/* * fs/f2fs/node.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/mpage.h> #include <linux/backing-dev.h> #include <linux/blkdev.h> #include <linux/pagevec.h> #include <linux/swap.h> #include "f2fs.h" #include "node.h" #include "segment.h" #include "trace.h" #include <trace/events/f2fs.h> #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) static struct kmem_cache *nat_entry_slab; static struct kmem_cache *free_nid_slab; static struct kmem_cache *nat_entry_set_slab; bool available_free_memory(struct f2fs_sb_info *sbi, int type) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct sysinfo val; unsigned long avail_ram; unsigned long mem_size = 0; bool res = false; si_meminfo(&val); /* only uses low memory */ avail_ram = val.totalram - val.totalhigh; /* * give 25%, 25%, 50%, 50%, 50% memory for each components respectively */ if (type == FREE_NIDS) { mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> PAGE_CACHE_SHIFT; res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); } else if (type == NAT_ENTRIES) { mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> PAGE_CACHE_SHIFT; res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); } else if (type == DIRTY_DENTS) { if (sbi->sb->s_bdi->wb.dirty_exceeded) return false; mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); } else if (type == INO_ENTRIES) { int i; for (i = 0; i <= UPDATE_INO; i++) mem_size += (sbi->im[i].ino_num * sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT; res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); } else if (type == EXTENT_CACHE) { mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) + atomic_read(&sbi->total_ext_node) * sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT; res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); } else { if (sbi->sb->s_bdi->wb.dirty_exceeded) return false; } return res; } static void clear_node_page_dirty(struct page *page) { struct address_space *mapping = page->mapping; unsigned int long flags; if (PageDirty(page)) { spin_lock_irqsave(&mapping->tree_lock, flags); radix_tree_tag_clear(&mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); spin_unlock_irqrestore(&mapping->tree_lock, flags); clear_page_dirty_for_io(page); dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); } ClearPageUptodate(page); } static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) { pgoff_t index = current_nat_addr(sbi, nid); return get_meta_page(sbi, index); } static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) { struct page *src_page; struct page *dst_page; pgoff_t src_off; pgoff_t dst_off; void *src_addr; void *dst_addr; struct f2fs_nm_info *nm_i = NM_I(sbi); src_off = current_nat_addr(sbi, nid); dst_off = next_nat_addr(sbi, src_off); /* get current nat block page with lock */ src_page = get_meta_page(sbi, src_off); dst_page = grab_meta_page(sbi, dst_off); f2fs_bug_on(sbi, PageDirty(src_page)); src_addr = page_address(src_page); dst_addr = page_address(dst_page); memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); set_page_dirty(dst_page); f2fs_put_page(src_page, 1); set_to_next_nat(nm_i, nid); return dst_page; } static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) { return radix_tree_lookup(&nm_i->nat_root, n); } static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t start, unsigned int nr, struct nat_entry **ep) { return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); } static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) { list_del(&e->list); radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); nm_i->nat_cnt--; kmem_cache_free(nat_entry_slab, e); } static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, struct nat_entry *ne) { nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); struct nat_entry_set *head; if (get_nat_flag(ne, IS_DIRTY)) return; head = radix_tree_lookup(&nm_i->nat_set_root, set); if (!head) { head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); INIT_LIST_HEAD(&head->entry_list); INIT_LIST_HEAD(&head->set_list); head->set = set; head->entry_cnt = 0; f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); } list_move_tail(&ne->list, &head->entry_list); nm_i->dirty_nat_cnt++; head->entry_cnt++; set_nat_flag(ne, IS_DIRTY, true); } static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, struct nat_entry *ne) { nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); struct nat_entry_set *head; head = radix_tree_lookup(&nm_i->nat_set_root, set); if (head) { list_move_tail(&ne->list, &nm_i->nat_entries); set_nat_flag(ne, IS_DIRTY, false); head->entry_cnt--; nm_i->dirty_nat_cnt--; } } static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, nid_t start, unsigned int nr, struct nat_entry_set **ep) { return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, start, nr); } int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct nat_entry *e; bool need = false; down_read(&nm_i->nat_tree_lock); e = __lookup_nat_cache(nm_i, nid); if (e) { if (!get_nat_flag(e, IS_CHECKPOINTED) && !get_nat_flag(e, HAS_FSYNCED_INODE)) need = true; } up_read(&nm_i->nat_tree_lock); return need; } bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct nat_entry *e; bool is_cp = true; down_read(&nm_i->nat_tree_lock); e = __lookup_nat_cache(nm_i, nid); if (e && !get_nat_flag(e, IS_CHECKPOINTED)) is_cp = false; up_read(&nm_i->nat_tree_lock); return is_cp; } bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct nat_entry *e; bool need_update = true; down_read(&nm_i->nat_tree_lock); e = __lookup_nat_cache(nm_i, ino); if (e && get_nat_flag(e, HAS_LAST_FSYNC) && (get_nat_flag(e, IS_CHECKPOINTED) || get_nat_flag(e, HAS_FSYNCED_INODE))) need_update = false; up_read(&nm_i->nat_tree_lock); return need_update; } static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) { struct nat_entry *new; new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); memset(new, 0, sizeof(struct nat_entry)); nat_set_nid(new, nid); nat_reset_flag(new); list_add_tail(&new->list, &nm_i->nat_entries); nm_i->nat_cnt++; return new; } static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, struct f2fs_nat_entry *ne) { struct nat_entry *e; down_write(&nm_i->nat_tree_lock); e = __lookup_nat_cache(nm_i, nid); if (!e) { e = grab_nat_entry(nm_i, nid); node_info_from_raw_nat(&e->ni, ne); } up_write(&nm_i->nat_tree_lock); } static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, block_t new_blkaddr, bool fsync_done) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct nat_entry *e; down_write(&nm_i->nat_tree_lock); e = __lookup_nat_cache(nm_i, ni->nid); if (!e) { e = grab_nat_entry(nm_i, ni->nid); copy_node_info(&e->ni, ni); f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); } else if (new_blkaddr == NEW_ADDR) { /* * when nid is reallocated, * previous nat entry can be remained in nat cache. * So, reinitialize it with new information. */ copy_node_info(&e->ni, ni); f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); } /* sanity check */ f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && new_blkaddr == NULL_ADDR); f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && new_blkaddr == NEW_ADDR); f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && nat_get_blkaddr(e) != NULL_ADDR && new_blkaddr == NEW_ADDR); /* increment version no as node is removed */ if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { unsigned char version = nat_get_version(e); nat_set_version(e, inc_node_version(version)); /* in order to reuse the nid */ if (nm_i->next_scan_nid > ni->nid) nm_i->next_scan_nid = ni->nid; } /* change address */ nat_set_blkaddr(e, new_blkaddr); if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) set_nat_flag(e, IS_CHECKPOINTED, false); __set_nat_cache_dirty(nm_i, e); /* update fsync_mark if its inode nat entry is still alive */ if (ni->nid != ni->ino) e = __lookup_nat_cache(nm_i, ni->ino); if (e) { if (fsync_done && ni->nid == ni->ino) set_nat_flag(e, HAS_FSYNCED_INODE, true); set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); } up_write(&nm_i->nat_tree_lock); } int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) { struct f2fs_nm_info *nm_i = NM_I(sbi); int nr = nr_shrink; if (!down_write_trylock(&nm_i->nat_tree_lock)) return 0; while (nr_shrink && !list_empty(&nm_i->nat_entries)) { struct nat_entry *ne; ne = list_first_entry(&nm_i->nat_entries, struct nat_entry, list); __del_from_nat_cache(nm_i, ne); nr_shrink--; } up_write(&nm_i->nat_tree_lock); return nr - nr_shrink; } /* * This function always returns success */ void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; nid_t start_nid = START_NID(nid); struct f2fs_nat_block *nat_blk; struct page *page = NULL; struct f2fs_nat_entry ne; struct nat_entry *e; int i; ni->nid = nid; /* Check nat cache */ down_read(&nm_i->nat_tree_lock); e = __lookup_nat_cache(nm_i, nid); if (e) { ni->ino = nat_get_ino(e); ni->blk_addr = nat_get_blkaddr(e); ni->version = nat_get_version(e); } up_read(&nm_i->nat_tree_lock); if (e) return; memset(&ne, 0, sizeof(struct f2fs_nat_entry)); /* Check current segment summary */ mutex_lock(&curseg->curseg_mutex); i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); if (i >= 0) { ne = nat_in_journal(sum, i); node_info_from_raw_nat(ni, &ne); } mutex_unlock(&curseg->curseg_mutex); if (i >= 0) goto cache; /* Fill node_info from nat page */ page = get_current_nat_page(sbi, start_nid); nat_blk = (struct f2fs_nat_block *)page_address(page); ne = nat_blk->entries[nid - start_nid]; node_info_from_raw_nat(ni, &ne); f2fs_put_page(page, 1); cache: /* cache nat entry */ cache_nat_entry(NM_I(sbi), nid, &ne); } /* * The maximum depth is four. * Offset[0] will have raw inode offset. */ static int get_node_path(struct f2fs_inode_info *fi, long block, int offset[4], unsigned int noffset[4]) { const long direct_index = ADDRS_PER_INODE(fi); const long direct_blks = ADDRS_PER_BLOCK; const long dptrs_per_blk = NIDS_PER_BLOCK; const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; int n = 0; int level = 0; noffset[0] = 0; if (block < direct_index) { offset[n] = block; goto got; } block -= direct_index; if (block < direct_blks) { offset[n++] = NODE_DIR1_BLOCK; noffset[n] = 1; offset[n] = block; level = 1; goto got; } block -= direct_blks; if (block < direct_blks) { offset[n++] = NODE_DIR2_BLOCK; noffset[n] = 2; offset[n] = block; level = 1; goto got; } block -= direct_blks; if (block < indirect_blks) { offset[n++] = NODE_IND1_BLOCK; noffset[n] = 3; offset[n++] = block / direct_blks; noffset[n] = 4 + offset[n - 1]; offset[n] = block % direct_blks; level = 2; goto got; } block -= indirect_blks; if (block < indirect_blks) { offset[n++] = NODE_IND2_BLOCK; noffset[n] = 4 + dptrs_per_blk; offset[n++] = block / direct_blks; noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; offset[n] = block % direct_blks; level = 2; goto got; } block -= indirect_blks; if (block < dindirect_blks) { offset[n++] = NODE_DIND_BLOCK; noffset[n] = 5 + (dptrs_per_blk * 2); offset[n++] = block / indirect_blks; noffset[n] = 6 + (dptrs_per_blk * 2) + offset[n - 1] * (dptrs_per_blk + 1); offset[n++] = (block / direct_blks) % dptrs_per_blk; noffset[n] = 7 + (dptrs_per_blk * 2) + offset[n - 2] * (dptrs_per_blk + 1) + offset[n - 1]; offset[n] = block % direct_blks; level = 3; goto got; } else { BUG(); } got: return level; } /* * Caller should call f2fs_put_dnode(dn). * Also, it should grab and release a rwsem by calling f2fs_lock_op() and * f2fs_unlock_op() only if ro is not set RDONLY_NODE. * In the case of RDONLY_NODE, we don't need to care about mutex. */ int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct page *npage[4]; struct page *parent = NULL; int offset[4]; unsigned int noffset[4]; nid_t nids[4]; int level, i; int err = 0; level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); nids[0] = dn->inode->i_ino; npage[0] = dn->inode_page; if (!npage[0]) { npage[0] = get_node_page(sbi, nids[0]); if (IS_ERR(npage[0])) return PTR_ERR(npage[0]); } /* if inline_data is set, should not report any block indices */ if (f2fs_has_inline_data(dn->inode) && index) { err = -ENOENT; f2fs_put_page(npage[0], 1); goto release_out; } parent = npage[0]; if (level != 0) nids[1] = get_nid(parent, offset[0], true); dn->inode_page = npage[0]; dn->inode_page_locked = true; /* get indirect or direct nodes */ for (i = 1; i <= level; i++) { bool done = false; if (!nids[i] && mode == ALLOC_NODE) { /* alloc new node */ if (!alloc_nid(sbi, &(nids[i]))) { err = -ENOSPC; goto release_pages; } dn->nid = nids[i]; npage[i] = new_node_page(dn, noffset[i], NULL); if (IS_ERR(npage[i])) { alloc_nid_failed(sbi, nids[i]); err = PTR_ERR(npage[i]); goto release_pages; } set_nid(parent, offset[i - 1], nids[i], i == 1); alloc_nid_done(sbi, nids[i]); done = true; } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { npage[i] = get_node_page_ra(parent, offset[i - 1]); if (IS_ERR(npage[i])) { err = PTR_ERR(npage[i]); goto release_pages; } done = true; } if (i == 1) { dn->inode_page_locked = false; unlock_page(parent); } else { f2fs_put_page(parent, 1); } if (!done) { npage[i] = get_node_page(sbi, nids[i]); if (IS_ERR(npage[i])) { err = PTR_ERR(npage[i]); f2fs_put_page(npage[0], 0); goto release_out; } } if (i < level) { parent = npage[i]; nids[i + 1] = get_nid(parent, offset[i], false); } } dn->nid = nids[level]; dn->ofs_in_node = offset[level]; dn->node_page = npage[level]; dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); return 0; release_pages: f2fs_put_page(parent, 1); if (i > 1) f2fs_put_page(npage[0], 0); release_out: dn->inode_page = NULL; dn->node_page = NULL; return err; } static void truncate_node(struct dnode_of_data *dn) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct node_info ni; get_node_info(sbi, dn->nid, &ni); if (dn->inode->i_blocks == 0) { f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); goto invalidate; } f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); /* Deallocate node address */ invalidate_blocks(sbi, ni.blk_addr); dec_valid_node_count(sbi, dn->inode); set_node_addr(sbi, &ni, NULL_ADDR, false); if (dn->nid == dn->inode->i_ino) { remove_orphan_inode(sbi, dn->nid); dec_valid_inode_count(sbi); } else { sync_inode_page(dn); } invalidate: clear_node_page_dirty(dn->node_page); set_sbi_flag(sbi, SBI_IS_DIRTY); f2fs_put_page(dn->node_page, 1); invalidate_mapping_pages(NODE_MAPPING(sbi), dn->node_page->index, dn->node_page->index); dn->node_page = NULL; trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); } static int truncate_dnode(struct dnode_of_data *dn) { struct page *page; if (dn->nid == 0) return 1; /* get direct node */ page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) return 1; else if (IS_ERR(page)) return PTR_ERR(page); /* Make dnode_of_data for parameter */ dn->node_page = page; dn->ofs_in_node = 0; truncate_data_blocks(dn); truncate_node(dn); return 1; } static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, int ofs, int depth) { struct dnode_of_data rdn = *dn; struct page *page; struct f2fs_node *rn; nid_t child_nid; unsigned int child_nofs; int freed = 0; int i, ret; if (dn->nid == 0) return NIDS_PER_BLOCK + 1; trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); if (IS_ERR(page)) { trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); return PTR_ERR(page); } rn = F2FS_NODE(page); if (depth < 3) { for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { child_nid = le32_to_cpu(rn->in.nid[i]); if (child_nid == 0) continue; rdn.nid = child_nid; ret = truncate_dnode(&rdn); if (ret < 0) goto out_err; set_nid(page, i, 0, false); } } else { child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; for (i = ofs; i < NIDS_PER_BLOCK; i++) { child_nid = le32_to_cpu(rn->in.nid[i]); if (child_nid == 0) { child_nofs += NIDS_PER_BLOCK + 1; continue; } rdn.nid = child_nid; ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); if (ret == (NIDS_PER_BLOCK + 1)) { set_nid(page, i, 0, false); child_nofs += ret; } else if (ret < 0 && ret != -ENOENT) { goto out_err; } } freed = child_nofs; } if (!ofs) { /* remove current indirect node */ dn->node_page = page; truncate_node(dn); freed++; } else { f2fs_put_page(page, 1); } trace_f2fs_truncate_nodes_exit(dn->inode, freed); return freed; out_err: f2fs_put_page(page, 1); trace_f2fs_truncate_nodes_exit(dn->inode, ret); return ret; } static int truncate_partial_nodes(struct dnode_of_data *dn, struct f2fs_inode *ri, int *offset, int depth) { struct page *pages[2]; nid_t nid[3]; nid_t child_nid; int err = 0; int i; int idx = depth - 2; nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); if (!nid[0]) return 0; /* get indirect nodes in the path */ for (i = 0; i < idx + 1; i++) { /* reference count'll be increased */ pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); if (IS_ERR(pages[i])) { err = PTR_ERR(pages[i]); idx = i - 1; goto fail; } nid[i + 1] = get_nid(pages[i], offset[i + 1], false); } /* free direct nodes linked to a partial indirect node */ for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { child_nid = get_nid(pages[idx], i, false); if (!child_nid) continue; dn->nid = child_nid; err = truncate_dnode(dn); if (err < 0) goto fail; set_nid(pages[idx], i, 0, false); } if (offset[idx + 1] == 0) { dn->node_page = pages[idx]; dn->nid = nid[idx]; truncate_node(dn); } else { f2fs_put_page(pages[idx], 1); } offset[idx]++; offset[idx + 1] = 0; idx--; fail: for (i = idx; i >= 0; i--) f2fs_put_page(pages[i], 1); trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); return err; } /* * All the block addresses of data and nodes should be nullified. */ int truncate_inode_blocks(struct inode *inode, pgoff_t from) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int err = 0, cont = 1; int level, offset[4], noffset[4]; unsigned int nofs = 0; struct f2fs_inode *ri; struct dnode_of_data dn; struct page *page; trace_f2fs_truncate_inode_blocks_enter(inode, from); level = get_node_path(F2FS_I(inode), from, offset, noffset); restart: page = get_node_page(sbi, inode->i_ino); if (IS_ERR(page)) { trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); return PTR_ERR(page); } set_new_dnode(&dn, inode, page, NULL, 0); unlock_page(page); ri = F2FS_INODE(page); switch (level) { case 0: case 1: nofs = noffset[1]; break; case 2: nofs = noffset[1]; if (!offset[level - 1]) goto skip_partial; err = truncate_partial_nodes(&dn, ri, offset, level); if (err < 0 && err != -ENOENT) goto fail; nofs += 1 + NIDS_PER_BLOCK; break; case 3: nofs = 5 + 2 * NIDS_PER_BLOCK; if (!offset[level - 1]) goto skip_partial; err = truncate_partial_nodes(&dn, ri, offset, level); if (err < 0 && err != -ENOENT) goto fail; break; default: BUG(); } skip_partial: while (cont) { dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); switch (offset[0]) { case NODE_DIR1_BLOCK: case NODE_DIR2_BLOCK: err = truncate_dnode(&dn); break; case NODE_IND1_BLOCK: case NODE_IND2_BLOCK: err = truncate_nodes(&dn, nofs, offset[1], 2); break; case NODE_DIND_BLOCK: err = truncate_nodes(&dn, nofs, offset[1], 3); cont = 0; break; default: BUG(); } if (err < 0 && err != -ENOENT) goto fail; if (offset[1] == 0 && ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { lock_page(page); if (unlikely(page->mapping != NODE_MAPPING(sbi))) { f2fs_put_page(page, 1); goto restart; } f2fs_wait_on_page_writeback(page, NODE); ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; set_page_dirty(page); unlock_page(page); } offset[1] = 0; offset[0]++; nofs += err; } fail: f2fs_put_page(page, 0); trace_f2fs_truncate_inode_blocks_exit(inode, err); return err > 0 ? 0 : err; } int truncate_xattr_node(struct inode *inode, struct page *page) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t nid = F2FS_I(inode)->i_xattr_nid; struct dnode_of_data dn; struct page *npage; if (!nid) return 0; npage = get_node_page(sbi, nid); if (IS_ERR(npage)) return PTR_ERR(npage); F2FS_I(inode)->i_xattr_nid = 0; /* need to do checkpoint during fsync */ F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); set_new_dnode(&dn, inode, page, npage, nid); if (page) dn.inode_page_locked = true; truncate_node(&dn); return 0; } /* * Caller should grab and release a rwsem by calling f2fs_lock_op() and * f2fs_unlock_op(). */ int remove_inode_page(struct inode *inode) { struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); if (err) return err; err = truncate_xattr_node(inode, dn.inode_page); if (err) { f2fs_put_dnode(&dn); return err; } /* remove potential inline_data blocks */ if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) truncate_data_blocks_range(&dn, 1); /* 0 is possible, after f2fs_new_inode() has failed */ f2fs_bug_on(F2FS_I_SB(inode), inode->i_blocks != 0 && inode->i_blocks != 1); /* will put inode & node pages */ truncate_node(&dn); return 0; } struct page *new_inode_page(struct inode *inode) { struct dnode_of_data dn; /* allocate inode page for new inode */ set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); /* caller should f2fs_put_page(page, 1); */ return new_node_page(&dn, 0, NULL); } struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs, struct page *ipage) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct node_info old_ni, new_ni; struct page *page; int err; if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) return ERR_PTR(-EPERM); page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); if (!page) return ERR_PTR(-ENOMEM); if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { err = -ENOSPC; goto fail; } get_node_info(sbi, dn->nid, &old_ni); /* Reinitialize old_ni with new node page */ f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); new_ni = old_ni; new_ni.ino = dn->inode->i_ino; set_node_addr(sbi, &new_ni, NEW_ADDR, false); f2fs_wait_on_page_writeback(page, NODE); fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); set_cold_node(dn->inode, page); SetPageUptodate(page); set_page_dirty(page); if (f2fs_has_xattr_block(ofs)) F2FS_I(dn->inode)->i_xattr_nid = dn->nid; dn->node_page = page; if (ipage) update_inode(dn->inode, ipage); else sync_inode_page(dn); if (ofs == 0) inc_valid_inode_count(sbi); return page; fail: clear_node_page_dirty(page); f2fs_put_page(page, 1); return ERR_PTR(err); } /* * Caller should do after getting the following values. * 0: f2fs_put_page(page, 0) * LOCKED_PAGE or error: f2fs_put_page(page, 1) */ static int read_node_page(struct page *page, int rw) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); struct node_info ni; struct f2fs_io_info fio = { .sbi = sbi, .type = NODE, .rw = rw, .page = page, .encrypted_page = NULL, }; get_node_info(sbi, page->index, &ni); if (unlikely(ni.blk_addr == NULL_ADDR)) { ClearPageUptodate(page); return -ENOENT; } if (PageUptodate(page)) return LOCKED_PAGE; fio.blk_addr = ni.blk_addr; return f2fs_submit_page_bio(&fio); } /* * Readahead a node page */ void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) { struct page *apage; int err; apage = find_get_page(NODE_MAPPING(sbi), nid); if (apage && PageUptodate(apage)) { f2fs_put_page(apage, 0); return; } f2fs_put_page(apage, 0); apage = grab_cache_page(NODE_MAPPING(sbi), nid); if (!apage) return; err = read_node_page(apage, READA); f2fs_put_page(apage, err ? 1 : 0); } struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) { struct page *page; int err; repeat: page = grab_cache_page(NODE_MAPPING(sbi), nid); if (!page) return ERR_PTR(-ENOMEM); err = read_node_page(page, READ_SYNC); if (err < 0) { f2fs_put_page(page, 1); return ERR_PTR(err); } else if (err != LOCKED_PAGE) { lock_page(page); } if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) { ClearPageUptodate(page); f2fs_put_page(page, 1); return ERR_PTR(-EIO); } if (unlikely(page->mapping != NODE_MAPPING(sbi))) { f2fs_put_page(page, 1); goto repeat; } return page; } /* * Return a locked page for the desired node page. * And, readahead MAX_RA_NODE number of node pages. */ struct page *get_node_page_ra(struct page *parent, int start) { struct f2fs_sb_info *sbi = F2FS_P_SB(parent); struct blk_plug plug; struct page *page; int err, i, end; nid_t nid; /* First, try getting the desired direct node. */ nid = get_nid(parent, start, false); if (!nid) return ERR_PTR(-ENOENT); repeat: page = grab_cache_page(NODE_MAPPING(sbi), nid); if (!page) return ERR_PTR(-ENOMEM); err = read_node_page(page, READ_SYNC); if (err < 0) { f2fs_put_page(page, 1); return ERR_PTR(err); } else if (err == LOCKED_PAGE) { goto page_hit; } blk_start_plug(&plug); /* Then, try readahead for siblings of the desired node */ end = start + MAX_RA_NODE; end = min(end, NIDS_PER_BLOCK); for (i = start + 1; i < end; i++) { nid = get_nid(parent, i, false); if (!nid) continue; ra_node_page(sbi, nid); } blk_finish_plug(&plug); lock_page(page); if (unlikely(page->mapping != NODE_MAPPING(sbi))) { f2fs_put_page(page, 1); goto repeat; } page_hit: if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 1); return ERR_PTR(-EIO); } return page; } void sync_inode_page(struct dnode_of_data *dn) { if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { update_inode(dn->inode, dn->node_page); } else if (dn->inode_page) { if (!dn->inode_page_locked) lock_page(dn->inode_page); update_inode(dn->inode, dn->inode_page); if (!dn->inode_page_locked) unlock_page(dn->inode_page); } else { update_inode_page(dn->inode); } } int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, struct writeback_control *wbc) { pgoff_t index, end; struct pagevec pvec; int step = ino ? 2 : 0; int nwritten = 0, wrote = 0; pagevec_init(&pvec, 0); next_step: index = 0; end = LONG_MAX; while (index <= end) { int i, nr_pages; nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY, min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); if (nr_pages == 0) break; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; /* * flushing sequence with step: * 0. indirect nodes * 1. dentry dnodes * 2. file dnodes */ if (step == 0 && IS_DNODE(page)) continue; if (step == 1 && (!IS_DNODE(page) || is_cold_node(page))) continue; if (step == 2 && (!IS_DNODE(page) || !is_cold_node(page))) continue; /* * If an fsync mode, * we should not skip writing node pages. */ if (ino && ino_of_node(page) == ino) lock_page(page); else if (!trylock_page(page)) continue; if (unlikely(page->mapping != NODE_MAPPING(sbi))) { continue_unlock: unlock_page(page); continue; } if (ino && ino_of_node(page) != ino) goto continue_unlock; if (!PageDirty(page)) { /* someone wrote it for us */ goto continue_unlock; } if (!clear_page_dirty_for_io(page)) goto continue_unlock; /* called by fsync() */ if (ino && IS_DNODE(page)) { set_fsync_mark(page, 1); if (IS_INODE(page)) set_dentry_mark(page, need_dentry_mark(sbi, ino)); nwritten++; } else { set_fsync_mark(page, 0); set_dentry_mark(page, 0); } if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) unlock_page(page); else wrote++; if (--wbc->nr_to_write == 0) break; } pagevec_release(&pvec); cond_resched(); if (wbc->nr_to_write == 0) { step = 2; break; } } if (step < 2) { step++; goto next_step; } if (wrote) f2fs_submit_merged_bio(sbi, NODE, WRITE); return nwritten; } int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) { pgoff_t index = 0, end = LONG_MAX; struct pagevec pvec; int ret2 = 0, ret = 0; pagevec_init(&pvec, 0); while (index <= end) { int i, nr_pages; nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, PAGECACHE_TAG_WRITEBACK, min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); if (nr_pages == 0) break; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; /* until radix tree lookup accepts end_index */ if (unlikely(page->index > end)) continue; if (ino && ino_of_node(page) == ino) { f2fs_wait_on_page_writeback(page, NODE); if (TestClearPageError(page)) ret = -EIO; } } pagevec_release(&pvec); cond_resched(); } if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) ret2 = -ENOSPC; if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) ret2 = -EIO; if (!ret) ret = ret2; return ret; } static int f2fs_write_node_page(struct page *page, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); nid_t nid; struct node_info ni; struct f2fs_io_info fio = { .sbi = sbi, .type = NODE, .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, .page = page, .encrypted_page = NULL, }; trace_f2fs_writepage(page, NODE); if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) goto redirty_out; if (unlikely(f2fs_cp_error(sbi))) goto redirty_out; f2fs_wait_on_page_writeback(page, NODE); /* get old block addr of this node page */ nid = nid_of_node(page); f2fs_bug_on(sbi, page->index != nid); if (wbc->for_reclaim) { if (!down_read_trylock(&sbi->node_write)) goto redirty_out; } else { down_read(&sbi->node_write); } get_node_info(sbi, nid, &ni); /* This page is already truncated */ if (unlikely(ni.blk_addr == NULL_ADDR)) { ClearPageUptodate(page); dec_page_count(sbi, F2FS_DIRTY_NODES); up_read(&sbi->node_write); unlock_page(page); return 0; } set_page_writeback(page); fio.blk_addr = ni.blk_addr; write_node_page(nid, &fio); set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page)); dec_page_count(sbi, F2FS_DIRTY_NODES); up_read(&sbi->node_write); unlock_page(page); if (wbc->for_reclaim) f2fs_submit_merged_bio(sbi, NODE, WRITE); return 0; redirty_out: redirty_page_for_writepage(wbc, page); return AOP_WRITEPAGE_ACTIVATE; } static int f2fs_write_node_pages(struct address_space *mapping, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); long diff; trace_f2fs_writepages(mapping->host, wbc, NODE); /* balancing f2fs's metadata in background */ f2fs_balance_fs_bg(sbi); /* collect a number of dirty node pages and write together */ if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) goto skip_write; diff = nr_pages_to_write(sbi, NODE, wbc); wbc->sync_mode = WB_SYNC_NONE; sync_node_pages(sbi, 0, wbc); wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); return 0; skip_write: wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); return 0; } static int f2fs_set_node_page_dirty(struct page *page) { trace_f2fs_set_page_dirty(page, NODE); SetPageUptodate(page); if (!PageDirty(page)) { __set_page_dirty_nobuffers(page); inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); SetPagePrivate(page); f2fs_trace_pid(page); return 1; } return 0; } /* * Structure of the f2fs node operations */ const struct address_space_operations f2fs_node_aops = { .writepage = f2fs_write_node_page, .writepages = f2fs_write_node_pages, .set_page_dirty = f2fs_set_node_page_dirty, .invalidatepage = f2fs_invalidate_page, .releasepage = f2fs_release_page, }; static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, nid_t n) { return radix_tree_lookup(&nm_i->free_nid_root, n); } static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, struct free_nid *i) { list_del(&i->list); radix_tree_delete(&nm_i->free_nid_root, i->nid); } static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *i; struct nat_entry *ne; bool allocated = false; if (!available_free_memory(sbi, FREE_NIDS)) return -1; /* 0 nid should not be used */ if (unlikely(nid == 0)) return 0; if (build) { /* do not add allocated nids */ down_read(&nm_i->nat_tree_lock); ne = __lookup_nat_cache(nm_i, nid); if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || nat_get_blkaddr(ne) != NULL_ADDR)) allocated = true; up_read(&nm_i->nat_tree_lock); if (allocated) return 0; } i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); i->nid = nid; i->state = NID_NEW; if (radix_tree_preload(GFP_NOFS)) { kmem_cache_free(free_nid_slab, i); return 0; } spin_lock(&nm_i->free_nid_list_lock); if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { spin_unlock(&nm_i->free_nid_list_lock); radix_tree_preload_end(); kmem_cache_free(free_nid_slab, i); return 0; } list_add_tail(&i->list, &nm_i->free_nid_list); nm_i->fcnt++; spin_unlock(&nm_i->free_nid_list_lock); radix_tree_preload_end(); return 1; } static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) { struct free_nid *i; bool need_free = false; spin_lock(&nm_i->free_nid_list_lock); i = __lookup_free_nid_list(nm_i, nid); if (i && i->state == NID_NEW) { __del_from_free_nid_list(nm_i, i); nm_i->fcnt--; need_free = true; } spin_unlock(&nm_i->free_nid_list_lock); if (need_free) kmem_cache_free(free_nid_slab, i); } static void scan_nat_page(struct f2fs_sb_info *sbi, struct page *nat_page, nid_t start_nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct f2fs_nat_block *nat_blk = page_address(nat_page); block_t blk_addr; int i; i = start_nid % NAT_ENTRY_PER_BLOCK; for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { if (unlikely(start_nid >= nm_i->max_nid)) break; blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); f2fs_bug_on(sbi, blk_addr == NEW_ADDR); if (blk_addr == NULL_ADDR) { if (add_free_nid(sbi, start_nid, true) < 0) break; } } } static void build_free_nids(struct f2fs_sb_info *sbi) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; int i = 0; nid_t nid = nm_i->next_scan_nid; /* Enough entries */ if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) return; /* readahead nat pages to be scanned */ ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT, true); while (1) { struct page *page = get_current_nat_page(sbi, nid); scan_nat_page(sbi, page, nid); f2fs_put_page(page, 1); nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); if (unlikely(nid >= nm_i->max_nid)) nid = 0; if (++i >= FREE_NID_PAGES) break; } /* go to the next free nat pages to find free nids abundantly */ nm_i->next_scan_nid = nid; /* find free nids from current sum_pages */ mutex_lock(&curseg->curseg_mutex); for (i = 0; i < nats_in_cursum(sum); i++) { block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); nid = le32_to_cpu(nid_in_journal(sum, i)); if (addr == NULL_ADDR) add_free_nid(sbi, nid, true); else remove_free_nid(nm_i, nid); } mutex_unlock(&curseg->curseg_mutex); ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), nm_i->ra_nid_pages, META_NAT, false); } /* * If this function returns success, caller can obtain a new nid * from second parameter of this function. * The returned nid could be used ino as well as nid when inode is created. */ bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *i = NULL; retry: if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) return false; spin_lock(&nm_i->free_nid_list_lock); /* We should not use stale free nids created by build_free_nids */ if (nm_i->fcnt && !on_build_free_nids(nm_i)) { struct node_info ni; f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); list_for_each_entry(i, &nm_i->free_nid_list, list) if (i->state == NID_NEW) break; f2fs_bug_on(sbi, i->state != NID_NEW); *nid = i->nid; i->state = NID_ALLOC; nm_i->fcnt--; spin_unlock(&nm_i->free_nid_list_lock); /* check nid is allocated already */ get_node_info(sbi, *nid, &ni); if (ni.blk_addr != NULL_ADDR) { alloc_nid_done(sbi, *nid); goto retry; } return true; } spin_unlock(&nm_i->free_nid_list_lock); /* Let's scan nat pages and its caches to get free nids */ mutex_lock(&nm_i->build_lock); build_free_nids(sbi); mutex_unlock(&nm_i->build_lock); goto retry; } /* * alloc_nid() should be called prior to this function. */ void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *i; spin_lock(&nm_i->free_nid_list_lock); i = __lookup_free_nid_list(nm_i, nid); f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); __del_from_free_nid_list(nm_i, i); spin_unlock(&nm_i->free_nid_list_lock); kmem_cache_free(free_nid_slab, i); } /* * alloc_nid() should be called prior to this function. */ void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *i; bool need_free = false; if (!nid) return; spin_lock(&nm_i->free_nid_list_lock); i = __lookup_free_nid_list(nm_i, nid); f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); if (!available_free_memory(sbi, FREE_NIDS)) { __del_from_free_nid_list(nm_i, i); need_free = true; } else { i->state = NID_NEW; nm_i->fcnt++; } spin_unlock(&nm_i->free_nid_list_lock); if (need_free) kmem_cache_free(free_nid_slab, i); } int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *i, *next; int nr = nr_shrink; if (!mutex_trylock(&nm_i->build_lock)) return 0; spin_lock(&nm_i->free_nid_list_lock); list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK) break; if (i->state == NID_ALLOC) continue; __del_from_free_nid_list(nm_i, i); kmem_cache_free(free_nid_slab, i); nm_i->fcnt--; nr_shrink--; } spin_unlock(&nm_i->free_nid_list_lock); mutex_unlock(&nm_i->build_lock); return nr - nr_shrink; } void recover_inline_xattr(struct inode *inode, struct page *page) { void *src_addr, *dst_addr; size_t inline_size; struct page *ipage; struct f2fs_inode *ri; ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); ri = F2FS_INODE(page); if (!(ri->i_inline & F2FS_INLINE_XATTR)) { clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); goto update_inode; } dst_addr = inline_xattr_addr(ipage); src_addr = inline_xattr_addr(page); inline_size = inline_xattr_size(inode); f2fs_wait_on_page_writeback(ipage, NODE); memcpy(dst_addr, src_addr, inline_size); update_inode: update_inode(inode, ipage); f2fs_put_page(ipage, 1); } void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; nid_t new_xnid = nid_of_node(page); struct node_info ni; /* 1: invalidate the previous xattr nid */ if (!prev_xnid) goto recover_xnid; /* Deallocate node address */ get_node_info(sbi, prev_xnid, &ni); f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); invalidate_blocks(sbi, ni.blk_addr); dec_valid_node_count(sbi, inode); set_node_addr(sbi, &ni, NULL_ADDR, false); recover_xnid: /* 2: allocate new xattr nid */ if (unlikely(!inc_valid_node_count(sbi, inode))) f2fs_bug_on(sbi, 1); remove_free_nid(NM_I(sbi), new_xnid); get_node_info(sbi, new_xnid, &ni); ni.ino = inode->i_ino; set_node_addr(sbi, &ni, NEW_ADDR, false); F2FS_I(inode)->i_xattr_nid = new_xnid; /* 3: update xattr blkaddr */ refresh_sit_entry(sbi, NEW_ADDR, blkaddr); set_node_addr(sbi, &ni, blkaddr, false); update_inode_page(inode); } int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_inode *src, *dst; nid_t ino = ino_of_node(page); struct node_info old_ni, new_ni; struct page *ipage; get_node_info(sbi, ino, &old_ni); if (unlikely(old_ni.blk_addr != NULL_ADDR)) return -EINVAL; ipage = grab_cache_page(NODE_MAPPING(sbi), ino); if (!ipage) return -ENOMEM; /* Should not use this inode from free nid list */ remove_free_nid(NM_I(sbi), ino); SetPageUptodate(ipage); fill_node_footer(ipage, ino, ino, 0, true); src = F2FS_INODE(page); dst = F2FS_INODE(ipage); memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); dst->i_size = 0; dst->i_blocks = cpu_to_le64(1); dst->i_links = cpu_to_le32(1); dst->i_xattr_nid = 0; dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; new_ni = old_ni; new_ni.ino = ino; if (unlikely(!inc_valid_node_count(sbi, NULL))) WARN_ON(1); set_node_addr(sbi, &new_ni, NEW_ADDR, false); inc_valid_inode_count(sbi); set_page_dirty(ipage); f2fs_put_page(ipage, 1); return 0; } int restore_node_summary(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum) { struct f2fs_node *rn; struct f2fs_summary *sum_entry; block_t addr; int bio_blocks = MAX_BIO_BLOCKS(sbi); int i, idx, last_offset, nrpages; /* scan the node segment */ last_offset = sbi->blocks_per_seg; addr = START_BLOCK(sbi, segno); sum_entry = &sum->entries[0]; for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { nrpages = min(last_offset - i, bio_blocks); /* readahead node pages */ ra_meta_pages(sbi, addr, nrpages, META_POR, true); for (idx = addr; idx < addr + nrpages; idx++) { struct page *page = get_tmp_page(sbi, idx); rn = F2FS_NODE(page); sum_entry->nid = rn->footer.nid; sum_entry->version = 0; sum_entry->ofs_in_node = 0; sum_entry++; f2fs_put_page(page, 1); } invalidate_mapping_pages(META_MAPPING(sbi), addr, addr + nrpages); } return 0; } static void remove_nats_in_journal(struct f2fs_sb_info *sbi) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; int i; mutex_lock(&curseg->curseg_mutex); for (i = 0; i < nats_in_cursum(sum); i++) { struct nat_entry *ne; struct f2fs_nat_entry raw_ne; nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); raw_ne = nat_in_journal(sum, i); down_write(&nm_i->nat_tree_lock); ne = __lookup_nat_cache(nm_i, nid); if (!ne) { ne = grab_nat_entry(nm_i, nid); node_info_from_raw_nat(&ne->ni, &raw_ne); } __set_nat_cache_dirty(nm_i, ne); up_write(&nm_i->nat_tree_lock); } update_nats_in_cursum(sum, -i); mutex_unlock(&curseg->curseg_mutex); } static void __adjust_nat_entry_set(struct nat_entry_set *nes, struct list_head *head, int max) { struct nat_entry_set *cur; if (nes->entry_cnt >= max) goto add_out; list_for_each_entry(cur, head, set_list) { if (cur->entry_cnt >= nes->entry_cnt) { list_add(&nes->set_list, cur->set_list.prev); return; } } add_out: list_add_tail(&nes->set_list, head); } static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, struct nat_entry_set *set) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; bool to_journal = true; struct f2fs_nat_block *nat_blk; struct nat_entry *ne, *cur; struct page *page = NULL; struct f2fs_nm_info *nm_i = NM_I(sbi); /* * there are two steps to flush nat entries: * #1, flush nat entries to journal in current hot data summary block. * #2, flush nat entries to nat page. */ if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL)) to_journal = false; if (to_journal) { mutex_lock(&curseg->curseg_mutex); } else { page = get_next_nat_page(sbi, start_nid); nat_blk = page_address(page); f2fs_bug_on(sbi, !nat_blk); } /* flush dirty nats in nat entry set */ list_for_each_entry_safe(ne, cur, &set->entry_list, list) { struct f2fs_nat_entry *raw_ne; nid_t nid = nat_get_nid(ne); int offset; if (nat_get_blkaddr(ne) == NEW_ADDR) continue; if (to_journal) { offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); f2fs_bug_on(sbi, offset < 0); raw_ne = &nat_in_journal(sum, offset); nid_in_journal(sum, offset) = cpu_to_le32(nid); } else { raw_ne = &nat_blk->entries[nid - start_nid]; } raw_nat_from_node_info(raw_ne, &ne->ni); down_write(&NM_I(sbi)->nat_tree_lock); nat_reset_flag(ne); __clear_nat_cache_dirty(NM_I(sbi), ne); up_write(&NM_I(sbi)->nat_tree_lock); if (nat_get_blkaddr(ne) == NULL_ADDR) add_free_nid(sbi, nid, false); } if (to_journal) mutex_unlock(&curseg->curseg_mutex); else f2fs_put_page(page, 1); f2fs_bug_on(sbi, set->entry_cnt); down_write(&nm_i->nat_tree_lock); radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); up_write(&nm_i->nat_tree_lock); kmem_cache_free(nat_entry_set_slab, set); } /* * This function is called during the checkpointing process. */ void flush_nat_entries(struct f2fs_sb_info *sbi) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; struct nat_entry_set *setvec[SETVEC_SIZE]; struct nat_entry_set *set, *tmp; unsigned int found; nid_t set_idx = 0; LIST_HEAD(sets); if (!nm_i->dirty_nat_cnt) return; /* * if there are no enough space in journal to store dirty nat * entries, remove all entries from journal and merge them * into nat entry set. */ if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL)) remove_nats_in_journal(sbi); down_write(&nm_i->nat_tree_lock); while ((found = __gang_lookup_nat_set(nm_i, set_idx, SETVEC_SIZE, setvec))) { unsigned idx; set_idx = setvec[found - 1]->set + 1; for (idx = 0; idx < found; idx++) __adjust_nat_entry_set(setvec[idx], &sets, MAX_NAT_JENTRIES(sum)); } up_write(&nm_i->nat_tree_lock); /* flush dirty nats in nat entry set */ list_for_each_entry_safe(set, tmp, &sets, set_list) __flush_nat_entry_set(sbi, set); f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); } static int init_node_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); unsigned char *version_bitmap; unsigned int nat_segs, nat_blocks; nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); /* segment_count_nat includes pair segment so divide to 2. */ nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; /* not used nids: 0, node, meta, (and root counted as valid node) */ nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; nm_i->fcnt = 0; nm_i->nat_cnt = 0; nm_i->ram_thresh = DEF_RAM_THRESHOLD; nm_i->ra_nid_pages = DEF_RA_NID_PAGES; INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); INIT_LIST_HEAD(&nm_i->free_nid_list); INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); INIT_LIST_HEAD(&nm_i->nat_entries); mutex_init(&nm_i->build_lock); spin_lock_init(&nm_i->free_nid_list_lock); init_rwsem(&nm_i->nat_tree_lock); nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); if (!version_bitmap) return -EFAULT; nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, GFP_KERNEL); if (!nm_i->nat_bitmap) return -ENOMEM; return 0; } int build_node_manager(struct f2fs_sb_info *sbi) { int err; sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); if (!sbi->nm_info) return -ENOMEM; err = init_node_manager(sbi); if (err) return err; build_free_nids(sbi); return 0; } void destroy_node_manager(struct f2fs_sb_info *sbi) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *i, *next_i; struct nat_entry *natvec[NATVEC_SIZE]; struct nat_entry_set *setvec[SETVEC_SIZE]; nid_t nid = 0; unsigned int found; if (!nm_i) return; /* destroy free nid list */ spin_lock(&nm_i->free_nid_list_lock); list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { f2fs_bug_on(sbi, i->state == NID_ALLOC); __del_from_free_nid_list(nm_i, i); nm_i->fcnt--; spin_unlock(&nm_i->free_nid_list_lock); kmem_cache_free(free_nid_slab, i); spin_lock(&nm_i->free_nid_list_lock); } f2fs_bug_on(sbi, nm_i->fcnt); spin_unlock(&nm_i->free_nid_list_lock); /* destroy nat cache */ down_write(&nm_i->nat_tree_lock); while ((found = __gang_lookup_nat_cache(nm_i, nid, NATVEC_SIZE, natvec))) { unsigned idx; nid = nat_get_nid(natvec[found - 1]) + 1; for (idx = 0; idx < found; idx++) __del_from_nat_cache(nm_i, natvec[idx]); } f2fs_bug_on(sbi, nm_i->nat_cnt); /* destroy nat set cache */ nid = 0; while ((found = __gang_lookup_nat_set(nm_i, nid, SETVEC_SIZE, setvec))) { unsigned idx; nid = setvec[found - 1]->set + 1; for (idx = 0; idx < found; idx++) { /* entry_cnt is not zero, when cp_error was occurred */ f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); kmem_cache_free(nat_entry_set_slab, setvec[idx]); } } up_write(&nm_i->nat_tree_lock); kfree(nm_i->nat_bitmap); sbi->nm_info = NULL; kfree(nm_i); } int __init create_node_manager_caches(void) { nat_entry_slab = f2fs_kmem_cache_create("nat_entry", sizeof(struct nat_entry)); if (!nat_entry_slab) goto fail; free_nid_slab = f2fs_kmem_cache_create("free_nid", sizeof(struct free_nid)); if (!free_nid_slab) goto destroy_nat_entry; nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", sizeof(struct nat_entry_set)); if (!nat_entry_set_slab) goto destroy_free_nid; return 0; destroy_free_nid: kmem_cache_destroy(free_nid_slab); destroy_nat_entry: kmem_cache_destroy(nat_entry_slab); fail: return -ENOMEM; } void destroy_node_manager_caches(void) { kmem_cache_destroy(nat_entry_set_slab); kmem_cache_destroy(free_nid_slab); kmem_cache_destroy(nat_entry_slab); }