/* * Support for the Tundra Universe I/II VME-PCI Bridge Chips * * Author: Martyn Welch <martyn.welch@ge.com> * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. * * Based on work by Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. * * Derived from ca91c042.c by Michael Wyrick * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/module.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/poll.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/io.h> #include <linux/uaccess.h> #include <linux/vme.h> #include "../vme_bridge.h" #include "vme_ca91cx42.h" static int ca91cx42_probe(struct pci_dev *, const struct pci_device_id *); static void ca91cx42_remove(struct pci_dev *); /* Module parameters */ static int geoid; static const char driver_name[] = "vme_ca91cx42"; static const struct pci_device_id ca91cx42_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_TUNDRA, PCI_DEVICE_ID_TUNDRA_CA91C142) }, { }, }; static struct pci_driver ca91cx42_driver = { .name = driver_name, .id_table = ca91cx42_ids, .probe = ca91cx42_probe, .remove = ca91cx42_remove, }; static u32 ca91cx42_DMA_irqhandler(struct ca91cx42_driver *bridge) { wake_up(&bridge->dma_queue); return CA91CX42_LINT_DMA; } static u32 ca91cx42_LM_irqhandler(struct ca91cx42_driver *bridge, u32 stat) { int i; u32 serviced = 0; for (i = 0; i < 4; i++) { if (stat & CA91CX42_LINT_LM[i]) { /* We only enable interrupts if the callback is set */ bridge->lm_callback[i](i); serviced |= CA91CX42_LINT_LM[i]; } } return serviced; } /* XXX This needs to be split into 4 queues */ static u32 ca91cx42_MB_irqhandler(struct ca91cx42_driver *bridge, int mbox_mask) { wake_up(&bridge->mbox_queue); return CA91CX42_LINT_MBOX; } static u32 ca91cx42_IACK_irqhandler(struct ca91cx42_driver *bridge) { wake_up(&bridge->iack_queue); return CA91CX42_LINT_SW_IACK; } static u32 ca91cx42_VERR_irqhandler(struct vme_bridge *ca91cx42_bridge) { int val; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; val = ioread32(bridge->base + DGCS); if (!(val & 0x00000800)) { dev_err(ca91cx42_bridge->parent, "ca91cx42_VERR_irqhandler DMA " "Read Error DGCS=%08X\n", val); } return CA91CX42_LINT_VERR; } static u32 ca91cx42_LERR_irqhandler(struct vme_bridge *ca91cx42_bridge) { int val; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; val = ioread32(bridge->base + DGCS); if (!(val & 0x00000800)) dev_err(ca91cx42_bridge->parent, "ca91cx42_LERR_irqhandler DMA " "Read Error DGCS=%08X\n", val); return CA91CX42_LINT_LERR; } static u32 ca91cx42_VIRQ_irqhandler(struct vme_bridge *ca91cx42_bridge, int stat) { int vec, i, serviced = 0; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; for (i = 7; i > 0; i--) { if (stat & (1 << i)) { vec = ioread32(bridge->base + CA91CX42_V_STATID[i]) & 0xff; vme_irq_handler(ca91cx42_bridge, i, vec); serviced |= (1 << i); } } return serviced; } static irqreturn_t ca91cx42_irqhandler(int irq, void *ptr) { u32 stat, enable, serviced = 0; struct vme_bridge *ca91cx42_bridge; struct ca91cx42_driver *bridge; ca91cx42_bridge = ptr; bridge = ca91cx42_bridge->driver_priv; enable = ioread32(bridge->base + LINT_EN); stat = ioread32(bridge->base + LINT_STAT); /* Only look at unmasked interrupts */ stat &= enable; if (unlikely(!stat)) return IRQ_NONE; if (stat & CA91CX42_LINT_DMA) serviced |= ca91cx42_DMA_irqhandler(bridge); if (stat & (CA91CX42_LINT_LM0 | CA91CX42_LINT_LM1 | CA91CX42_LINT_LM2 | CA91CX42_LINT_LM3)) serviced |= ca91cx42_LM_irqhandler(bridge, stat); if (stat & CA91CX42_LINT_MBOX) serviced |= ca91cx42_MB_irqhandler(bridge, stat); if (stat & CA91CX42_LINT_SW_IACK) serviced |= ca91cx42_IACK_irqhandler(bridge); if (stat & CA91CX42_LINT_VERR) serviced |= ca91cx42_VERR_irqhandler(ca91cx42_bridge); if (stat & CA91CX42_LINT_LERR) serviced |= ca91cx42_LERR_irqhandler(ca91cx42_bridge); if (stat & (CA91CX42_LINT_VIRQ1 | CA91CX42_LINT_VIRQ2 | CA91CX42_LINT_VIRQ3 | CA91CX42_LINT_VIRQ4 | CA91CX42_LINT_VIRQ5 | CA91CX42_LINT_VIRQ6 | CA91CX42_LINT_VIRQ7)) serviced |= ca91cx42_VIRQ_irqhandler(ca91cx42_bridge, stat); /* Clear serviced interrupts */ iowrite32(serviced, bridge->base + LINT_STAT); return IRQ_HANDLED; } static int ca91cx42_irq_init(struct vme_bridge *ca91cx42_bridge) { int result, tmp; struct pci_dev *pdev; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; /* Need pdev */ pdev = container_of(ca91cx42_bridge->parent, struct pci_dev, dev); INIT_LIST_HEAD(&ca91cx42_bridge->vme_error_handlers); mutex_init(&ca91cx42_bridge->irq_mtx); /* Disable interrupts from PCI to VME */ iowrite32(0, bridge->base + VINT_EN); /* Disable PCI interrupts */ iowrite32(0, bridge->base + LINT_EN); /* Clear Any Pending PCI Interrupts */ iowrite32(0x00FFFFFF, bridge->base + LINT_STAT); result = request_irq(pdev->irq, ca91cx42_irqhandler, IRQF_SHARED, driver_name, ca91cx42_bridge); if (result) { dev_err(&pdev->dev, "Can't get assigned pci irq vector %02X\n", pdev->irq); return result; } /* Ensure all interrupts are mapped to PCI Interrupt 0 */ iowrite32(0, bridge->base + LINT_MAP0); iowrite32(0, bridge->base + LINT_MAP1); iowrite32(0, bridge->base + LINT_MAP2); /* Enable DMA, mailbox & LM Interrupts */ tmp = CA91CX42_LINT_MBOX3 | CA91CX42_LINT_MBOX2 | CA91CX42_LINT_MBOX1 | CA91CX42_LINT_MBOX0 | CA91CX42_LINT_SW_IACK | CA91CX42_LINT_VERR | CA91CX42_LINT_LERR | CA91CX42_LINT_DMA; iowrite32(tmp, bridge->base + LINT_EN); return 0; } static void ca91cx42_irq_exit(struct ca91cx42_driver *bridge, struct pci_dev *pdev) { struct vme_bridge *ca91cx42_bridge; /* Disable interrupts from PCI to VME */ iowrite32(0, bridge->base + VINT_EN); /* Disable PCI interrupts */ iowrite32(0, bridge->base + LINT_EN); /* Clear Any Pending PCI Interrupts */ iowrite32(0x00FFFFFF, bridge->base + LINT_STAT); ca91cx42_bridge = container_of((void *)bridge, struct vme_bridge, driver_priv); free_irq(pdev->irq, ca91cx42_bridge); } static int ca91cx42_iack_received(struct ca91cx42_driver *bridge, int level) { u32 tmp; tmp = ioread32(bridge->base + LINT_STAT); if (tmp & (1 << level)) return 0; else return 1; } /* * Set up an VME interrupt */ static void ca91cx42_irq_set(struct vme_bridge *ca91cx42_bridge, int level, int state, int sync) { struct pci_dev *pdev; u32 tmp; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; /* Enable IRQ level */ tmp = ioread32(bridge->base + LINT_EN); if (state == 0) tmp &= ~CA91CX42_LINT_VIRQ[level]; else tmp |= CA91CX42_LINT_VIRQ[level]; iowrite32(tmp, bridge->base + LINT_EN); if ((state == 0) && (sync != 0)) { pdev = container_of(ca91cx42_bridge->parent, struct pci_dev, dev); synchronize_irq(pdev->irq); } } static int ca91cx42_irq_generate(struct vme_bridge *ca91cx42_bridge, int level, int statid) { u32 tmp; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; /* Universe can only generate even vectors */ if (statid & 1) return -EINVAL; mutex_lock(&bridge->vme_int); tmp = ioread32(bridge->base + VINT_EN); /* Set Status/ID */ iowrite32(statid << 24, bridge->base + STATID); /* Assert VMEbus IRQ */ tmp = tmp | (1 << (level + 24)); iowrite32(tmp, bridge->base + VINT_EN); /* Wait for IACK */ wait_event_interruptible(bridge->iack_queue, ca91cx42_iack_received(bridge, level)); /* Return interrupt to low state */ tmp = ioread32(bridge->base + VINT_EN); tmp = tmp & ~(1 << (level + 24)); iowrite32(tmp, bridge->base + VINT_EN); mutex_unlock(&bridge->vme_int); return 0; } static int ca91cx42_slave_set(struct vme_slave_resource *image, int enabled, unsigned long long vme_base, unsigned long long size, dma_addr_t pci_base, u32 aspace, u32 cycle) { unsigned int i, addr = 0, granularity; unsigned int temp_ctl = 0; unsigned int vme_bound, pci_offset; struct vme_bridge *ca91cx42_bridge; struct ca91cx42_driver *bridge; ca91cx42_bridge = image->parent; bridge = ca91cx42_bridge->driver_priv; i = image->number; switch (aspace) { case VME_A16: addr |= CA91CX42_VSI_CTL_VAS_A16; break; case VME_A24: addr |= CA91CX42_VSI_CTL_VAS_A24; break; case VME_A32: addr |= CA91CX42_VSI_CTL_VAS_A32; break; case VME_USER1: addr |= CA91CX42_VSI_CTL_VAS_USER1; break; case VME_USER2: addr |= CA91CX42_VSI_CTL_VAS_USER2; break; case VME_A64: case VME_CRCSR: case VME_USER3: case VME_USER4: default: dev_err(ca91cx42_bridge->parent, "Invalid address space\n"); return -EINVAL; break; } /* * Bound address is a valid address for the window, adjust * accordingly */ vme_bound = vme_base + size; pci_offset = pci_base - vme_base; if ((i == 0) || (i == 4)) granularity = 0x1000; else granularity = 0x10000; if (vme_base & (granularity - 1)) { dev_err(ca91cx42_bridge->parent, "Invalid VME base " "alignment\n"); return -EINVAL; } if (vme_bound & (granularity - 1)) { dev_err(ca91cx42_bridge->parent, "Invalid VME bound " "alignment\n"); return -EINVAL; } if (pci_offset & (granularity - 1)) { dev_err(ca91cx42_bridge->parent, "Invalid PCI Offset " "alignment\n"); return -EINVAL; } /* Disable while we are mucking around */ temp_ctl = ioread32(bridge->base + CA91CX42_VSI_CTL[i]); temp_ctl &= ~CA91CX42_VSI_CTL_EN; iowrite32(temp_ctl, bridge->base + CA91CX42_VSI_CTL[i]); /* Setup mapping */ iowrite32(vme_base, bridge->base + CA91CX42_VSI_BS[i]); iowrite32(vme_bound, bridge->base + CA91CX42_VSI_BD[i]); iowrite32(pci_offset, bridge->base + CA91CX42_VSI_TO[i]); /* Setup address space */ temp_ctl &= ~CA91CX42_VSI_CTL_VAS_M; temp_ctl |= addr; /* Setup cycle types */ temp_ctl &= ~(CA91CX42_VSI_CTL_PGM_M | CA91CX42_VSI_CTL_SUPER_M); if (cycle & VME_SUPER) temp_ctl |= CA91CX42_VSI_CTL_SUPER_SUPR; if (cycle & VME_USER) temp_ctl |= CA91CX42_VSI_CTL_SUPER_NPRIV; if (cycle & VME_PROG) temp_ctl |= CA91CX42_VSI_CTL_PGM_PGM; if (cycle & VME_DATA) temp_ctl |= CA91CX42_VSI_CTL_PGM_DATA; /* Write ctl reg without enable */ iowrite32(temp_ctl, bridge->base + CA91CX42_VSI_CTL[i]); if (enabled) temp_ctl |= CA91CX42_VSI_CTL_EN; iowrite32(temp_ctl, bridge->base + CA91CX42_VSI_CTL[i]); return 0; } static int ca91cx42_slave_get(struct vme_slave_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, dma_addr_t *pci_base, u32 *aspace, u32 *cycle) { unsigned int i, granularity = 0, ctl = 0; unsigned long long vme_bound, pci_offset; struct ca91cx42_driver *bridge; bridge = image->parent->driver_priv; i = image->number; if ((i == 0) || (i == 4)) granularity = 0x1000; else granularity = 0x10000; /* Read Registers */ ctl = ioread32(bridge->base + CA91CX42_VSI_CTL[i]); *vme_base = ioread32(bridge->base + CA91CX42_VSI_BS[i]); vme_bound = ioread32(bridge->base + CA91CX42_VSI_BD[i]); pci_offset = ioread32(bridge->base + CA91CX42_VSI_TO[i]); *pci_base = (dma_addr_t)vme_base + pci_offset; *size = (unsigned long long)((vme_bound - *vme_base) + granularity); *enabled = 0; *aspace = 0; *cycle = 0; if (ctl & CA91CX42_VSI_CTL_EN) *enabled = 1; if ((ctl & CA91CX42_VSI_CTL_VAS_M) == CA91CX42_VSI_CTL_VAS_A16) *aspace = VME_A16; if ((ctl & CA91CX42_VSI_CTL_VAS_M) == CA91CX42_VSI_CTL_VAS_A24) *aspace = VME_A24; if ((ctl & CA91CX42_VSI_CTL_VAS_M) == CA91CX42_VSI_CTL_VAS_A32) *aspace = VME_A32; if ((ctl & CA91CX42_VSI_CTL_VAS_M) == CA91CX42_VSI_CTL_VAS_USER1) *aspace = VME_USER1; if ((ctl & CA91CX42_VSI_CTL_VAS_M) == CA91CX42_VSI_CTL_VAS_USER2) *aspace = VME_USER2; if (ctl & CA91CX42_VSI_CTL_SUPER_SUPR) *cycle |= VME_SUPER; if (ctl & CA91CX42_VSI_CTL_SUPER_NPRIV) *cycle |= VME_USER; if (ctl & CA91CX42_VSI_CTL_PGM_PGM) *cycle |= VME_PROG; if (ctl & CA91CX42_VSI_CTL_PGM_DATA) *cycle |= VME_DATA; return 0; } /* * Allocate and map PCI Resource */ static int ca91cx42_alloc_resource(struct vme_master_resource *image, unsigned long long size) { unsigned long long existing_size; int retval = 0; struct pci_dev *pdev; struct vme_bridge *ca91cx42_bridge; ca91cx42_bridge = image->parent; /* Find pci_dev container of dev */ if (ca91cx42_bridge->parent == NULL) { dev_err(ca91cx42_bridge->parent, "Dev entry NULL\n"); return -EINVAL; } pdev = container_of(ca91cx42_bridge->parent, struct pci_dev, dev); existing_size = (unsigned long long)(image->bus_resource.end - image->bus_resource.start); /* If the existing size is OK, return */ if (existing_size == (size - 1)) return 0; if (existing_size != 0) { iounmap(image->kern_base); image->kern_base = NULL; kfree(image->bus_resource.name); release_resource(&image->bus_resource); memset(&image->bus_resource, 0, sizeof(struct resource)); } if (image->bus_resource.name == NULL) { image->bus_resource.name = kmalloc(VMENAMSIZ+3, GFP_ATOMIC); if (image->bus_resource.name == NULL) { dev_err(ca91cx42_bridge->parent, "Unable to allocate " "memory for resource name\n"); retval = -ENOMEM; goto err_name; } } sprintf((char *)image->bus_resource.name, "%s.%d", ca91cx42_bridge->name, image->number); image->bus_resource.start = 0; image->bus_resource.end = (unsigned long)size; image->bus_resource.flags = IORESOURCE_MEM; retval = pci_bus_alloc_resource(pdev->bus, &image->bus_resource, size, 0x10000, PCIBIOS_MIN_MEM, 0, NULL, NULL); if (retval) { dev_err(ca91cx42_bridge->parent, "Failed to allocate mem " "resource for window %d size 0x%lx start 0x%lx\n", image->number, (unsigned long)size, (unsigned long)image->bus_resource.start); goto err_resource; } image->kern_base = ioremap_nocache( image->bus_resource.start, size); if (image->kern_base == NULL) { dev_err(ca91cx42_bridge->parent, "Failed to remap resource\n"); retval = -ENOMEM; goto err_remap; } return 0; err_remap: release_resource(&image->bus_resource); err_resource: kfree(image->bus_resource.name); memset(&image->bus_resource, 0, sizeof(struct resource)); err_name: return retval; } /* * Free and unmap PCI Resource */ static void ca91cx42_free_resource(struct vme_master_resource *image) { iounmap(image->kern_base); image->kern_base = NULL; release_resource(&image->bus_resource); kfree(image->bus_resource.name); memset(&image->bus_resource, 0, sizeof(struct resource)); } static int ca91cx42_master_set(struct vme_master_resource *image, int enabled, unsigned long long vme_base, unsigned long long size, u32 aspace, u32 cycle, u32 dwidth) { int retval = 0; unsigned int i, granularity = 0; unsigned int temp_ctl = 0; unsigned long long pci_bound, vme_offset, pci_base; struct vme_bridge *ca91cx42_bridge; struct ca91cx42_driver *bridge; ca91cx42_bridge = image->parent; bridge = ca91cx42_bridge->driver_priv; i = image->number; if ((i == 0) || (i == 4)) granularity = 0x1000; else granularity = 0x10000; /* Verify input data */ if (vme_base & (granularity - 1)) { dev_err(ca91cx42_bridge->parent, "Invalid VME Window " "alignment\n"); retval = -EINVAL; goto err_window; } if (size & (granularity - 1)) { dev_err(ca91cx42_bridge->parent, "Invalid VME Window " "alignment\n"); retval = -EINVAL; goto err_window; } spin_lock(&image->lock); /* * Let's allocate the resource here rather than further up the stack as * it avoids pushing loads of bus dependent stuff up the stack */ retval = ca91cx42_alloc_resource(image, size); if (retval) { spin_unlock(&image->lock); dev_err(ca91cx42_bridge->parent, "Unable to allocate memory " "for resource name\n"); retval = -ENOMEM; goto err_res; } pci_base = (unsigned long long)image->bus_resource.start; /* * Bound address is a valid address for the window, adjust * according to window granularity. */ pci_bound = pci_base + size; vme_offset = vme_base - pci_base; /* Disable while we are mucking around */ temp_ctl = ioread32(bridge->base + CA91CX42_LSI_CTL[i]); temp_ctl &= ~CA91CX42_LSI_CTL_EN; iowrite32(temp_ctl, bridge->base + CA91CX42_LSI_CTL[i]); /* Setup cycle types */ temp_ctl &= ~CA91CX42_LSI_CTL_VCT_M; if (cycle & VME_BLT) temp_ctl |= CA91CX42_LSI_CTL_VCT_BLT; if (cycle & VME_MBLT) temp_ctl |= CA91CX42_LSI_CTL_VCT_MBLT; /* Setup data width */ temp_ctl &= ~CA91CX42_LSI_CTL_VDW_M; switch (dwidth) { case VME_D8: temp_ctl |= CA91CX42_LSI_CTL_VDW_D8; break; case VME_D16: temp_ctl |= CA91CX42_LSI_CTL_VDW_D16; break; case VME_D32: temp_ctl |= CA91CX42_LSI_CTL_VDW_D32; break; case VME_D64: temp_ctl |= CA91CX42_LSI_CTL_VDW_D64; break; default: spin_unlock(&image->lock); dev_err(ca91cx42_bridge->parent, "Invalid data width\n"); retval = -EINVAL; goto err_dwidth; break; } /* Setup address space */ temp_ctl &= ~CA91CX42_LSI_CTL_VAS_M; switch (aspace) { case VME_A16: temp_ctl |= CA91CX42_LSI_CTL_VAS_A16; break; case VME_A24: temp_ctl |= CA91CX42_LSI_CTL_VAS_A24; break; case VME_A32: temp_ctl |= CA91CX42_LSI_CTL_VAS_A32; break; case VME_CRCSR: temp_ctl |= CA91CX42_LSI_CTL_VAS_CRCSR; break; case VME_USER1: temp_ctl |= CA91CX42_LSI_CTL_VAS_USER1; break; case VME_USER2: temp_ctl |= CA91CX42_LSI_CTL_VAS_USER2; break; case VME_A64: case VME_USER3: case VME_USER4: default: spin_unlock(&image->lock); dev_err(ca91cx42_bridge->parent, "Invalid address space\n"); retval = -EINVAL; goto err_aspace; break; } temp_ctl &= ~(CA91CX42_LSI_CTL_PGM_M | CA91CX42_LSI_CTL_SUPER_M); if (cycle & VME_SUPER) temp_ctl |= CA91CX42_LSI_CTL_SUPER_SUPR; if (cycle & VME_PROG) temp_ctl |= CA91CX42_LSI_CTL_PGM_PGM; /* Setup mapping */ iowrite32(pci_base, bridge->base + CA91CX42_LSI_BS[i]); iowrite32(pci_bound, bridge->base + CA91CX42_LSI_BD[i]); iowrite32(vme_offset, bridge->base + CA91CX42_LSI_TO[i]); /* Write ctl reg without enable */ iowrite32(temp_ctl, bridge->base + CA91CX42_LSI_CTL[i]); if (enabled) temp_ctl |= CA91CX42_LSI_CTL_EN; iowrite32(temp_ctl, bridge->base + CA91CX42_LSI_CTL[i]); spin_unlock(&image->lock); return 0; err_aspace: err_dwidth: ca91cx42_free_resource(image); err_res: err_window: return retval; } static int __ca91cx42_master_get(struct vme_master_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { unsigned int i, ctl; unsigned long long pci_base, pci_bound, vme_offset; struct ca91cx42_driver *bridge; bridge = image->parent->driver_priv; i = image->number; ctl = ioread32(bridge->base + CA91CX42_LSI_CTL[i]); pci_base = ioread32(bridge->base + CA91CX42_LSI_BS[i]); vme_offset = ioread32(bridge->base + CA91CX42_LSI_TO[i]); pci_bound = ioread32(bridge->base + CA91CX42_LSI_BD[i]); *vme_base = pci_base + vme_offset; *size = (unsigned long long)(pci_bound - pci_base); *enabled = 0; *aspace = 0; *cycle = 0; *dwidth = 0; if (ctl & CA91CX42_LSI_CTL_EN) *enabled = 1; /* Setup address space */ switch (ctl & CA91CX42_LSI_CTL_VAS_M) { case CA91CX42_LSI_CTL_VAS_A16: *aspace = VME_A16; break; case CA91CX42_LSI_CTL_VAS_A24: *aspace = VME_A24; break; case CA91CX42_LSI_CTL_VAS_A32: *aspace = VME_A32; break; case CA91CX42_LSI_CTL_VAS_CRCSR: *aspace = VME_CRCSR; break; case CA91CX42_LSI_CTL_VAS_USER1: *aspace = VME_USER1; break; case CA91CX42_LSI_CTL_VAS_USER2: *aspace = VME_USER2; break; } /* XXX Not sure howto check for MBLT */ /* Setup cycle types */ if (ctl & CA91CX42_LSI_CTL_VCT_BLT) *cycle |= VME_BLT; else *cycle |= VME_SCT; if (ctl & CA91CX42_LSI_CTL_SUPER_SUPR) *cycle |= VME_SUPER; else *cycle |= VME_USER; if (ctl & CA91CX42_LSI_CTL_PGM_PGM) *cycle = VME_PROG; else *cycle = VME_DATA; /* Setup data width */ switch (ctl & CA91CX42_LSI_CTL_VDW_M) { case CA91CX42_LSI_CTL_VDW_D8: *dwidth = VME_D8; break; case CA91CX42_LSI_CTL_VDW_D16: *dwidth = VME_D16; break; case CA91CX42_LSI_CTL_VDW_D32: *dwidth = VME_D32; break; case CA91CX42_LSI_CTL_VDW_D64: *dwidth = VME_D64; break; } return 0; } static int ca91cx42_master_get(struct vme_master_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { int retval; spin_lock(&image->lock); retval = __ca91cx42_master_get(image, enabled, vme_base, size, aspace, cycle, dwidth); spin_unlock(&image->lock); return retval; } static ssize_t ca91cx42_master_read(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { ssize_t retval; void __iomem *addr = image->kern_base + offset; unsigned int done = 0; unsigned int count32; if (count == 0) return 0; spin_lock(&image->lock); /* The following code handles VME address alignment. We cannot use * memcpy_xxx here because it may cut data transfers in to 8-bit * cycles when D16 or D32 cycles are required on the VME bus. * On the other hand, the bridge itself assures that the maximum data * cycle configured for the transfer is used and splits it * automatically for non-aligned addresses, so we don't want the * overhead of needlessly forcing small transfers for the entire cycle. */ if ((uintptr_t)addr & 0x1) { *(u8 *)buf = ioread8(addr); done += 1; if (done == count) goto out; } if ((uintptr_t)(addr + done) & 0x2) { if ((count - done) < 2) { *(u8 *)(buf + done) = ioread8(addr + done); done += 1; goto out; } else { *(u16 *)(buf + done) = ioread16(addr + done); done += 2; } } count32 = (count - done) & ~0x3; while (done < count32) { *(u32 *)(buf + done) = ioread32(addr + done); done += 4; } if ((count - done) & 0x2) { *(u16 *)(buf + done) = ioread16(addr + done); done += 2; } if ((count - done) & 0x1) { *(u8 *)(buf + done) = ioread8(addr + done); done += 1; } out: retval = count; spin_unlock(&image->lock); return retval; } static ssize_t ca91cx42_master_write(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { ssize_t retval; void __iomem *addr = image->kern_base + offset; unsigned int done = 0; unsigned int count32; if (count == 0) return 0; spin_lock(&image->lock); /* Here we apply for the same strategy we do in master_read * function in order to assure the correct cycles. */ if ((uintptr_t)addr & 0x1) { iowrite8(*(u8 *)buf, addr); done += 1; if (done == count) goto out; } if ((uintptr_t)(addr + done) & 0x2) { if ((count - done) < 2) { iowrite8(*(u8 *)(buf + done), addr + done); done += 1; goto out; } else { iowrite16(*(u16 *)(buf + done), addr + done); done += 2; } } count32 = (count - done) & ~0x3; while (done < count32) { iowrite32(*(u32 *)(buf + done), addr + done); done += 4; } if ((count - done) & 0x2) { iowrite16(*(u16 *)(buf + done), addr + done); done += 2; } if ((count - done) & 0x1) { iowrite8(*(u8 *)(buf + done), addr + done); done += 1; } out: retval = count; spin_unlock(&image->lock); return retval; } static unsigned int ca91cx42_master_rmw(struct vme_master_resource *image, unsigned int mask, unsigned int compare, unsigned int swap, loff_t offset) { u32 result; uintptr_t pci_addr; int i; struct ca91cx42_driver *bridge; struct device *dev; bridge = image->parent->driver_priv; dev = image->parent->parent; /* Find the PCI address that maps to the desired VME address */ i = image->number; /* Locking as we can only do one of these at a time */ mutex_lock(&bridge->vme_rmw); /* Lock image */ spin_lock(&image->lock); pci_addr = (uintptr_t)image->kern_base + offset; /* Address must be 4-byte aligned */ if (pci_addr & 0x3) { dev_err(dev, "RMW Address not 4-byte aligned\n"); result = -EINVAL; goto out; } /* Ensure RMW Disabled whilst configuring */ iowrite32(0, bridge->base + SCYC_CTL); /* Configure registers */ iowrite32(mask, bridge->base + SCYC_EN); iowrite32(compare, bridge->base + SCYC_CMP); iowrite32(swap, bridge->base + SCYC_SWP); iowrite32(pci_addr, bridge->base + SCYC_ADDR); /* Enable RMW */ iowrite32(CA91CX42_SCYC_CTL_CYC_RMW, bridge->base + SCYC_CTL); /* Kick process off with a read to the required address. */ result = ioread32(image->kern_base + offset); /* Disable RMW */ iowrite32(0, bridge->base + SCYC_CTL); out: spin_unlock(&image->lock); mutex_unlock(&bridge->vme_rmw); return result; } static int ca91cx42_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src, struct vme_dma_attr *dest, size_t count) { struct ca91cx42_dma_entry *entry, *prev; struct vme_dma_pci *pci_attr; struct vme_dma_vme *vme_attr; dma_addr_t desc_ptr; int retval = 0; struct device *dev; dev = list->parent->parent->parent; /* XXX descriptor must be aligned on 64-bit boundaries */ entry = kmalloc(sizeof(struct ca91cx42_dma_entry), GFP_KERNEL); if (entry == NULL) { dev_err(dev, "Failed to allocate memory for dma resource " "structure\n"); retval = -ENOMEM; goto err_mem; } /* Test descriptor alignment */ if ((unsigned long)&entry->descriptor & CA91CX42_DCPP_M) { dev_err(dev, "Descriptor not aligned to 16 byte boundary as " "required: %p\n", &entry->descriptor); retval = -EINVAL; goto err_align; } memset(&entry->descriptor, 0, sizeof(struct ca91cx42_dma_descriptor)); if (dest->type == VME_DMA_VME) { entry->descriptor.dctl |= CA91CX42_DCTL_L2V; vme_attr = dest->private; pci_attr = src->private; } else { vme_attr = src->private; pci_attr = dest->private; } /* Check we can do fulfill required attributes */ if ((vme_attr->aspace & ~(VME_A16 | VME_A24 | VME_A32 | VME_USER1 | VME_USER2)) != 0) { dev_err(dev, "Unsupported cycle type\n"); retval = -EINVAL; goto err_aspace; } if ((vme_attr->cycle & ~(VME_SCT | VME_BLT | VME_SUPER | VME_USER | VME_PROG | VME_DATA)) != 0) { dev_err(dev, "Unsupported cycle type\n"); retval = -EINVAL; goto err_cycle; } /* Check to see if we can fulfill source and destination */ if (!(((src->type == VME_DMA_PCI) && (dest->type == VME_DMA_VME)) || ((src->type == VME_DMA_VME) && (dest->type == VME_DMA_PCI)))) { dev_err(dev, "Cannot perform transfer with this " "source-destination combination\n"); retval = -EINVAL; goto err_direct; } /* Setup cycle types */ if (vme_attr->cycle & VME_BLT) entry->descriptor.dctl |= CA91CX42_DCTL_VCT_BLT; /* Setup data width */ switch (vme_attr->dwidth) { case VME_D8: entry->descriptor.dctl |= CA91CX42_DCTL_VDW_D8; break; case VME_D16: entry->descriptor.dctl |= CA91CX42_DCTL_VDW_D16; break; case VME_D32: entry->descriptor.dctl |= CA91CX42_DCTL_VDW_D32; break; case VME_D64: entry->descriptor.dctl |= CA91CX42_DCTL_VDW_D64; break; default: dev_err(dev, "Invalid data width\n"); return -EINVAL; } /* Setup address space */ switch (vme_attr->aspace) { case VME_A16: entry->descriptor.dctl |= CA91CX42_DCTL_VAS_A16; break; case VME_A24: entry->descriptor.dctl |= CA91CX42_DCTL_VAS_A24; break; case VME_A32: entry->descriptor.dctl |= CA91CX42_DCTL_VAS_A32; break; case VME_USER1: entry->descriptor.dctl |= CA91CX42_DCTL_VAS_USER1; break; case VME_USER2: entry->descriptor.dctl |= CA91CX42_DCTL_VAS_USER2; break; default: dev_err(dev, "Invalid address space\n"); return -EINVAL; break; } if (vme_attr->cycle & VME_SUPER) entry->descriptor.dctl |= CA91CX42_DCTL_SUPER_SUPR; if (vme_attr->cycle & VME_PROG) entry->descriptor.dctl |= CA91CX42_DCTL_PGM_PGM; entry->descriptor.dtbc = count; entry->descriptor.dla = pci_attr->address; entry->descriptor.dva = vme_attr->address; entry->descriptor.dcpp = CA91CX42_DCPP_NULL; /* Add to list */ list_add_tail(&entry->list, &list->entries); /* Fill out previous descriptors "Next Address" */ if (entry->list.prev != &list->entries) { prev = list_entry(entry->list.prev, struct ca91cx42_dma_entry, list); /* We need the bus address for the pointer */ desc_ptr = virt_to_bus(&entry->descriptor); prev->descriptor.dcpp = desc_ptr & ~CA91CX42_DCPP_M; } return 0; err_cycle: err_aspace: err_direct: err_align: kfree(entry); err_mem: return retval; } static int ca91cx42_dma_busy(struct vme_bridge *ca91cx42_bridge) { u32 tmp; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; tmp = ioread32(bridge->base + DGCS); if (tmp & CA91CX42_DGCS_ACT) return 0; else return 1; } static int ca91cx42_dma_list_exec(struct vme_dma_list *list) { struct vme_dma_resource *ctrlr; struct ca91cx42_dma_entry *entry; int retval; dma_addr_t bus_addr; u32 val; struct device *dev; struct ca91cx42_driver *bridge; ctrlr = list->parent; bridge = ctrlr->parent->driver_priv; dev = ctrlr->parent->parent; mutex_lock(&ctrlr->mtx); if (!(list_empty(&ctrlr->running))) { /* * XXX We have an active DMA transfer and currently haven't * sorted out the mechanism for "pending" DMA transfers. * Return busy. */ /* Need to add to pending here */ mutex_unlock(&ctrlr->mtx); return -EBUSY; } else { list_add(&list->list, &ctrlr->running); } /* Get first bus address and write into registers */ entry = list_first_entry(&list->entries, struct ca91cx42_dma_entry, list); bus_addr = virt_to_bus(&entry->descriptor); mutex_unlock(&ctrlr->mtx); iowrite32(0, bridge->base + DTBC); iowrite32(bus_addr & ~CA91CX42_DCPP_M, bridge->base + DCPP); /* Start the operation */ val = ioread32(bridge->base + DGCS); /* XXX Could set VMEbus On and Off Counters here */ val &= (CA91CX42_DGCS_VON_M | CA91CX42_DGCS_VOFF_M); val |= (CA91CX42_DGCS_CHAIN | CA91CX42_DGCS_STOP | CA91CX42_DGCS_HALT | CA91CX42_DGCS_DONE | CA91CX42_DGCS_LERR | CA91CX42_DGCS_VERR | CA91CX42_DGCS_PERR); iowrite32(val, bridge->base + DGCS); val |= CA91CX42_DGCS_GO; iowrite32(val, bridge->base + DGCS); retval = wait_event_interruptible(bridge->dma_queue, ca91cx42_dma_busy(ctrlr->parent)); if (retval) { val = ioread32(bridge->base + DGCS); iowrite32(val | CA91CX42_DGCS_STOP_REQ, bridge->base + DGCS); /* Wait for the operation to abort */ wait_event(bridge->dma_queue, ca91cx42_dma_busy(ctrlr->parent)); retval = -EINTR; goto exit; } /* * Read status register, this register is valid until we kick off a * new transfer. */ val = ioread32(bridge->base + DGCS); if (val & (CA91CX42_DGCS_LERR | CA91CX42_DGCS_VERR | CA91CX42_DGCS_PERR)) { dev_err(dev, "ca91c042: DMA Error. DGCS=%08X\n", val); val = ioread32(bridge->base + DCTL); retval = -EIO; } exit: /* Remove list from running list */ mutex_lock(&ctrlr->mtx); list_del(&list->list); mutex_unlock(&ctrlr->mtx); return retval; } static int ca91cx42_dma_list_empty(struct vme_dma_list *list) { struct list_head *pos, *temp; struct ca91cx42_dma_entry *entry; /* detach and free each entry */ list_for_each_safe(pos, temp, &list->entries) { list_del(pos); entry = list_entry(pos, struct ca91cx42_dma_entry, list); kfree(entry); } return 0; } /* * All 4 location monitors reside at the same base - this is therefore a * system wide configuration. * * This does not enable the LM monitor - that should be done when the first * callback is attached and disabled when the last callback is removed. */ static int ca91cx42_lm_set(struct vme_lm_resource *lm, unsigned long long lm_base, u32 aspace, u32 cycle) { u32 temp_base, lm_ctl = 0; int i; struct ca91cx42_driver *bridge; struct device *dev; bridge = lm->parent->driver_priv; dev = lm->parent->parent; /* Check the alignment of the location monitor */ temp_base = (u32)lm_base; if (temp_base & 0xffff) { dev_err(dev, "Location monitor must be aligned to 64KB " "boundary"); return -EINVAL; } mutex_lock(&lm->mtx); /* If we already have a callback attached, we can't move it! */ for (i = 0; i < lm->monitors; i++) { if (bridge->lm_callback[i] != NULL) { mutex_unlock(&lm->mtx); dev_err(dev, "Location monitor callback attached, " "can't reset\n"); return -EBUSY; } } switch (aspace) { case VME_A16: lm_ctl |= CA91CX42_LM_CTL_AS_A16; break; case VME_A24: lm_ctl |= CA91CX42_LM_CTL_AS_A24; break; case VME_A32: lm_ctl |= CA91CX42_LM_CTL_AS_A32; break; default: mutex_unlock(&lm->mtx); dev_err(dev, "Invalid address space\n"); return -EINVAL; break; } if (cycle & VME_SUPER) lm_ctl |= CA91CX42_LM_CTL_SUPR; if (cycle & VME_USER) lm_ctl |= CA91CX42_LM_CTL_NPRIV; if (cycle & VME_PROG) lm_ctl |= CA91CX42_LM_CTL_PGM; if (cycle & VME_DATA) lm_ctl |= CA91CX42_LM_CTL_DATA; iowrite32(lm_base, bridge->base + LM_BS); iowrite32(lm_ctl, bridge->base + LM_CTL); mutex_unlock(&lm->mtx); return 0; } /* Get configuration of the callback monitor and return whether it is enabled * or disabled. */ static int ca91cx42_lm_get(struct vme_lm_resource *lm, unsigned long long *lm_base, u32 *aspace, u32 *cycle) { u32 lm_ctl, enabled = 0; struct ca91cx42_driver *bridge; bridge = lm->parent->driver_priv; mutex_lock(&lm->mtx); *lm_base = (unsigned long long)ioread32(bridge->base + LM_BS); lm_ctl = ioread32(bridge->base + LM_CTL); if (lm_ctl & CA91CX42_LM_CTL_EN) enabled = 1; if ((lm_ctl & CA91CX42_LM_CTL_AS_M) == CA91CX42_LM_CTL_AS_A16) *aspace = VME_A16; if ((lm_ctl & CA91CX42_LM_CTL_AS_M) == CA91CX42_LM_CTL_AS_A24) *aspace = VME_A24; if ((lm_ctl & CA91CX42_LM_CTL_AS_M) == CA91CX42_LM_CTL_AS_A32) *aspace = VME_A32; *cycle = 0; if (lm_ctl & CA91CX42_LM_CTL_SUPR) *cycle |= VME_SUPER; if (lm_ctl & CA91CX42_LM_CTL_NPRIV) *cycle |= VME_USER; if (lm_ctl & CA91CX42_LM_CTL_PGM) *cycle |= VME_PROG; if (lm_ctl & CA91CX42_LM_CTL_DATA) *cycle |= VME_DATA; mutex_unlock(&lm->mtx); return enabled; } /* * Attach a callback to a specific location monitor. * * Callback will be passed the monitor triggered. */ static int ca91cx42_lm_attach(struct vme_lm_resource *lm, int monitor, void (*callback)(int)) { u32 lm_ctl, tmp; struct ca91cx42_driver *bridge; struct device *dev; bridge = lm->parent->driver_priv; dev = lm->parent->parent; mutex_lock(&lm->mtx); /* Ensure that the location monitor is configured - need PGM or DATA */ lm_ctl = ioread32(bridge->base + LM_CTL); if ((lm_ctl & (CA91CX42_LM_CTL_PGM | CA91CX42_LM_CTL_DATA)) == 0) { mutex_unlock(&lm->mtx); dev_err(dev, "Location monitor not properly configured\n"); return -EINVAL; } /* Check that a callback isn't already attached */ if (bridge->lm_callback[monitor] != NULL) { mutex_unlock(&lm->mtx); dev_err(dev, "Existing callback attached\n"); return -EBUSY; } /* Attach callback */ bridge->lm_callback[monitor] = callback; /* Enable Location Monitor interrupt */ tmp = ioread32(bridge->base + LINT_EN); tmp |= CA91CX42_LINT_LM[monitor]; iowrite32(tmp, bridge->base + LINT_EN); /* Ensure that global Location Monitor Enable set */ if ((lm_ctl & CA91CX42_LM_CTL_EN) == 0) { lm_ctl |= CA91CX42_LM_CTL_EN; iowrite32(lm_ctl, bridge->base + LM_CTL); } mutex_unlock(&lm->mtx); return 0; } /* * Detach a callback function forn a specific location monitor. */ static int ca91cx42_lm_detach(struct vme_lm_resource *lm, int monitor) { u32 tmp; struct ca91cx42_driver *bridge; bridge = lm->parent->driver_priv; mutex_lock(&lm->mtx); /* Disable Location Monitor and ensure previous interrupts are clear */ tmp = ioread32(bridge->base + LINT_EN); tmp &= ~CA91CX42_LINT_LM[monitor]; iowrite32(tmp, bridge->base + LINT_EN); iowrite32(CA91CX42_LINT_LM[monitor], bridge->base + LINT_STAT); /* Detach callback */ bridge->lm_callback[monitor] = NULL; /* If all location monitors disabled, disable global Location Monitor */ if ((tmp & (CA91CX42_LINT_LM0 | CA91CX42_LINT_LM1 | CA91CX42_LINT_LM2 | CA91CX42_LINT_LM3)) == 0) { tmp = ioread32(bridge->base + LM_CTL); tmp &= ~CA91CX42_LM_CTL_EN; iowrite32(tmp, bridge->base + LM_CTL); } mutex_unlock(&lm->mtx); return 0; } static int ca91cx42_slot_get(struct vme_bridge *ca91cx42_bridge) { u32 slot = 0; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; if (!geoid) { slot = ioread32(bridge->base + VCSR_BS); slot = ((slot & CA91CX42_VCSR_BS_SLOT_M) >> 27); } else slot = geoid; return (int)slot; } static void *ca91cx42_alloc_consistent(struct device *parent, size_t size, dma_addr_t *dma) { struct pci_dev *pdev; /* Find pci_dev container of dev */ pdev = container_of(parent, struct pci_dev, dev); return pci_alloc_consistent(pdev, size, dma); } static void ca91cx42_free_consistent(struct device *parent, size_t size, void *vaddr, dma_addr_t dma) { struct pci_dev *pdev; /* Find pci_dev container of dev */ pdev = container_of(parent, struct pci_dev, dev); pci_free_consistent(pdev, size, vaddr, dma); } /* * Configure CR/CSR space * * Access to the CR/CSR can be configured at power-up. The location of the * CR/CSR registers in the CR/CSR address space is determined by the boards * Auto-ID or Geographic address. This function ensures that the window is * enabled at an offset consistent with the boards geopgraphic address. */ static int ca91cx42_crcsr_init(struct vme_bridge *ca91cx42_bridge, struct pci_dev *pdev) { unsigned int crcsr_addr; int tmp, slot; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; slot = ca91cx42_slot_get(ca91cx42_bridge); /* Write CSR Base Address if slot ID is supplied as a module param */ if (geoid) iowrite32(geoid << 27, bridge->base + VCSR_BS); dev_info(&pdev->dev, "CR/CSR Offset: %d\n", slot); if (slot == 0) { dev_err(&pdev->dev, "Slot number is unset, not configuring " "CR/CSR space\n"); return -EINVAL; } /* Allocate mem for CR/CSR image */ bridge->crcsr_kernel = pci_zalloc_consistent(pdev, VME_CRCSR_BUF_SIZE, &bridge->crcsr_bus); if (bridge->crcsr_kernel == NULL) { dev_err(&pdev->dev, "Failed to allocate memory for CR/CSR " "image\n"); return -ENOMEM; } crcsr_addr = slot * (512 * 1024); iowrite32(bridge->crcsr_bus - crcsr_addr, bridge->base + VCSR_TO); tmp = ioread32(bridge->base + VCSR_CTL); tmp |= CA91CX42_VCSR_CTL_EN; iowrite32(tmp, bridge->base + VCSR_CTL); return 0; } static void ca91cx42_crcsr_exit(struct vme_bridge *ca91cx42_bridge, struct pci_dev *pdev) { u32 tmp; struct ca91cx42_driver *bridge; bridge = ca91cx42_bridge->driver_priv; /* Turn off CR/CSR space */ tmp = ioread32(bridge->base + VCSR_CTL); tmp &= ~CA91CX42_VCSR_CTL_EN; iowrite32(tmp, bridge->base + VCSR_CTL); /* Free image */ iowrite32(0, bridge->base + VCSR_TO); pci_free_consistent(pdev, VME_CRCSR_BUF_SIZE, bridge->crcsr_kernel, bridge->crcsr_bus); } static int ca91cx42_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int retval, i; u32 data; struct list_head *pos = NULL, *n; struct vme_bridge *ca91cx42_bridge; struct ca91cx42_driver *ca91cx42_device; struct vme_master_resource *master_image; struct vme_slave_resource *slave_image; struct vme_dma_resource *dma_ctrlr; struct vme_lm_resource *lm; /* We want to support more than one of each bridge so we need to * dynamically allocate the bridge structure */ ca91cx42_bridge = kzalloc(sizeof(struct vme_bridge), GFP_KERNEL); if (ca91cx42_bridge == NULL) { dev_err(&pdev->dev, "Failed to allocate memory for device " "structure\n"); retval = -ENOMEM; goto err_struct; } ca91cx42_device = kzalloc(sizeof(struct ca91cx42_driver), GFP_KERNEL); if (ca91cx42_device == NULL) { dev_err(&pdev->dev, "Failed to allocate memory for device " "structure\n"); retval = -ENOMEM; goto err_driver; } ca91cx42_bridge->driver_priv = ca91cx42_device; /* Enable the device */ retval = pci_enable_device(pdev); if (retval) { dev_err(&pdev->dev, "Unable to enable device\n"); goto err_enable; } /* Map Registers */ retval = pci_request_regions(pdev, driver_name); if (retval) { dev_err(&pdev->dev, "Unable to reserve resources\n"); goto err_resource; } /* map registers in BAR 0 */ ca91cx42_device->base = ioremap_nocache(pci_resource_start(pdev, 0), 4096); if (!ca91cx42_device->base) { dev_err(&pdev->dev, "Unable to remap CRG region\n"); retval = -EIO; goto err_remap; } /* Check to see if the mapping worked out */ data = ioread32(ca91cx42_device->base + CA91CX42_PCI_ID) & 0x0000FFFF; if (data != PCI_VENDOR_ID_TUNDRA) { dev_err(&pdev->dev, "PCI_ID check failed\n"); retval = -EIO; goto err_test; } /* Initialize wait queues & mutual exclusion flags */ init_waitqueue_head(&ca91cx42_device->dma_queue); init_waitqueue_head(&ca91cx42_device->iack_queue); mutex_init(&ca91cx42_device->vme_int); mutex_init(&ca91cx42_device->vme_rmw); ca91cx42_bridge->parent = &pdev->dev; strcpy(ca91cx42_bridge->name, driver_name); /* Setup IRQ */ retval = ca91cx42_irq_init(ca91cx42_bridge); if (retval != 0) { dev_err(&pdev->dev, "Chip Initialization failed.\n"); goto err_irq; } /* Add master windows to list */ INIT_LIST_HEAD(&ca91cx42_bridge->master_resources); for (i = 0; i < CA91C142_MAX_MASTER; i++) { master_image = kmalloc(sizeof(struct vme_master_resource), GFP_KERNEL); if (master_image == NULL) { dev_err(&pdev->dev, "Failed to allocate memory for " "master resource structure\n"); retval = -ENOMEM; goto err_master; } master_image->parent = ca91cx42_bridge; spin_lock_init(&master_image->lock); master_image->locked = 0; master_image->number = i; master_image->address_attr = VME_A16 | VME_A24 | VME_A32 | VME_CRCSR | VME_USER1 | VME_USER2; master_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT | VME_SUPER | VME_USER | VME_PROG | VME_DATA; master_image->width_attr = VME_D8 | VME_D16 | VME_D32 | VME_D64; memset(&master_image->bus_resource, 0, sizeof(struct resource)); master_image->kern_base = NULL; list_add_tail(&master_image->list, &ca91cx42_bridge->master_resources); } /* Add slave windows to list */ INIT_LIST_HEAD(&ca91cx42_bridge->slave_resources); for (i = 0; i < CA91C142_MAX_SLAVE; i++) { slave_image = kmalloc(sizeof(struct vme_slave_resource), GFP_KERNEL); if (slave_image == NULL) { dev_err(&pdev->dev, "Failed to allocate memory for " "slave resource structure\n"); retval = -ENOMEM; goto err_slave; } slave_image->parent = ca91cx42_bridge; mutex_init(&slave_image->mtx); slave_image->locked = 0; slave_image->number = i; slave_image->address_attr = VME_A24 | VME_A32 | VME_USER1 | VME_USER2; /* Only windows 0 and 4 support A16 */ if (i == 0 || i == 4) slave_image->address_attr |= VME_A16; slave_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT | VME_SUPER | VME_USER | VME_PROG | VME_DATA; list_add_tail(&slave_image->list, &ca91cx42_bridge->slave_resources); } /* Add dma engines to list */ INIT_LIST_HEAD(&ca91cx42_bridge->dma_resources); for (i = 0; i < CA91C142_MAX_DMA; i++) { dma_ctrlr = kmalloc(sizeof(struct vme_dma_resource), GFP_KERNEL); if (dma_ctrlr == NULL) { dev_err(&pdev->dev, "Failed to allocate memory for " "dma resource structure\n"); retval = -ENOMEM; goto err_dma; } dma_ctrlr->parent = ca91cx42_bridge; mutex_init(&dma_ctrlr->mtx); dma_ctrlr->locked = 0; dma_ctrlr->number = i; dma_ctrlr->route_attr = VME_DMA_VME_TO_MEM | VME_DMA_MEM_TO_VME; INIT_LIST_HEAD(&dma_ctrlr->pending); INIT_LIST_HEAD(&dma_ctrlr->running); list_add_tail(&dma_ctrlr->list, &ca91cx42_bridge->dma_resources); } /* Add location monitor to list */ INIT_LIST_HEAD(&ca91cx42_bridge->lm_resources); lm = kmalloc(sizeof(struct vme_lm_resource), GFP_KERNEL); if (lm == NULL) { dev_err(&pdev->dev, "Failed to allocate memory for " "location monitor resource structure\n"); retval = -ENOMEM; goto err_lm; } lm->parent = ca91cx42_bridge; mutex_init(&lm->mtx); lm->locked = 0; lm->number = 1; lm->monitors = 4; list_add_tail(&lm->list, &ca91cx42_bridge->lm_resources); ca91cx42_bridge->slave_get = ca91cx42_slave_get; ca91cx42_bridge->slave_set = ca91cx42_slave_set; ca91cx42_bridge->master_get = ca91cx42_master_get; ca91cx42_bridge->master_set = ca91cx42_master_set; ca91cx42_bridge->master_read = ca91cx42_master_read; ca91cx42_bridge->master_write = ca91cx42_master_write; ca91cx42_bridge->master_rmw = ca91cx42_master_rmw; ca91cx42_bridge->dma_list_add = ca91cx42_dma_list_add; ca91cx42_bridge->dma_list_exec = ca91cx42_dma_list_exec; ca91cx42_bridge->dma_list_empty = ca91cx42_dma_list_empty; ca91cx42_bridge->irq_set = ca91cx42_irq_set; ca91cx42_bridge->irq_generate = ca91cx42_irq_generate; ca91cx42_bridge->lm_set = ca91cx42_lm_set; ca91cx42_bridge->lm_get = ca91cx42_lm_get; ca91cx42_bridge->lm_attach = ca91cx42_lm_attach; ca91cx42_bridge->lm_detach = ca91cx42_lm_detach; ca91cx42_bridge->slot_get = ca91cx42_slot_get; ca91cx42_bridge->alloc_consistent = ca91cx42_alloc_consistent; ca91cx42_bridge->free_consistent = ca91cx42_free_consistent; data = ioread32(ca91cx42_device->base + MISC_CTL); dev_info(&pdev->dev, "Board is%s the VME system controller\n", (data & CA91CX42_MISC_CTL_SYSCON) ? "" : " not"); dev_info(&pdev->dev, "Slot ID is %d\n", ca91cx42_slot_get(ca91cx42_bridge)); if (ca91cx42_crcsr_init(ca91cx42_bridge, pdev)) dev_err(&pdev->dev, "CR/CSR configuration failed.\n"); /* Need to save ca91cx42_bridge pointer locally in link list for use in * ca91cx42_remove() */ retval = vme_register_bridge(ca91cx42_bridge); if (retval != 0) { dev_err(&pdev->dev, "Chip Registration failed.\n"); goto err_reg; } pci_set_drvdata(pdev, ca91cx42_bridge); return 0; err_reg: ca91cx42_crcsr_exit(ca91cx42_bridge, pdev); err_lm: /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->lm_resources) { lm = list_entry(pos, struct vme_lm_resource, list); list_del(pos); kfree(lm); } err_dma: /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->dma_resources) { dma_ctrlr = list_entry(pos, struct vme_dma_resource, list); list_del(pos); kfree(dma_ctrlr); } err_slave: /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->slave_resources) { slave_image = list_entry(pos, struct vme_slave_resource, list); list_del(pos); kfree(slave_image); } err_master: /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->master_resources) { master_image = list_entry(pos, struct vme_master_resource, list); list_del(pos); kfree(master_image); } ca91cx42_irq_exit(ca91cx42_device, pdev); err_irq: err_test: iounmap(ca91cx42_device->base); err_remap: pci_release_regions(pdev); err_resource: pci_disable_device(pdev); err_enable: kfree(ca91cx42_device); err_driver: kfree(ca91cx42_bridge); err_struct: return retval; } static void ca91cx42_remove(struct pci_dev *pdev) { struct list_head *pos = NULL, *n; struct vme_master_resource *master_image; struct vme_slave_resource *slave_image; struct vme_dma_resource *dma_ctrlr; struct vme_lm_resource *lm; struct ca91cx42_driver *bridge; struct vme_bridge *ca91cx42_bridge = pci_get_drvdata(pdev); bridge = ca91cx42_bridge->driver_priv; /* Turn off Ints */ iowrite32(0, bridge->base + LINT_EN); /* Turn off the windows */ iowrite32(0x00800000, bridge->base + LSI0_CTL); iowrite32(0x00800000, bridge->base + LSI1_CTL); iowrite32(0x00800000, bridge->base + LSI2_CTL); iowrite32(0x00800000, bridge->base + LSI3_CTL); iowrite32(0x00800000, bridge->base + LSI4_CTL); iowrite32(0x00800000, bridge->base + LSI5_CTL); iowrite32(0x00800000, bridge->base + LSI6_CTL); iowrite32(0x00800000, bridge->base + LSI7_CTL); iowrite32(0x00F00000, bridge->base + VSI0_CTL); iowrite32(0x00F00000, bridge->base + VSI1_CTL); iowrite32(0x00F00000, bridge->base + VSI2_CTL); iowrite32(0x00F00000, bridge->base + VSI3_CTL); iowrite32(0x00F00000, bridge->base + VSI4_CTL); iowrite32(0x00F00000, bridge->base + VSI5_CTL); iowrite32(0x00F00000, bridge->base + VSI6_CTL); iowrite32(0x00F00000, bridge->base + VSI7_CTL); vme_unregister_bridge(ca91cx42_bridge); ca91cx42_crcsr_exit(ca91cx42_bridge, pdev); /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->lm_resources) { lm = list_entry(pos, struct vme_lm_resource, list); list_del(pos); kfree(lm); } /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->dma_resources) { dma_ctrlr = list_entry(pos, struct vme_dma_resource, list); list_del(pos); kfree(dma_ctrlr); } /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->slave_resources) { slave_image = list_entry(pos, struct vme_slave_resource, list); list_del(pos); kfree(slave_image); } /* resources are stored in link list */ list_for_each_safe(pos, n, &ca91cx42_bridge->master_resources) { master_image = list_entry(pos, struct vme_master_resource, list); list_del(pos); kfree(master_image); } ca91cx42_irq_exit(bridge, pdev); iounmap(bridge->base); pci_release_regions(pdev); pci_disable_device(pdev); kfree(ca91cx42_bridge); } module_pci_driver(ca91cx42_driver); MODULE_PARM_DESC(geoid, "Override geographical addressing"); module_param(geoid, int, 0); MODULE_DESCRIPTION("VME driver for the Tundra Universe II VME bridge"); MODULE_LICENSE("GPL");