOC_UART_RX_TIMEOUT(set_baud, 20000); rx_time_out = SIRFUART_RECV_TIMEOUT_VALUE(rx_time_out); txfifo_op_reg = rd_regl(port, ureg->sirfsoc_tx_fifo_op); wr_regl(port, ureg->sirfsoc_tx_fifo_op, (txfifo_op_reg & ~SIRFUART_FIFO_START)); if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { config_reg |= SIRFUART_UART_RECV_TIMEOUT(rx_time_out); wr_regl(port, ureg->sirfsoc_line_ctrl, config_reg); } else { /*tx frame ctrl*/ len_val = (data_bit_len - 1) << SIRFSOC_USP_TX_DATA_LEN_OFFSET; len_val |= (data_bit_len + 1 + stop_bit_len - 1) << SIRFSOC_USP_TX_FRAME_LEN_OFFSET; len_val |= ((data_bit_len - 1) << SIRFSOC_USP_TX_SHIFTER_LEN_OFFSET); len_val |= (((clk_div_reg & 0xc00) >> 10) << SIRFSOC_USP_TX_CLK_DIVISOR_OFFSET); wr_regl(port, ureg->sirfsoc_tx_frame_ctrl, len_val); /*rx frame ctrl*/ len_val = (data_bit_len - 1) << SIRFSOC_USP_RX_DATA_LEN_OFFSET; len_val |= (data_bit_len + 1 + stop_bit_len - 1) << SIRFSOC_USP_RX_FRAME_LEN_OFFSET; len_val |= (data_bit_len - 1) << SIRFSOC_USP_RX_SHIFTER_LEN_OFFSET; len_val |= (((clk_div_reg & 0xf000) >> 12) << SIRFSOC_USP_RX_CLK_DIVISOR_OFFSET); wr_regl(port, ureg->sirfsoc_rx_frame_ctrl, len_val); /*async param*/ wr_regl(port, ureg->sirfsoc_async_param_reg, (SIRFUART_USP_RECV_TIMEOUT(rx_time_out)) | (sample_div_reg & SIRFSOC_USP_ASYNC_DIV2_MASK) << SIRFSOC_USP_ASYNC_DIV2_OFFSET); } if (sirfport->tx_dma_chan) wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, SIRFUART_DMA_MODE); else wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, SIRFUART_IO_MODE); if (sirfport->rx_dma_chan) wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) & ~SIRFUART_IO_MODE); else wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) | SIRFUART_IO_MODE); sirfport->rx_period_time = 20000000; /* Reset Rx/Tx FIFO Threshold level for proper baudrate */ if (set_baud < 1000000) threshold_div = 1; else threshold_div = 2; wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl, SIRFUART_FIFO_THD(port) / threshold_div); wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl, SIRFUART_FIFO_THD(port) / threshold_div); txfifo_op_reg |= SIRFUART_FIFO_START; wr_regl(port, ureg->sirfsoc_tx_fifo_op, txfifo_op_reg); uart_update_timeout(port, termios->c_cflag, set_baud); wr_regl(port, ureg->sirfsoc_tx_rx_en, SIRFUART_TX_EN | SIRFUART_RX_EN); spin_unlock_irqrestore(&port->lock, flags); } static void sirfsoc_uart_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); if (!state) clk_prepare_enable(sirfport->clk); else clk_disable_unprepare(sirfport->clk); } static int sirfsoc_uart_startup(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; unsigned int index = port->line; int ret; irq_modify_status(port->irq, IRQ_NOREQUEST, IRQ_NOAUTOEN); ret = request_irq(port->irq, sirfsoc_uart_isr, 0, SIRFUART_PORT_NAME, sirfport); if (ret != 0) { dev_err(port->dev, "UART%d request IRQ line (%d) failed.\n", index, port->irq); goto irq_err; } /* initial hardware settings */ wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl) | SIRFUART_IO_MODE); wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) | SIRFUART_IO_MODE); wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) & ~SIRFUART_RX_DMA_FLUSH); wr_regl(port, ureg->sirfsoc_tx_dma_io_len, 0); wr_regl(port, ureg->sirfsoc_rx_dma_io_len, 0); wr_regl(port, ureg->sirfsoc_tx_rx_en, SIRFUART_RX_EN | SIRFUART_TX_EN); if (sirfport->uart_reg->uart_type == SIRF_USP_UART) wr_regl(port, ureg->sirfsoc_mode1, SIRFSOC_USP_ENDIAN_CTRL_LSBF | SIRFSOC_USP_EN); wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_RESET); wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_RESET); wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0); wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl, SIRFUART_FIFO_THD(port)); wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl, SIRFUART_FIFO_THD(port)); if (sirfport->rx_dma_chan) wr_regl(port, ureg->sirfsoc_rx_fifo_level_chk, SIRFUART_RX_FIFO_CHK_SC(port->line, 0x1) | SIRFUART_RX_FIFO_CHK_LC(port->line, 0x2) | SIRFUART_RX_FIFO_CHK_HC(port->line, 0x4)); if (sirfport->tx_dma_chan) { sirfport->tx_dma_state = TX_DMA_IDLE; wr_regl(port, ureg->sirfsoc_tx_fifo_level_chk, SIRFUART_TX_FIFO_CHK_SC(port->line, 0x1b) | SIRFUART_TX_FIFO_CHK_LC(port->line, 0xe) | SIRFUART_TX_FIFO_CHK_HC(port->line, 0x4)); } sirfport->ms_enabled = false; if (sirfport->uart_reg->uart_type == SIRF_USP_UART && sirfport->hw_flow_ctrl) { irq_modify_status(gpio_to_irq(sirfport->cts_gpio), IRQ_NOREQUEST, IRQ_NOAUTOEN); ret = request_irq(gpio_to_irq(sirfport->cts_gpio), sirfsoc_uart_usp_cts_handler, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING, "usp_cts_irq", sirfport); if (ret != 0) { dev_err(port->dev, "UART-USP:request gpio irq fail\n"); goto init_rx_err; } } if (sirfport->uart_reg->uart_type == SIRF_REAL_UART && sirfport->rx_dma_chan) wr_regl(port, ureg->sirfsoc_swh_dma_io, SIRFUART_CLEAR_RX_ADDR_EN); if (sirfport->uart_reg->uart_type == SIRF_USP_UART && sirfport->rx_dma_chan) wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) | SIRFSOC_USP_FRADDR_CLR_EN); if (sirfport->rx_dma_chan && !sirfport->is_hrt_enabled) { sirfport->is_hrt_enabled = true; sirfport->rx_period_time = 20000000; sirfport->rx_last_pos = -1; sirfport->pio_fetch_cnt = 0; sirfport->rx_dma_items.xmit.tail = sirfport->rx_dma_items.xmit.head = 0; hrtimer_start(&sirfport->hrt, ns_to_ktime(sirfport->rx_period_time), HRTIMER_MODE_REL); } wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_START); if (sirfport->rx_dma_chan) sirfsoc_uart_start_next_rx_dma(port); else { if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, rd_regl(port, ureg->sirfsoc_int_en_reg) | SIRFUART_RX_IO_INT_EN(uint_en, sirfport->uart_reg->uart_type)); else wr_regl(port, ureg->sirfsoc_int_en_reg, SIRFUART_RX_IO_INT_EN(uint_en, sirfport->uart_reg->uart_type)); } enable_irq(port->irq); return 0; init_rx_err: free_irq(port->irq, sirfport); irq_err: return ret; } static void sirfsoc_uart_shutdown(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct circ_buf *xmit; xmit = &sirfport->rx_dma_items.xmit; if (!sirfport->is_atlas7) wr_regl(port, ureg->sirfsoc_int_en_reg, 0); else wr_regl(port, ureg->sirfsoc_int_en_clr_reg, ~0UL); free_irq(port->irq, sirfport); if (sirfport->ms_enabled) sirfsoc_uart_disable_ms(port); if (sirfport->uart_reg->uart_type == SIRF_USP_UART && sirfport->hw_flow_ctrl) { gpio_set_value(sirfport->rts_gpio, 1); free_irq(gpio_to_irq(sirfport->cts_gpio), sirfport); } if (sirfport->tx_dma_chan) sirfport->tx_dma_state = TX_DMA_IDLE; if (sirfport->rx_dma_chan && sirfport->is_hrt_enabled) { while (((rd_regl(port, ureg->sirfsoc_rx_fifo_status) & SIRFUART_RX_FIFO_MASK) > sirfport->pio_fetch_cnt) && !CIRC_CNT(xmit->head, xmit->tail, SIRFSOC_RX_DMA_BUF_SIZE)) ; sirfport->is_hrt_enabled = false; hrtimer_cancel(&sirfport->hrt); } } static const char *sirfsoc_uart_type(struct uart_port *port) { return port->type == SIRFSOC_PORT_TYPE ? SIRFUART_PORT_NAME : NULL; } static int sirfsoc_uart_request_port(struct uart_port *port) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_uart_param *uart_param = &sirfport->uart_reg->uart_param; void *ret; ret = request_mem_region(port->mapbase, SIRFUART_MAP_SIZE, uart_param->port_name); return ret ? 0 : -EBUSY; } static void sirfsoc_uart_release_port(struct uart_port *port) { release_mem_region(port->mapbase, SIRFUART_MAP_SIZE); } static void sirfsoc_uart_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) { port->type = SIRFSOC_PORT_TYPE; sirfsoc_uart_request_port(port); } } static struct uart_ops sirfsoc_uart_ops = { .tx_empty = sirfsoc_uart_tx_empty, .get_mctrl = sirfsoc_uart_get_mctrl, .set_mctrl = sirfsoc_uart_set_mctrl, .stop_tx = sirfsoc_uart_stop_tx, .start_tx = sirfsoc_uart_start_tx, .stop_rx = sirfsoc_uart_stop_rx, .enable_ms = sirfsoc_uart_enable_ms, .break_ctl = sirfsoc_uart_break_ctl, .startup = sirfsoc_uart_startup, .shutdown = sirfsoc_uart_shutdown, .set_termios = sirfsoc_uart_set_termios, .pm = sirfsoc_uart_pm, .type = sirfsoc_uart_type, .release_port = sirfsoc_uart_release_port, .request_port = sirfsoc_uart_request_port, .config_port = sirfsoc_uart_config_port, }; #ifdef CONFIG_SERIAL_SIRFSOC_CONSOLE static int __init sirfsoc_uart_console_setup(struct console *co, char *options) { unsigned int baud = 115200; unsigned int bits = 8; unsigned int parity = 'n'; unsigned int flow = 'n'; struct sirfsoc_uart_port *sirfport; struct sirfsoc_register *ureg; if (co->index < 0 || co->index >= SIRFSOC_UART_NR) co->index = 1; sirfport = sirf_ports[co->index]; if (!sirfport) return -ENODEV; ureg = &sirfport->uart_reg->uart_reg; if (!sirfport->port.mapbase) return -ENODEV; /* enable usp in mode1 register */ if (sirfport->uart_reg->uart_type == SIRF_USP_UART) wr_regl(&sirfport->port, ureg->sirfsoc_mode1, SIRFSOC_USP_EN | SIRFSOC_USP_ENDIAN_CTRL_LSBF); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); sirfport->port.cons = co; /* default console tx/rx transfer using io mode */ sirfport->rx_dma_chan = NULL; sirfport->tx_dma_chan = NULL; return uart_set_options(&sirfport->port, co, baud, parity, bits, flow); } static void sirfsoc_uart_console_putchar(struct uart_port *port, int ch) { struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status; while (rd_regl(port, ureg->sirfsoc_tx_fifo_status) & ufifo_st->ff_full(port)) cpu_relax(); wr_regl(port, ureg->sirfsoc_tx_fifo_data, ch); } static void sirfsoc_uart_console_write(struct console *co, const char *s, unsigned int count) { struct sirfsoc_uart_port *sirfport = sirf_ports[co->index]; uart_console_write(&sirfport->port, s, count, sirfsoc_uart_console_putchar); } static struct console sirfsoc_uart_console = { .name = SIRFSOC_UART_NAME, .device = uart_console_device, .flags = CON_PRINTBUFFER, .index = -1, .write = sirfsoc_uart_console_write, .setup = sirfsoc_uart_console_setup, .data = &sirfsoc_uart_drv, }; static int __init sirfsoc_uart_console_init(void) { register_console(&sirfsoc_uart_console); return 0; } console_initcall(sirfsoc_uart_console_init); #endif static struct uart_driver sirfsoc_uart_drv = { .owner = THIS_MODULE, .driver_name = SIRFUART_PORT_NAME, .nr = SIRFSOC_UART_NR, .dev_name = SIRFSOC_UART_NAME, .major = SIRFSOC_UART_MAJOR, .minor = SIRFSOC_UART_MINOR, #ifdef CONFIG_SERIAL_SIRFSOC_CONSOLE .cons = &sirfsoc_uart_console, #else .cons = NULL, #endif }; static enum hrtimer_restart sirfsoc_uart_rx_dma_hrtimer_callback(struct hrtimer *hrt) { struct sirfsoc_uart_port *sirfport; struct uart_port *port; int count, inserted; struct dma_tx_state tx_state; struct tty_struct *tty; struct sirfsoc_register *ureg; struct circ_buf *xmit; struct sirfsoc_fifo_status *ufifo_st; int max_pio_cnt; sirfport = container_of(hrt, struct sirfsoc_uart_port, hrt); port = &sirfport->port; inserted = 0; tty = port->state->port.tty; ureg = &sirfport->uart_reg->uart_reg; xmit = &sirfport->rx_dma_items.xmit; ufifo_st = &sirfport->uart_reg->fifo_status; dmaengine_tx_status(sirfport->rx_dma_chan, sirfport->rx_dma_items.cookie, &tx_state); if (SIRFSOC_RX_DMA_BUF_SIZE - tx_state.residue != sirfport->rx_last_pos) { xmit->head = SIRFSOC_RX_DMA_BUF_SIZE - tx_state.residue; sirfport->rx_last_pos = xmit->head; sirfport->pio_fetch_cnt = 0; } count = CIRC_CNT_TO_END(xmit->head, xmit->tail, SIRFSOC_RX_DMA_BUF_SIZE); while (count > 0) { inserted = tty_insert_flip_string(tty->port, (const unsigned char *)&xmit->buf[xmit->tail], count); if (!inserted) goto next_hrt; port->icount.rx += inserted; xmit->tail = (xmit->tail + inserted) & (SIRFSOC_RX_DMA_BUF_SIZE - 1); count = CIRC_CNT_TO_END(xmit->head, xmit->tail, SIRFSOC_RX_DMA_BUF_SIZE); tty_flip_buffer_push(tty->port); } /* * if RX DMA buffer data have all push into tty buffer, and there is * only little data(less than a dma transfer unit) left in rxfifo, * fetch it out in pio mode and switch back to dma immediately */ if (!inserted && !count && ((rd_regl(port, ureg->sirfsoc_rx_fifo_status) & SIRFUART_RX_FIFO_MASK) > sirfport->pio_fetch_cnt)) { dmaengine_pause(sirfport->rx_dma_chan); /* switch to pio mode */ wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) | SIRFUART_IO_MODE); /* * UART controller SWH_DMA_IO register have CLEAR_RX_ADDR_EN * When found changing I/O to DMA mode, it clears * two low bits of read point; * USP have similar FRADDR_CLR_EN bit in USP_RX_DMA_IO_CTRL. * Fetch data out from rxfifo into DMA buffer in PIO mode, * while switch back to DMA mode, the data fetched will override * by DMA, as hardware have a strange behaviour: * after switch back to DMA mode, check rxfifo status it will * be the number PIO fetched, so record the fetched data count * to avoid the repeated fetch */ max_pio_cnt = 3; while (!(rd_regl(port, ureg->sirfsoc_rx_fifo_status) & ufifo_st->ff_empty(port)) && max_pio_cnt--) { xmit->buf[xmit->head] = rd_regl(port, ureg->sirfsoc_rx_fifo_data); xmit->head = (xmit->head + 1) & (SIRFSOC_RX_DMA_BUF_SIZE - 1); sirfport->pio_fetch_cnt++; } /* switch back to dma mode */ wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) & ~SIRFUART_IO_MODE); dmaengine_resume(sirfport->rx_dma_chan); } next_hrt: hrtimer_forward_now(hrt, ns_to_ktime(sirfport->rx_period_time)); return HRTIMER_RESTART; } static struct of_device_id sirfsoc_uart_ids[] = { { .compatible = "sirf,prima2-uart", .data = &sirfsoc_uart,}, { .compatible = "sirf,atlas7-uart", .data = &sirfsoc_uart}, { .compatible = "sirf,prima2-usp-uart", .data = &sirfsoc_usp}, { .compatible = "sirf,atlas7-usp-uart", .data = &sirfsoc_usp}, {} }; MODULE_DEVICE_TABLE(of, sirfsoc_uart_ids); static int sirfsoc_uart_probe(struct platform_device *pdev) { struct sirfsoc_uart_port *sirfport; struct uart_port *port; struct resource *res; int ret; struct dma_slave_config slv_cfg = { .src_maxburst = 1, }; struct dma_slave_config tx_slv_cfg = { .dst_maxburst = 2, }; const struct of_device_id *match; match = of_match_node(sirfsoc_uart_ids, pdev->dev.of_node); sirfport = devm_kzalloc(&pdev->dev, sizeof(*sirfport), GFP_KERNEL); if (!sirfport) { ret = -ENOMEM; goto err; } sirfport->port.line = of_alias_get_id(pdev->dev.of_node, "serial"); sirf_ports[sirfport->port.line] = sirfport; sirfport->port.iotype = UPIO_MEM; sirfport->port.flags = UPF_BOOT_AUTOCONF; port = &sirfport->port; port->dev = &pdev->dev; port->private_data = sirfport; sirfport->uart_reg = (struct sirfsoc_uart_register *)match->data; sirfport->hw_flow_ctrl = of_property_read_bool(pdev->dev.of_node, "sirf,uart-has-rtscts"); if (of_device_is_compatible(pdev->dev.of_node, "sirf,prima2-uart") || of_device_is_compatible(pdev->dev.of_node, "sirf,atlas7-uart")) sirfport->uart_reg->uart_type = SIRF_REAL_UART; if (of_device_is_compatible(pdev->dev.of_node, "sirf,prima2-usp-uart") || of_device_is_compatible( pdev->dev.of_node, "sirf,atlas7-usp-uart")) { sirfport->uart_reg->uart_type = SIRF_USP_UART; if (!sirfport->hw_flow_ctrl) goto usp_no_flow_control; if (of_find_property(pdev->dev.of_node, "cts-gpios", NULL)) sirfport->cts_gpio = of_get_named_gpio( pdev->dev.of_node, "cts-gpios", 0); else sirfport->cts_gpio = -1; if (of_find_property(pdev->dev.of_node, "rts-gpios", NULL)) sirfport->rts_gpio = of_get_named_gpio( pdev->dev.of_node, "rts-gpios", 0); else sirfport->rts_gpio = -1; if ((!gpio_is_valid(sirfport->cts_gpio) || !gpio_is_valid(sirfport->rts_gpio))) { ret = -EINVAL; dev_err(&pdev->dev, "Usp flow control must have cts and rts gpio"); goto err; } ret = devm_gpio_request(&pdev->dev, sirfport->cts_gpio, "usp-cts-gpio"); if (ret) { dev_err(&pdev->dev, "Unable request cts gpio"); goto err; } gpio_direction_input(sirfport->cts_gpio); ret = devm_gpio_request(&pdev->dev, sirfport->rts_gpio, "usp-rts-gpio"); if (ret) { dev_err(&pdev->dev, "Unable request rts gpio"); goto err; } gpio_direction_output(sirfport->rts_gpio, 1); } usp_no_flow_control: if (of_device_is_compatible(pdev->dev.of_node, "sirf,atlas7-uart") || of_device_is_compatible(pdev->dev.of_node, "sirf,atlas7-usp-uart")) sirfport->is_atlas7 = true; if (of_property_read_u32(pdev->dev.of_node, "fifosize", &port->fifosize)) { dev_err(&pdev->dev, "Unable to find fifosize in uart node.\n"); ret = -EFAULT; goto err; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "Insufficient resources.\n"); ret = -EFAULT; goto err; } port->mapbase = res->start; port->membase = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!port->membase) { dev_err(&pdev->dev, "Cannot remap resource.\n"); ret = -ENOMEM; goto err; } res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (res == NULL) { dev_err(&pdev->dev, "Insufficient resources.\n"); ret = -EFAULT; goto err; } port->irq = res->start; sirfport->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(sirfport->clk)) { ret = PTR_ERR(sirfport->clk); goto err; } port->uartclk = clk_get_rate(sirfport->clk); port->ops = &sirfsoc_uart_ops; spin_lock_init(&port->lock); platform_set_drvdata(pdev, sirfport); ret = uart_add_one_port(&sirfsoc_uart_drv, port); if (ret != 0) { dev_err(&pdev->dev, "Cannot add UART port(%d).\n", pdev->id); goto err; } sirfport->rx_dma_chan = dma_request_slave_channel(port->dev, "rx"); sirfport->rx_dma_items.xmit.buf = dma_alloc_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE, &sirfport->rx_dma_items.dma_addr, GFP_KERNEL); if (!sirfport->rx_dma_items.xmit.buf) { dev_err(port->dev, "Uart alloc bufa failed\n"); ret = -ENOMEM; goto alloc_coherent_err; } sirfport->rx_dma_items.xmit.head = sirfport->rx_dma_items.xmit.tail = 0; if (sirfport->rx_dma_chan) dmaengine_slave_config(sirfport->rx_dma_chan, &slv_cfg); sirfport->tx_dma_chan = dma_request_slave_channel(port->dev, "tx"); if (sirfport->tx_dma_chan) dmaengine_slave_config(sirfport->tx_dma_chan, &tx_slv_cfg); if (sirfport->rx_dma_chan) { hrtimer_init(&sirfport->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL); sirfport->hrt.function = sirfsoc_uart_rx_dma_hrtimer_callback; sirfport->is_hrt_enabled = false; } return 0; alloc_coherent_err: dma_free_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE, sirfport->rx_dma_items.xmit.buf, sirfport->rx_dma_items.dma_addr); dma_release_channel(sirfport->rx_dma_chan); err: return ret; } static int sirfsoc_uart_remove(struct platform_device *pdev) { struct sirfsoc_uart_port *sirfport = platform_get_drvdata(pdev); struct uart_port *port = &sirfport->port; uart_remove_one_port(&sirfsoc_uart_drv, port); if (sirfport->rx_dma_chan) { dmaengine_terminate_all(sirfport->rx_dma_chan); dma_release_channel(sirfport->rx_dma_chan); dma_free_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE, sirfport->rx_dma_items.xmit.buf, sirfport->rx_dma_items.dma_addr); } if (sirfport->tx_dma_chan) { dmaengine_terminate_all(sirfport->tx_dma_chan); dma_release_channel(sirfport->tx_dma_chan); } return 0; } #ifdef CONFIG_PM_SLEEP static int sirfsoc_uart_suspend(struct device *pdev) { struct sirfsoc_uart_port *sirfport = dev_get_drvdata(pdev); struct uart_port *port = &sirfport->port; uart_suspend_port(&sirfsoc_uart_drv, port); return 0; } static int sirfsoc_uart_resume(struct device *pdev) { struct sirfsoc_uart_port *sirfport = dev_get_drvdata(pdev); struct uart_port *port = &sirfport->port; uart_resume_port(&sirfsoc_uart_drv, port); return 0; } #endif static const struct dev_pm_ops sirfsoc_uart_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_uart_suspend, sirfsoc_uart_resume) }; static struct platform_driver sirfsoc_uart_driver = { .probe = sirfsoc_uart_probe, .remove = sirfsoc_uart_remove, .driver = { .name = SIRFUART_PORT_NAME, .of_match_table = sirfsoc_uart_ids, .pm = &sirfsoc_uart_pm_ops, }, }; static int __init sirfsoc_uart_init(void) { int ret = 0; ret = uart_register_driver(&sirfsoc_uart_drv); if (ret) goto out; ret = platform_driver_register(&sirfsoc_uart_driver); if (ret) uart_unregister_driver(&sirfsoc_uart_drv); out: return ret; } module_init(sirfsoc_uart_init); static void __exit sirfsoc_uart_exit(void) { platform_driver_unregister(&sirfsoc_uart_driver); uart_unregister_driver(&sirfsoc_uart_drv); } module_exit(sirfsoc_uart_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Bin Shi <Bin.Shi@csr.com>, Rong Wang<Rong.Wang@csr.com>"); MODULE_DESCRIPTION("CSR SiRFprimaII Uart Driver");