/* * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README */ #include <linux/uaccess.h> #include <linux/string.h> #include <linux/time.h> #include "reiserfs.h" #include <linux/buffer_head.h> /* this is one and only function that is used outside (do_balance.c) */ int balance_internal(struct tree_balance *, int, int, struct item_head *, struct buffer_head **); /* * modes of internal_shift_left, internal_shift_right and * internal_insert_childs */ #define INTERNAL_SHIFT_FROM_S_TO_L 0 #define INTERNAL_SHIFT_FROM_R_TO_S 1 #define INTERNAL_SHIFT_FROM_L_TO_S 2 #define INTERNAL_SHIFT_FROM_S_TO_R 3 #define INTERNAL_INSERT_TO_S 4 #define INTERNAL_INSERT_TO_L 5 #define INTERNAL_INSERT_TO_R 6 static void internal_define_dest_src_infos(int shift_mode, struct tree_balance *tb, int h, struct buffer_info *dest_bi, struct buffer_info *src_bi, int *d_key, struct buffer_head **cf) { memset(dest_bi, 0, sizeof(struct buffer_info)); memset(src_bi, 0, sizeof(struct buffer_info)); /* define dest, src, dest parent, dest position */ switch (shift_mode) { /* used in internal_shift_left */ case INTERNAL_SHIFT_FROM_S_TO_L: src_bi->tb = tb; src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); dest_bi->tb = tb; dest_bi->bi_bh = tb->L[h]; dest_bi->bi_parent = tb->FL[h]; dest_bi->bi_position = get_left_neighbor_position(tb, h); *d_key = tb->lkey[h]; *cf = tb->CFL[h]; break; case INTERNAL_SHIFT_FROM_L_TO_S: src_bi->tb = tb; src_bi->bi_bh = tb->L[h]; src_bi->bi_parent = tb->FL[h]; src_bi->bi_position = get_left_neighbor_position(tb, h); dest_bi->tb = tb; dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); /* dest position is analog of dest->b_item_order */ dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); *d_key = tb->lkey[h]; *cf = tb->CFL[h]; break; /* used in internal_shift_left */ case INTERNAL_SHIFT_FROM_R_TO_S: src_bi->tb = tb; src_bi->bi_bh = tb->R[h]; src_bi->bi_parent = tb->FR[h]; src_bi->bi_position = get_right_neighbor_position(tb, h); dest_bi->tb = tb; dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); *d_key = tb->rkey[h]; *cf = tb->CFR[h]; break; case INTERNAL_SHIFT_FROM_S_TO_R: src_bi->tb = tb; src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); dest_bi->tb = tb; dest_bi->bi_bh = tb->R[h]; dest_bi->bi_parent = tb->FR[h]; dest_bi->bi_position = get_right_neighbor_position(tb, h); *d_key = tb->rkey[h]; *cf = tb->CFR[h]; break; case INTERNAL_INSERT_TO_L: dest_bi->tb = tb; dest_bi->bi_bh = tb->L[h]; dest_bi->bi_parent = tb->FL[h]; dest_bi->bi_position = get_left_neighbor_position(tb, h); break; case INTERNAL_INSERT_TO_S: dest_bi->tb = tb; dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); break; case INTERNAL_INSERT_TO_R: dest_bi->tb = tb; dest_bi->bi_bh = tb->R[h]; dest_bi->bi_parent = tb->FR[h]; dest_bi->bi_position = get_right_neighbor_position(tb, h); break; default: reiserfs_panic(tb->tb_sb, "ibalance-1", "shift type is unknown (%d)", shift_mode); } } /* * Insert count node pointers into buffer cur before position to + 1. * Insert count items into buffer cur before position to. * Items and node pointers are specified by inserted and bh respectively. */ static void internal_insert_childs(struct buffer_info *cur_bi, int to, int count, struct item_head *inserted, struct buffer_head **bh) { struct buffer_head *cur = cur_bi->bi_bh; struct block_head *blkh; int nr; struct reiserfs_key *ih; struct disk_child new_dc[2]; struct disk_child *dc; int i; if (count <= 0) return; blkh = B_BLK_HEAD(cur); nr = blkh_nr_item(blkh); RFALSE(count > 2, "too many children (%d) are to be inserted", count); RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE), "no enough free space (%d), needed %d bytes", B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE)); /* prepare space for count disk_child */ dc = B_N_CHILD(cur, to + 1); memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE); /* copy to_be_insert disk children */ for (i = 0; i < count; i++) { put_dc_size(&new_dc[i], MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i])); put_dc_block_number(&new_dc[i], bh[i]->b_blocknr); } memcpy(dc, new_dc, DC_SIZE * count); /* prepare space for count items */ ih = internal_key(cur, ((to == -1) ? 0 : to)); memmove(ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE); /* copy item headers (keys) */ memcpy(ih, inserted, KEY_SIZE); if (count > 1) memcpy(ih + 1, inserted + 1, KEY_SIZE); /* sizes, item number */ set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count); set_blkh_free_space(blkh, blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE)); do_balance_mark_internal_dirty(cur_bi->tb, cur, 0); /*&&&&&&&&&&&&&&&&&&&&&&&& */ check_internal(cur); /*&&&&&&&&&&&&&&&&&&&&&&&& */ if (cur_bi->bi_parent) { struct disk_child *t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position); put_dc_size(t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE))); do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0); /*&&&&&&&&&&&&&&&&&&&&&&&& */ check_internal(cur_bi->bi_parent); /*&&&&&&&&&&&&&&&&&&&&&&&& */ } } /* * Delete del_num items and node pointers from buffer cur starting from * the first_i'th item and first_p'th pointers respectively. */ static void internal_delete_pointers_items(struct buffer_info *cur_bi, int first_p, int first_i, int del_num) { struct buffer_head *cur = cur_bi->bi_bh; int nr; struct block_head *blkh; struct reiserfs_key *key; struct disk_child *dc; RFALSE(cur == NULL, "buffer is 0"); RFALSE(del_num < 0, "negative number of items (%d) can not be deleted", del_num); RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1 || first_i < 0, "first pointer order (%d) < 0 or " "no so many pointers (%d), only (%d) or " "first key order %d < 0", first_p, first_p + del_num, B_NR_ITEMS(cur) + 1, first_i); if (del_num == 0) return; blkh = B_BLK_HEAD(cur); nr = blkh_nr_item(blkh); if (first_p == 0 && del_num == nr + 1) { RFALSE(first_i != 0, "1st deleted key must have order 0, not %d", first_i); make_empty_node(cur_bi); return; } RFALSE(first_i + del_num > B_NR_ITEMS(cur), "first_i = %d del_num = %d " "no so many keys (%d) in the node (%b)(%z)", first_i, del_num, first_i + del_num, cur, cur); /* deleting */ dc = B_N_CHILD(cur, first_p); memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE); key = internal_key(cur, first_i); memmove(key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE); /* sizes, item number */ set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num); set_blkh_free_space(blkh, blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE))); do_balance_mark_internal_dirty(cur_bi->tb, cur, 0); /*&&&&&&&&&&&&&&&&&&&&&&& */ check_internal(cur); /*&&&&&&&&&&&&&&&&&&&&&&& */ if (cur_bi->bi_parent) { struct disk_child *t_dc; t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position); put_dc_size(t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE))); do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0); /*&&&&&&&&&&&&&&&&&&&&&&&& */ check_internal(cur_bi->bi_parent); /*&&&&&&&&&&&&&&&&&&&&&&&& */ } } /* delete n node pointers and items starting from given position */ static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n) { int i_from; i_from = (from == 0) ? from : from - 1; /* * delete n pointers starting from `from' position in CUR; * delete n keys starting from 'i_from' position in CUR; */ internal_delete_pointers_items(cur_bi, from, i_from, n); } /* * copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer * dest * last_first == FIRST_TO_LAST means that we copy first items * from src to tail of dest * last_first == LAST_TO_FIRST means that we copy last items * from src to head of dest */ static void internal_copy_pointers_items(struct buffer_info *dest_bi, struct buffer_head *src, int last_first, int cpy_num) { /* * ATTENTION! Number of node pointers in DEST is equal to number * of items in DEST as delimiting key have already inserted to * buffer dest. */ struct buffer_head *dest = dest_bi->bi_bh; int nr_dest, nr_src; int dest_order, src_order; struct block_head *blkh; struct reiserfs_key *key; struct disk_child *dc; nr_src = B_NR_ITEMS(src); RFALSE(dest == NULL || src == NULL, "src (%p) or dest (%p) buffer is 0", src, dest); RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST, "invalid last_first parameter (%d)", last_first); RFALSE(nr_src < cpy_num - 1, "no so many items (%d) in src (%d)", cpy_num, nr_src); RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num); RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest), "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)", cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest)); if (cpy_num == 0) return; /* coping */ blkh = B_BLK_HEAD(dest); nr_dest = blkh_nr_item(blkh); /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */ /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */ (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order = nr_src - cpy_num + 1) : (dest_order = nr_dest, src_order = 0); /* prepare space for cpy_num pointers */ dc = B_N_CHILD(dest, dest_order); memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE); /* insert pointers */ memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num); /* prepare space for cpy_num - 1 item headers */ key = internal_key(dest, dest_order); memmove(key + cpy_num - 1, key, KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num)); /* insert headers */ memcpy(key, internal_key(src, src_order), KEY_SIZE * (cpy_num - 1)); /* sizes, item number */ set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1)); set_blkh_free_space(blkh, blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num)); do_balance_mark_internal_dirty(dest_bi->tb, dest, 0); /*&&&&&&&&&&&&&&&&&&&&&&&& */ check_internal(dest); /*&&&&&&&&&&&&&&&&&&&&&&&& */ if (dest_bi->bi_parent) { struct disk_child *t_dc; t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position); put_dc_size(t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num)); do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent, 0); /*&&&&&&&&&&&&&&&&&&&&&&&& */ check_internal(dest_bi->bi_parent); /*&&&&&&&&&&&&&&&&&&&&&&&& */ } } /* * Copy cpy_num node pointers and cpy_num - 1 items from buffer src to * buffer dest. * Delete cpy_num - del_par items and node pointers from buffer src. * last_first == FIRST_TO_LAST means, that we copy/delete first items from src. * last_first == LAST_TO_FIRST means, that we copy/delete last items from src. */ static void internal_move_pointers_items(struct buffer_info *dest_bi, struct buffer_info *src_bi, int last_first, int cpy_num, int del_par) { int first_pointer; int first_item; internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first, cpy_num); if (last_first == FIRST_TO_LAST) { /* shift_left occurs */ first_pointer = 0; first_item = 0; /* * delete cpy_num - del_par pointers and keys starting for * pointers with first_pointer, for key - with first_item */ internal_delete_pointers_items(src_bi, first_pointer, first_item, cpy_num - del_par); } else { /* shift_right occurs */ int i, j; i = (cpy_num - del_par == (j = B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num + del_par; internal_delete_pointers_items(src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par); } } /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */ static void internal_insert_key(struct buffer_info *dest_bi, /* insert key before key with n_dest number */ int dest_position_before, struct buffer_head *src, int src_position) { struct buffer_head *dest = dest_bi->bi_bh; int nr; struct block_head *blkh; struct reiserfs_key *key; RFALSE(dest == NULL || src == NULL, "source(%p) or dest(%p) buffer is 0", src, dest); RFALSE(dest_position_before < 0 || src_position < 0, "source(%d) or dest(%d) key number less than 0", src_position, dest_position_before); RFALSE(dest_position_before > B_NR_ITEMS(dest) || src_position >= B_NR_ITEMS(src), "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))", dest_position_before, B_NR_ITEMS(dest), src_position, B_NR_ITEMS(src)); RFALSE(B_FREE_SPACE(dest) < KEY_SIZE, "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest)); blkh = B_BLK_HEAD(dest); nr = blkh_nr_item(blkh); /* prepare space for inserting key */ key = internal_key(dest, dest_position_before); memmove(key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE); /* insert key */ memcpy(key, internal_key(src, src_position), KEY_SIZE); /* Change dirt, free space, item number fields. */ set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1); set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE); do_balance_mark_internal_dirty(dest_bi->tb, dest, 0); if (dest_bi->bi_parent) { struct disk_child *t_dc; t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position); put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE); do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent, 0); } } /* * Insert d_key'th (delimiting) key from buffer cfl to tail of dest. * Copy pointer_amount node pointers and pointer_amount - 1 items from * buffer src to buffer dest. * Replace d_key'th key in buffer cfl. * Delete pointer_amount items and node pointers from buffer src. */ /* this can be invoked both to shift from S to L and from R to S */ static void internal_shift_left( /* * INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */ int mode, struct tree_balance *tb, int h, int pointer_amount) { struct buffer_info dest_bi, src_bi; struct buffer_head *cf; int d_key_position; internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); /*printk("pointer_amount = %d\n",pointer_amount); */ if (pointer_amount) { /* * insert delimiting key from common father of dest and * src to node dest into position B_NR_ITEM(dest) */ internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position); if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) { if (src_bi.bi_position /*src->b_item_order */ == 0) replace_key(tb, cf, d_key_position, src_bi. bi_parent /*src->b_parent */ , 0); } else replace_key(tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1); } /* last parameter is del_parameter */ internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0); } /* * Insert delimiting key to L[h]. * Copy n node pointers and n - 1 items from buffer S[h] to L[h]. * Delete n - 1 items and node pointers from buffer S[h]. */ /* it always shifts from S[h] to L[h] */ static void internal_shift1_left(struct tree_balance *tb, int h, int pointer_amount) { struct buffer_info dest_bi, src_bi; struct buffer_head *cf; int d_key_position; internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */ if (pointer_amount > 0) internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position); /* last parameter is del_parameter */ internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1); } /* * Insert d_key'th (delimiting) key from buffer cfr to head of dest. * Copy n node pointers and n - 1 items from buffer src to buffer dest. * Replace d_key'th key in buffer cfr. * Delete n items and node pointers from buffer src. */ static void internal_shift_right( /* * INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */ int mode, struct tree_balance *tb, int h, int pointer_amount) { struct buffer_info dest_bi, src_bi; struct buffer_head *cf; int d_key_position; int nr; internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); nr = B_NR_ITEMS(src_bi.bi_bh); if (pointer_amount > 0) { /* * insert delimiting key from common father of dest * and src to dest node into position 0 */ internal_insert_key(&dest_bi, 0, cf, d_key_position); if (nr == pointer_amount - 1) { RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ || dest_bi.bi_bh != tb->R[h], "src (%p) must be == tb->S[h](%p) when it disappears", src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h)); /* when S[h] disappers replace left delemiting key as well */ if (tb->CFL[h]) replace_key(tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]); } else replace_key(tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount); } /* last parameter is del_parameter */ internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0); } /* * Insert delimiting key to R[h]. * Copy n node pointers and n - 1 items from buffer S[h] to R[h]. * Delete n - 1 items and node pointers from buffer S[h]. */ /* it always shift from S[h] to R[h] */ static void internal_shift1_right(struct tree_balance *tb, int h, int pointer_amount) { struct buffer_info dest_bi, src_bi; struct buffer_head *cf; int d_key_position; internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); /* insert rkey from CFR[h] to right neighbor R[h] */ if (pointer_amount > 0) internal_insert_key(&dest_bi, 0, cf, d_key_position); /* last parameter is del_parameter */ internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1); } /* * Delete insert_num node pointers together with their left items * and balance current node. */ static void balance_internal_when_delete(struct tree_balance *tb, int h, int child_pos) { int insert_num; int n; struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h); struct buffer_info bi; insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE)); /* delete child-node-pointer(s) together with their left item(s) */ bi.tb = tb; bi.bi_bh = tbSh; bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); internal_delete_childs(&bi, child_pos, -insert_num); RFALSE(tb->blknum[h] > 1, "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]); n = B_NR_ITEMS(tbSh); if (tb->lnum[h] == 0 && tb->rnum[h] == 0) { if (tb->blknum[h] == 0) { /* node S[h] (root of the tree) is empty now */ struct buffer_head *new_root; RFALSE(n || B_FREE_SPACE(tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE, "buffer must have only 0 keys (%d)", n); RFALSE(bi.bi_parent, "root has parent (%p)", bi.bi_parent); /* choose a new root */ if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1])) new_root = tb->R[h - 1]; else new_root = tb->L[h - 1]; /* * switch super block's tree root block * number to the new value */ PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr); /*REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; */ PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1); do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1); /*&&&&&&&&&&&&&&&&&&&&&& */ /* use check_internal if new root is an internal node */ if (h > 1) check_internal(new_root); /*&&&&&&&&&&&&&&&&&&&&&& */ /* do what is needed for buffer thrown from tree */ reiserfs_invalidate_buffer(tb, tbSh); return; } return; } /* join S[h] with L[h] */ if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) { RFALSE(tb->rnum[h] != 0, "invalid tb->rnum[%d]==%d when joining S[h] with L[h]", h, tb->rnum[h]); internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1); reiserfs_invalidate_buffer(tb, tbSh); return; } /* join S[h] with R[h] */ if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) { RFALSE(tb->lnum[h] != 0, "invalid tb->lnum[%d]==%d when joining S[h] with R[h]", h, tb->lnum[h]); internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1); reiserfs_invalidate_buffer(tb, tbSh); return; } /* borrow from left neighbor L[h] */ if (tb->lnum[h] < 0) { RFALSE(tb->rnum[h] != 0, "wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]); internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]); return; } /* borrow from right neighbor R[h] */ if (tb->rnum[h] < 0) { RFALSE(tb->lnum[h] != 0, "invalid tb->lnum[%d]==%d when borrow from R[h]", h, tb->lnum[h]); internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]); /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */ return; } /* split S[h] into two parts and put them into neighbors */ if (tb->lnum[h] > 0) { RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1, "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them", h, tb->lnum[h], h, tb->rnum[h], n); internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */ internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]); reiserfs_invalidate_buffer(tb, tbSh); return; } reiserfs_panic(tb->tb_sb, "ibalance-2", "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d", h, tb->lnum[h], h, tb->rnum[h]); } /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/ static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key) { RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL, "L[h](%p) and CFL[h](%p) must exist in replace_lkey", tb->L[h], tb->CFL[h]); if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0) return; memcpy(internal_key(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE); do_balance_mark_internal_dirty(tb, tb->CFL[h], 0); } /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/ static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key) { RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL, "R[h](%p) and CFR[h](%p) must exist in replace_rkey", tb->R[h], tb->CFR[h]); RFALSE(B_NR_ITEMS(tb->R[h]) == 0, "R[h] can not be empty if it exists (item number=%d)", B_NR_ITEMS(tb->R[h])); memcpy(internal_key(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE); do_balance_mark_internal_dirty(tb, tb->CFR[h], 0); } /* * if inserting/pasting { * child_pos is the position of the node-pointer in S[h] that * pointed to S[h-1] before balancing of the h-1 level; * this means that new pointers and items must be inserted AFTER * child_pos * } else { * it is the position of the leftmost pointer that must be deleted * (together with its corresponding key to the left of the pointer) * as a result of the previous level's balancing. * } */ int balance_internal(struct tree_balance *tb, int h, /* level of the tree */ int child_pos, /* key for insertion on higher level */ struct item_head *insert_key, /* node for insertion on higher level */ struct buffer_head **insert_ptr) { struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h); struct buffer_info bi; /* * we return this: it is 0 if there is no S[h], * else it is tb->S[h]->b_item_order */ int order; int insert_num, n, k; struct buffer_head *S_new; struct item_head new_insert_key; struct buffer_head *new_insert_ptr = NULL; struct item_head *new_insert_key_addr = insert_key; RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h); PROC_INFO_INC(tb->tb_sb, balance_at[h]); order = (tbSh) ? PATH_H_POSITION(tb->tb_path, h + 1) /*tb->S[h]->b_item_order */ : 0; /* * Using insert_size[h] calculate the number insert_num of items * that must be inserted to or deleted from S[h]. */ insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE)); /* Check whether insert_num is proper * */ RFALSE(insert_num < -2 || insert_num > 2, "incorrect number of items inserted to the internal node (%d)", insert_num); RFALSE(h > 1 && (insert_num > 1 || insert_num < -1), "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level", insert_num, h); /* Make balance in case insert_num < 0 */ if (insert_num < 0) { balance_internal_when_delete(tb, h, child_pos); return order; } k = 0; if (tb->lnum[h] > 0) { /* * shift lnum[h] items from S[h] to the left neighbor L[h]. * check how many of new items fall into L[h] or CFL[h] after * shifting */ n = B_NR_ITEMS(tb->L[h]); /* number of items in L[h] */ if (tb->lnum[h] <= child_pos) { /* new items don't fall into L[h] or CFL[h] */ internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); child_pos -= tb->lnum[h]; } else if (tb->lnum[h] > child_pos + insert_num) { /* all new items fall into L[h] */ internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num); /* insert insert_num keys and node-pointers into L[h] */ bi.tb = tb; bi.bi_bh = tb->L[h]; bi.bi_parent = tb->FL[h]; bi.bi_position = get_left_neighbor_position(tb, h); internal_insert_childs(&bi, /*tb->L[h], tb->S[h-1]->b_next */ n + child_pos + 1, insert_num, insert_key, insert_ptr); insert_num = 0; } else { struct disk_child *dc; /* * some items fall into L[h] or CFL[h], * but some don't fall */ internal_shift1_left(tb, h, child_pos + 1); /* calculate number of new items that fall into L[h] */ k = tb->lnum[h] - child_pos - 1; bi.tb = tb; bi.bi_bh = tb->L[h]; bi.bi_parent = tb->FL[h]; bi.bi_position = get_left_neighbor_position(tb, h); internal_insert_childs(&bi, /*tb->L[h], tb->S[h-1]->b_next, */ n + child_pos + 1, k, insert_key, insert_ptr); replace_lkey(tb, h, insert_key + k); /* * replace the first node-ptr in S[h] by * node-ptr to insert_ptr[k] */ dc = B_N_CHILD(tbSh, 0); put_dc_size(dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE(insert_ptr[k])); put_dc_block_number(dc, insert_ptr[k]->b_blocknr); do_balance_mark_internal_dirty(tb, tbSh, 0); k++; insert_key += k; insert_ptr += k; insert_num -= k; child_pos = 0; } } /* tb->lnum[h] > 0 */ if (tb->rnum[h] > 0) { /*shift rnum[h] items from S[h] to the right neighbor R[h] */ /* * check how many of new items fall into R or CFR * after shifting */ n = B_NR_ITEMS(tbSh); /* number of items in S[h] */ if (n - tb->rnum[h] >= child_pos) /* new items fall into S[h] */ internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]); else if (n + insert_num - tb->rnum[h] < child_pos) { /* all new items fall into R[h] */ internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num); /* insert insert_num keys and node-pointers into R[h] */ bi.tb = tb; bi.bi_bh = tb->R[h]; bi.bi_parent = tb->FR[h]; bi.bi_position = get_right_neighbor_position(tb, h); internal_insert_childs(&bi, /*tb->R[h],tb->S[h-1]->b_next */ child_pos - n - insert_num + tb->rnum[h] - 1, insert_num, insert_key, insert_ptr); insert_num = 0; } else { struct disk_child *dc; /* one of the items falls into CFR[h] */ internal_shift1_right(tb, h, n - child_pos + 1); /* calculate number of new items that fall into R[h] */ k = tb->rnum[h] - n + child_pos - 1; bi.tb = tb; bi.bi_bh = tb->R[h]; bi.bi_parent = tb->FR[h]; bi.bi_position = get_right_neighbor_position(tb, h); internal_insert_childs(&bi, /*tb->R[h], tb->R[h]->b_child, */ 0, k, insert_key + 1, insert_ptr + 1); replace_rkey(tb, h, insert_key + insert_num - k - 1); /* * replace the first node-ptr in R[h] by * node-ptr insert_ptr[insert_num-k-1] */ dc = B_N_CHILD(tb->R[h], 0); put_dc_size(dc, MAX_CHILD_SIZE(insert_ptr [insert_num - k - 1]) - B_FREE_SPACE(insert_ptr [insert_num - k - 1])); put_dc_block_number(dc, insert_ptr[insert_num - k - 1]->b_blocknr); do_balance_mark_internal_dirty(tb, tb->R[h], 0); insert_num -= (k + 1); } } /** Fill new node that appears instead of S[h] **/ RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level"); RFALSE(tb->blknum[h] < 0, "blknum can not be < 0"); if (!tb->blknum[h]) { /* node S[h] is empty now */ RFALSE(!tbSh, "S[h] is equal NULL"); /* do what is needed for buffer thrown from tree */ reiserfs_invalidate_buffer(tb, tbSh); return order; } if (!tbSh) { /* create new root */ struct disk_child *dc; struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1); struct block_head *blkh; if (tb->blknum[h] != 1) reiserfs_panic(NULL, "ibalance-3", "One new node " "required for creating the new root"); /* S[h] = empty buffer from the list FEB. */ tbSh = get_FEB(tb); blkh = B_BLK_HEAD(tbSh); set_blkh_level(blkh, h + 1); /* Put the unique node-pointer to S[h] that points to S[h-1]. */ dc = B_N_CHILD(tbSh, 0); put_dc_block_number(dc, tbSh_1->b_blocknr); put_dc_size(dc, (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1))); tb->insert_size[h] -= DC_SIZE; set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE); do_balance_mark_internal_dirty(tb, tbSh, 0); /*&&&&&&&&&&&&&&&&&&&&&&&& */ check_internal(tbSh); /*&&&&&&&&&&&&&&&&&&&&&&&& */ /* put new root into path structure */ PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh; /* Change root in structure super block. */ PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr); PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1); do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1); } if (tb->blknum[h] == 2) { int snum; struct buffer_info dest_bi, src_bi; /* S_new = free buffer from list FEB */ S_new = get_FEB(tb); set_blkh_level(B_BLK_HEAD(S_new), h + 1); dest_bi.tb = tb; dest_bi.bi_bh = S_new; dest_bi.bi_parent = NULL; dest_bi.bi_position = 0; src_bi.tb = tb; src_bi.bi_bh = tbSh; src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); n = B_NR_ITEMS(tbSh); /* number of items in S[h] */ snum = (insert_num + n + 1) / 2; if (n - snum >= child_pos) { /* new items don't fall into S_new */ /* store the delimiting key for the next level */ /* new_insert_key = (n - snum)'th key in S[h] */ memcpy(&new_insert_key, internal_key(tbSh, n - snum), KEY_SIZE); /* last parameter is del_par */ internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0); } else if (n + insert_num - snum < child_pos) { /* all new items fall into S_new */ /* store the delimiting key for the next level */ /* * new_insert_key = (n + insert_item - snum)'th * key in S[h] */ memcpy(&new_insert_key, internal_key(tbSh, n + insert_num - snum), KEY_SIZE); /* last parameter is del_par */ internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0); /* * insert insert_num keys and node-pointers * into S_new */ internal_insert_childs(&dest_bi, /*S_new,tb->S[h-1]->b_next, */ child_pos - n - insert_num + snum - 1, insert_num, insert_key, insert_ptr); insert_num = 0; } else { struct disk_child *dc; /* some items fall into S_new, but some don't fall */ /* last parameter is del_par */ internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1); /* calculate number of new items that fall into S_new */ k = snum - n + child_pos - 1; internal_insert_childs(&dest_bi, /*S_new, */ 0, k, insert_key + 1, insert_ptr + 1); /* new_insert_key = insert_key[insert_num - k - 1] */ memcpy(&new_insert_key, insert_key + insert_num - k - 1, KEY_SIZE); /* * replace first node-ptr in S_new by node-ptr * to insert_ptr[insert_num-k-1] */ dc = B_N_CHILD(S_new, 0); put_dc_size(dc, (MAX_CHILD_SIZE (insert_ptr[insert_num - k - 1]) - B_FREE_SPACE(insert_ptr [insert_num - k - 1]))); put_dc_block_number(dc, insert_ptr[insert_num - k - 1]->b_blocknr); do_balance_mark_internal_dirty(tb, S_new, 0); insert_num -= (k + 1); } /* new_insert_ptr = node_pointer to S_new */ new_insert_ptr = S_new; RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new) || buffer_dirty(S_new), "cm-00001: bad S_new (%b)", S_new); /* S_new is released in unfix_nodes */ } n = B_NR_ITEMS(tbSh); /*number of items in S[h] */ if (0 <= child_pos && child_pos <= n && insert_num > 0) { bi.tb = tb; bi.bi_bh = tbSh; bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); internal_insert_childs(&bi, /*tbSh, */ /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next, */ child_pos, insert_num, insert_key, insert_ptr); } memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE); insert_ptr[0] = new_insert_ptr; return order; }