/* Driver for Datafab USB Compact Flash reader * * datafab driver v0.1: * * First release * * Current development and maintenance by: * (c) 2000 Jimmie Mayfield (mayfield+datafab@sackheads.org) * * Many thanks to Robert Baruch for the SanDisk SmartMedia reader driver * which I used as a template for this driver. * * Some bugfixes and scatter-gather code by Gregory P. Smith * (greg-usb@electricrain.com) * * Fix for media change by Joerg Schneider (js@joergschneider.com) * * Other contributors: * (c) 2002 Alan Stern <stern@rowland.org> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * This driver attempts to support USB CompactFlash reader/writer devices * based on Datafab USB-to-ATA chips. It was specifically developed for the * Datafab MDCFE-B USB CompactFlash reader but has since been found to work * with a variety of Datafab-based devices from a number of manufacturers. * I've received a report of this driver working with a Datafab-based * SmartMedia device though please be aware that I'm personally unable to * test SmartMedia support. * * This driver supports reading and writing. If you're truly paranoid, * however, you can force the driver into a write-protected state by setting * the WP enable bits in datafab_handle_mode_sense(). See the comments * in that routine. */ #include <linux/errno.h> #include <linux/module.h> #include <linux/slab.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include "usb.h" #include "transport.h" #include "protocol.h" #include "debug.h" #include "scsiglue.h" #define DRV_NAME "ums-datafab" MODULE_DESCRIPTION("Driver for Datafab USB Compact Flash reader"); MODULE_AUTHOR("Jimmie Mayfield <mayfield+datafab@sackheads.org>"); MODULE_LICENSE("GPL"); struct datafab_info { unsigned long sectors; /* total sector count */ unsigned long ssize; /* sector size in bytes */ signed char lun; /* used for dual-slot readers */ /* the following aren't used yet */ unsigned char sense_key; unsigned long sense_asc; /* additional sense code */ unsigned long sense_ascq; /* additional sense code qualifier */ }; static int datafab_determine_lun(struct us_data *us, struct datafab_info *info); /* * The table of devices */ #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ vendorName, productName, useProtocol, useTransport, \ initFunction, flags) \ { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ .driver_info = (flags) } static struct usb_device_id datafab_usb_ids[] = { # include "unusual_datafab.h" { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, datafab_usb_ids); #undef UNUSUAL_DEV /* * The flags table */ #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ vendor_name, product_name, use_protocol, use_transport, \ init_function, Flags) \ { \ .vendorName = vendor_name, \ .productName = product_name, \ .useProtocol = use_protocol, \ .useTransport = use_transport, \ .initFunction = init_function, \ } static struct us_unusual_dev datafab_unusual_dev_list[] = { # include "unusual_datafab.h" { } /* Terminating entry */ }; #undef UNUSUAL_DEV static inline int datafab_bulk_read(struct us_data *us, unsigned char *data, unsigned int len) { if (len == 0) return USB_STOR_XFER_GOOD; usb_stor_dbg(us, "len = %d\n", len); return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, data, len, NULL); } static inline int datafab_bulk_write(struct us_data *us, unsigned char *data, unsigned int len) { if (len == 0) return USB_STOR_XFER_GOOD; usb_stor_dbg(us, "len = %d\n", len); return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, data, len, NULL); } static int datafab_read_data(struct us_data *us, struct datafab_info *info, u32 sector, u32 sectors) { unsigned char *command = us->iobuf; unsigned char *buffer; unsigned char thistime; unsigned int totallen, alloclen; int len, result; unsigned int sg_offset = 0; struct scatterlist *sg = NULL; // we're working in LBA mode. according to the ATA spec, // we can support up to 28-bit addressing. I don't know if Datafab // supports beyond 24-bit addressing. It's kind of hard to test // since it requires > 8GB CF card. // if (sectors > 0x0FFFFFFF) return USB_STOR_TRANSPORT_ERROR; if (info->lun == -1) { result = datafab_determine_lun(us, info); if (result != USB_STOR_TRANSPORT_GOOD) return result; } totallen = sectors * info->ssize; // Since we don't read more than 64 KB at a time, we have to create // a bounce buffer and move the data a piece at a time between the // bounce buffer and the actual transfer buffer. alloclen = min(totallen, 65536u); buffer = kmalloc(alloclen, GFP_NOIO); if (buffer == NULL) return USB_STOR_TRANSPORT_ERROR; do { // loop, never allocate or transfer more than 64k at once // (min(128k, 255*info->ssize) is the real limit) len = min(totallen, alloclen); thistime = (len / info->ssize) & 0xff; command[0] = 0; command[1] = thistime; command[2] = sector & 0xFF; command[3] = (sector >> 8) & 0xFF; command[4] = (sector >> 16) & 0xFF; command[5] = 0xE0 + (info->lun << 4); command[5] |= (sector >> 24) & 0x0F; command[6] = 0x20; command[7] = 0x01; // send the read command result = datafab_bulk_write(us, command, 8); if (result != USB_STOR_XFER_GOOD) goto leave; // read the result result = datafab_bulk_read(us, buffer, len); if (result != USB_STOR_XFER_GOOD) goto leave; // Store the data in the transfer buffer usb_stor_access_xfer_buf(buffer, len, us->srb, &sg, &sg_offset, TO_XFER_BUF); sector += thistime; totallen -= len; } while (totallen > 0); kfree(buffer); return USB_STOR_TRANSPORT_GOOD; leave: kfree(buffer); return USB_STOR_TRANSPORT_ERROR; } static int datafab_write_data(struct us_data *us, struct datafab_info *info, u32 sector, u32 sectors) { unsigned char *command = us->iobuf; unsigned char *reply = us->iobuf; unsigned char *buffer; unsigned char thistime; unsigned int totallen, alloclen; int len, result; unsigned int sg_offset = 0; struct scatterlist *sg = NULL; // we're working in LBA mode. according to the ATA spec, // we can support up to 28-bit addressing. I don't know if Datafab // supports beyond 24-bit addressing. It's kind of hard to test // since it requires > 8GB CF card. // if (sectors > 0x0FFFFFFF) return USB_STOR_TRANSPORT_ERROR; if (info->lun == -1) { result = datafab_determine_lun(us, info); if (result != USB_STOR_TRANSPORT_GOOD) return result; } totallen = sectors * info->ssize; // Since we don't write more than 64 KB at a time, we have to create // a bounce buffer and move the data a piece at a time between the // bounce buffer and the actual transfer buffer. alloclen = min(totallen, 65536u); buffer = kmalloc(alloclen, GFP_NOIO); if (buffer == NULL) return USB_STOR_TRANSPORT_ERROR; do { // loop, never allocate or transfer more than 64k at once // (min(128k, 255*info->ssize) is the real limit) len = min(totallen, alloclen); thistime = (len / info->ssize) & 0xff; // Get the data from the transfer buffer usb_stor_access_xfer_buf(buffer, len, us->srb, &sg, &sg_offset, FROM_XFER_BUF); command[0] = 0; command[1] = thistime; command[2] = sector & 0xFF; command[3] = (sector >> 8) & 0xFF; command[4] = (sector >> 16) & 0xFF; command[5] = 0xE0 + (info->lun << 4); command[5] |= (sector >> 24) & 0x0F; command[6] = 0x30; command[7] = 0x02; // send the command result = datafab_bulk_write(us, command, 8); if (result != USB_STOR_XFER_GOOD) goto leave; // send the data result = datafab_bulk_write(us, buffer, len); if (result != USB_STOR_XFER_GOOD) goto leave; // read the result result = datafab_bulk_read(us, reply, 2); if (result != USB_STOR_XFER_GOOD) goto leave; if (reply[0] != 0x50 && reply[1] != 0) { usb_stor_dbg(us, "Gah! write return code: %02x %02x\n", reply[0], reply[1]); result = USB_STOR_TRANSPORT_ERROR; goto leave; } sector += thistime; totallen -= len; } while (totallen > 0); kfree(buffer); return USB_STOR_TRANSPORT_GOOD; leave: kfree(buffer); return USB_STOR_TRANSPORT_ERROR; } static int datafab_determine_lun(struct us_data *us, struct datafab_info *info) { // Dual-slot readers can be thought of as dual-LUN devices. // We need to determine which card slot is being used. // We'll send an IDENTIFY DEVICE command and see which LUN responds... // // There might be a better way of doing this? static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 }; unsigned char *command = us->iobuf; unsigned char *buf; int count = 0, rc; if (!info) return USB_STOR_TRANSPORT_ERROR; memcpy(command, scommand, 8); buf = kmalloc(512, GFP_NOIO); if (!buf) return USB_STOR_TRANSPORT_ERROR; usb_stor_dbg(us, "locating...\n"); // we'll try 3 times before giving up... // while (count++ < 3) { command[5] = 0xa0; rc = datafab_bulk_write(us, command, 8); if (rc != USB_STOR_XFER_GOOD) { rc = USB_STOR_TRANSPORT_ERROR; goto leave; } rc = datafab_bulk_read(us, buf, 512); if (rc == USB_STOR_XFER_GOOD) { info->lun = 0; rc = USB_STOR_TRANSPORT_GOOD; goto leave; } command[5] = 0xb0; rc = datafab_bulk_write(us, command, 8); if (rc != USB_STOR_XFER_GOOD) { rc = USB_STOR_TRANSPORT_ERROR; goto leave; } rc = datafab_bulk_read(us, buf, 512); if (rc == USB_STOR_XFER_GOOD) { info->lun = 1; rc = USB_STOR_TRANSPORT_GOOD; goto leave; } msleep(20); } rc = USB_STOR_TRANSPORT_ERROR; leave: kfree(buf); return rc; } static int datafab_id_device(struct us_data *us, struct datafab_info *info) { // this is a variation of the ATA "IDENTIFY DEVICE" command...according // to the ATA spec, 'Sector Count' isn't used but the Windows driver // sets this bit so we do too... // static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 }; unsigned char *command = us->iobuf; unsigned char *reply; int rc; if (!info) return USB_STOR_TRANSPORT_ERROR; if (info->lun == -1) { rc = datafab_determine_lun(us, info); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; } memcpy(command, scommand, 8); reply = kmalloc(512, GFP_NOIO); if (!reply) return USB_STOR_TRANSPORT_ERROR; command[5] += (info->lun << 4); rc = datafab_bulk_write(us, command, 8); if (rc != USB_STOR_XFER_GOOD) { rc = USB_STOR_TRANSPORT_ERROR; goto leave; } // we'll go ahead and extract the media capacity while we're here... // rc = datafab_bulk_read(us, reply, 512); if (rc == USB_STOR_XFER_GOOD) { // capacity is at word offset 57-58 // info->sectors = ((u32)(reply[117]) << 24) | ((u32)(reply[116]) << 16) | ((u32)(reply[115]) << 8) | ((u32)(reply[114]) ); rc = USB_STOR_TRANSPORT_GOOD; goto leave; } rc = USB_STOR_TRANSPORT_ERROR; leave: kfree(reply); return rc; } static int datafab_handle_mode_sense(struct us_data *us, struct scsi_cmnd * srb, int sense_6) { static unsigned char rw_err_page[12] = { 0x1, 0xA, 0x21, 1, 0, 0, 0, 0, 1, 0, 0, 0 }; static unsigned char cache_page[12] = { 0x8, 0xA, 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static unsigned char rbac_page[12] = { 0x1B, 0xA, 0, 0x81, 0, 0, 0, 0, 0, 0, 0, 0 }; static unsigned char timer_page[8] = { 0x1C, 0x6, 0, 0, 0, 0 }; unsigned char pc, page_code; unsigned int i = 0; struct datafab_info *info = (struct datafab_info *) (us->extra); unsigned char *ptr = us->iobuf; // most of this stuff is just a hack to get things working. the // datafab reader doesn't present a SCSI interface so we // fudge the SCSI commands... // pc = srb->cmnd[2] >> 6; page_code = srb->cmnd[2] & 0x3F; switch (pc) { case 0x0: usb_stor_dbg(us, "Current values\n"); break; case 0x1: usb_stor_dbg(us, "Changeable values\n"); break; case 0x2: usb_stor_dbg(us, "Default values\n"); break; case 0x3: usb_stor_dbg(us, "Saves values\n"); break; } memset(ptr, 0, 8); if (sense_6) { ptr[2] = 0x00; // WP enable: 0x80 i = 4; } else { ptr[3] = 0x00; // WP enable: 0x80 i = 8; } switch (page_code) { default: // vendor-specific mode info->sense_key = 0x05; info->sense_asc = 0x24; info->sense_ascq = 0x00; return USB_STOR_TRANSPORT_FAILED; case 0x1: memcpy(ptr + i, rw_err_page, sizeof(rw_err_page)); i += sizeof(rw_err_page); break; case 0x8: memcpy(ptr + i, cache_page, sizeof(cache_page)); i += sizeof(cache_page); break; case 0x1B: memcpy(ptr + i, rbac_page, sizeof(rbac_page)); i += sizeof(rbac_page); break; case 0x1C: memcpy(ptr + i, timer_page, sizeof(timer_page)); i += sizeof(timer_page); break; case 0x3F: // retrieve all pages memcpy(ptr + i, timer_page, sizeof(timer_page)); i += sizeof(timer_page); memcpy(ptr + i, rbac_page, sizeof(rbac_page)); i += sizeof(rbac_page); memcpy(ptr + i, cache_page, sizeof(cache_page)); i += sizeof(cache_page); memcpy(ptr + i, rw_err_page, sizeof(rw_err_page)); i += sizeof(rw_err_page); break; } if (sense_6) ptr[0] = i - 1; else ((__be16 *) ptr)[0] = cpu_to_be16(i - 2); usb_stor_set_xfer_buf(ptr, i, srb); return USB_STOR_TRANSPORT_GOOD; } static void datafab_info_destructor(void *extra) { // this routine is a placeholder... // currently, we don't allocate any extra memory so we're okay } // Transport for the Datafab MDCFE-B // static int datafab_transport(struct scsi_cmnd *srb, struct us_data *us) { struct datafab_info *info; int rc; unsigned long block, blocks; unsigned char *ptr = us->iobuf; static unsigned char inquiry_reply[8] = { 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 }; if (!us->extra) { us->extra = kzalloc(sizeof(struct datafab_info), GFP_NOIO); if (!us->extra) return USB_STOR_TRANSPORT_ERROR; us->extra_destructor = datafab_info_destructor; ((struct datafab_info *)us->extra)->lun = -1; } info = (struct datafab_info *) (us->extra); if (srb->cmnd[0] == INQUIRY) { usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); memcpy(ptr, inquiry_reply, sizeof(inquiry_reply)); fill_inquiry_response(us, ptr, 36); return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == READ_CAPACITY) { info->ssize = 0x200; // hard coded 512 byte sectors as per ATA spec rc = datafab_id_device(us, info); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; usb_stor_dbg(us, "READ_CAPACITY: %ld sectors, %ld bytes per sector\n", info->sectors, info->ssize); // build the reply // we need the last sector, not the number of sectors ((__be32 *) ptr)[0] = cpu_to_be32(info->sectors - 1); ((__be32 *) ptr)[1] = cpu_to_be32(info->ssize); usb_stor_set_xfer_buf(ptr, 8, srb); return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == MODE_SELECT_10) { usb_stor_dbg(us, "Gah! MODE_SELECT_10\n"); return USB_STOR_TRANSPORT_ERROR; } // don't bother implementing READ_6 or WRITE_6. // if (srb->cmnd[0] == READ_10) { block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8])); usb_stor_dbg(us, "READ_10: read block 0x%04lx count %ld\n", block, blocks); return datafab_read_data(us, info, block, blocks); } if (srb->cmnd[0] == READ_12) { // we'll probably never see a READ_12 but we'll do it anyway... // block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) | ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9])); usb_stor_dbg(us, "READ_12: read block 0x%04lx count %ld\n", block, blocks); return datafab_read_data(us, info, block, blocks); } if (srb->cmnd[0] == WRITE_10) { block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8])); usb_stor_dbg(us, "WRITE_10: write block 0x%04lx count %ld\n", block, blocks); return datafab_write_data(us, info, block, blocks); } if (srb->cmnd[0] == WRITE_12) { // we'll probably never see a WRITE_12 but we'll do it anyway... // block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) | ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5])); blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) | ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9])); usb_stor_dbg(us, "WRITE_12: write block 0x%04lx count %ld\n", block, blocks); return datafab_write_data(us, info, block, blocks); } if (srb->cmnd[0] == TEST_UNIT_READY) { usb_stor_dbg(us, "TEST_UNIT_READY\n"); return datafab_id_device(us, info); } if (srb->cmnd[0] == REQUEST_SENSE) { usb_stor_dbg(us, "REQUEST_SENSE - Returning faked response\n"); // this response is pretty bogus right now. eventually if necessary // we can set the correct sense data. so far though it hasn't been // necessary // memset(ptr, 0, 18); ptr[0] = 0xF0; ptr[2] = info->sense_key; ptr[7] = 11; ptr[12] = info->sense_asc; ptr[13] = info->sense_ascq; usb_stor_set_xfer_buf(ptr, 18, srb); return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == MODE_SENSE) { usb_stor_dbg(us, "MODE_SENSE_6 detected\n"); return datafab_handle_mode_sense(us, srb, 1); } if (srb->cmnd[0] == MODE_SENSE_10) { usb_stor_dbg(us, "MODE_SENSE_10 detected\n"); return datafab_handle_mode_sense(us, srb, 0); } if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { // sure. whatever. not like we can stop the user from // popping the media out of the device (no locking doors, etc) // return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == START_STOP) { /* this is used by sd.c'check_scsidisk_media_change to detect media change */ usb_stor_dbg(us, "START_STOP\n"); /* the first datafab_id_device after a media change returns an error (determined experimentally) */ rc = datafab_id_device(us, info); if (rc == USB_STOR_TRANSPORT_GOOD) { info->sense_key = NO_SENSE; srb->result = SUCCESS; } else { info->sense_key = UNIT_ATTENTION; srb->result = SAM_STAT_CHECK_CONDITION; } return rc; } usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", srb->cmnd[0], srb->cmnd[0]); info->sense_key = 0x05; info->sense_asc = 0x20; info->sense_ascq = 0x00; return USB_STOR_TRANSPORT_FAILED; } static struct scsi_host_template datafab_host_template; static int datafab_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct us_data *us; int result; result = usb_stor_probe1(&us, intf, id, (id - datafab_usb_ids) + datafab_unusual_dev_list, &datafab_host_template); if (result) return result; us->transport_name = "Datafab Bulk-Only"; us->transport = datafab_transport; us->transport_reset = usb_stor_Bulk_reset; us->max_lun = 1; result = usb_stor_probe2(us); return result; } static struct usb_driver datafab_driver = { .name = DRV_NAME, .probe = datafab_probe, .disconnect = usb_stor_disconnect, .suspend = usb_stor_suspend, .resume = usb_stor_resume, .reset_resume = usb_stor_reset_resume, .pre_reset = usb_stor_pre_reset, .post_reset = usb_stor_post_reset, .id_table = datafab_usb_ids, .soft_unbind = 1, .no_dynamic_id = 1, }; module_usb_stor_driver(datafab_driver, datafab_host_template, DRV_NAME);