/* * ring buffer tester and benchmark * * Copyright (C) 2009 Steven Rostedt <srostedt@redhat.com> */ #include <linux/ring_buffer.h> #include <linux/completion.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/ktime.h> #include <asm/local.h> struct rb_page { u64 ts; local_t commit; char data[4080]; }; /* run time and sleep time in seconds */ #define RUN_TIME 10ULL #define SLEEP_TIME 10 /* number of events for writer to wake up the reader */ static int wakeup_interval = 100; static int reader_finish; static DECLARE_COMPLETION(read_start); static DECLARE_COMPLETION(read_done); static struct ring_buffer *buffer; static struct task_struct *producer; static struct task_struct *consumer; static unsigned long read; static unsigned int disable_reader; module_param(disable_reader, uint, 0644); MODULE_PARM_DESC(disable_reader, "only run producer"); static unsigned int write_iteration = 50; module_param(write_iteration, uint, 0644); MODULE_PARM_DESC(write_iteration, "# of writes between timestamp readings"); static int producer_nice = MAX_NICE; static int consumer_nice = MAX_NICE; static int producer_fifo = -1; static int consumer_fifo = -1; module_param(producer_nice, int, 0644); MODULE_PARM_DESC(producer_nice, "nice prio for producer"); module_param(consumer_nice, int, 0644); MODULE_PARM_DESC(consumer_nice, "nice prio for consumer"); module_param(producer_fifo, int, 0644); MODULE_PARM_DESC(producer_fifo, "fifo prio for producer"); module_param(consumer_fifo, int, 0644); MODULE_PARM_DESC(consumer_fifo, "fifo prio for consumer"); static int read_events; static int test_error; #define TEST_ERROR() \ do { \ if (!test_error) { \ test_error = 1; \ WARN_ON(1); \ } \ } while (0) enum event_status { EVENT_FOUND, EVENT_DROPPED, }; static bool break_test(void) { return test_error || kthread_should_stop(); } static enum event_status read_event(int cpu) { struct ring_buffer_event *event; int *entry; u64 ts; event = ring_buffer_consume(buffer, cpu, &ts, NULL); if (!event) return EVENT_DROPPED; entry = ring_buffer_event_data(event); if (*entry != cpu) { TEST_ERROR(); return EVENT_DROPPED; } read++; return EVENT_FOUND; } static enum event_status read_page(int cpu) { struct ring_buffer_event *event; struct rb_page *rpage; unsigned long commit; void *bpage; int *entry; int ret; int inc; int i; bpage = ring_buffer_alloc_read_page(buffer, cpu); if (!bpage) return EVENT_DROPPED; ret = ring_buffer_read_page(buffer, &bpage, PAGE_SIZE, cpu, 1); if (ret >= 0) { rpage = bpage; /* The commit may have missed event flags set, clear them */ commit = local_read(&rpage->commit) & 0xfffff; for (i = 0; i < commit && !test_error ; i += inc) { if (i >= (PAGE_SIZE - offsetof(struct rb_page, data))) { TEST_ERROR(); break; } inc = -1; event = (void *)&rpage->data[i]; switch (event->type_len) { case RINGBUF_TYPE_PADDING: /* failed writes may be discarded events */ if (!event->time_delta) TEST_ERROR(); inc = event->array[0] + 4; break; case RINGBUF_TYPE_TIME_EXTEND: inc = 8; break; case 0: entry = ring_buffer_event_data(event); if (*entry != cpu) { TEST_ERROR(); break; } read++; if (!event->array[0]) { TEST_ERROR(); break; } inc = event->array[0] + 4; break; default: entry = ring_buffer_event_data(event); if (*entry != cpu) { TEST_ERROR(); break; } read++; inc = ((event->type_len + 1) * 4); } if (test_error) break; if (inc <= 0) { TEST_ERROR(); break; } } } ring_buffer_free_read_page(buffer, bpage); if (ret < 0) return EVENT_DROPPED; return EVENT_FOUND; } static void ring_buffer_consumer(void) { /* toggle between reading pages and events */ read_events ^= 1; read = 0; /* * Continue running until the producer specifically asks to stop * and is ready for the completion. */ while (!READ_ONCE(reader_finish)) { int found = 1; while (found && !test_error) { int cpu; found = 0; for_each_online_cpu(cpu) { enum event_status stat; if (read_events) stat = read_event(cpu); else stat = read_page(cpu); if (test_error) break; if (stat == EVENT_FOUND) found = 1; } } /* Wait till the producer wakes us up when there is more data * available or when the producer wants us to finish reading. */ set_current_state(TASK_INTERRUPTIBLE); if (reader_finish) break; schedule(); } __set_current_state(TASK_RUNNING); reader_finish = 0; complete(&read_done); } static void ring_buffer_producer(void) { ktime_t start_time, end_time, timeout; unsigned long long time; unsigned long long entries; unsigned long long overruns; unsigned long missed = 0; unsigned long hit = 0; unsigned long avg; int cnt = 0; /* * Hammer the buffer for 10 secs (this may * make the system stall) */ trace_printk("Starting ring buffer hammer\n"); start_time = ktime_get(); timeout = ktime_add_ns(start_time, RUN_TIME * NSEC_PER_SEC); do { struct ring_buffer_event *event; int *entry; int i; for (i = 0; i < write_iteration; i++) { event = ring_buffer_lock_reserve(buffer, 10); if (!event) { missed++; } else { hit++; entry = ring_buffer_event_data(event); *entry = smp_processor_id(); ring_buffer_unlock_commit(buffer, event); } } end_time = ktime_get(); cnt++; if (consumer && !(cnt % wakeup_interval)) wake_up_process(consumer); #ifndef CONFIG_PREEMPT /* * If we are a non preempt kernel, the 10 second run will * stop everything while it runs. Instead, we will call * cond_resched and also add any time that was lost by a * rescedule. * * Do a cond resched at the same frequency we would wake up * the reader. */ if (cnt % wakeup_interval) cond_resched(); #endif } while (ktime_before(end_time, timeout) && !break_test()); trace_printk("End ring buffer hammer\n"); if (consumer) { /* Init both completions here to avoid races */ init_completion(&read_start); init_completion(&read_done); /* the completions must be visible before the finish var */ smp_wmb(); reader_finish = 1; wake_up_process(consumer); wait_for_completion(&read_done); } time = ktime_us_delta(end_time, start_time); entries = ring_buffer_entries(buffer); overruns = ring_buffer_overruns(buffer); if (test_error) trace_printk("ERROR!\n"); if (!disable_reader) { if (consumer_fifo < 0) trace_printk("Running Consumer at nice: %d\n", consumer_nice); else trace_printk("Running Consumer at SCHED_FIFO %d\n", consumer_fifo); } if (producer_fifo < 0) trace_printk("Running Producer at nice: %d\n", producer_nice); else trace_printk("Running Producer at SCHED_FIFO %d\n", producer_fifo); /* Let the user know that the test is running at low priority */ if (producer_fifo < 0 && consumer_fifo < 0 && producer_nice == MAX_NICE && consumer_nice == MAX_NICE) trace_printk("WARNING!!! This test is running at lowest priority.\n"); trace_printk("Time: %lld (usecs)\n", time); trace_printk("Overruns: %lld\n", overruns); if (disable_reader) trace_printk("Read: (reader disabled)\n"); else trace_printk("Read: %ld (by %s)\n", read, read_events ? "events" : "pages"); trace_printk("Entries: %lld\n", entries); trace_printk("Total: %lld\n", entries + overruns + read); trace_printk("Missed: %ld\n", missed); trace_printk("Hit: %ld\n", hit); /* Convert time from usecs to millisecs */ do_div(time, USEC_PER_MSEC); if (time) hit /= (long)time; else trace_printk("TIME IS ZERO??\n"); trace_printk("Entries per millisec: %ld\n", hit); if (hit) { /* Calculate the average time in nanosecs */ avg = NSEC_PER_MSEC / hit; trace_printk("%ld ns per entry\n", avg); } if (missed) { if (time) missed /= (long)time; trace_printk("Total iterations per millisec: %ld\n", hit + missed); /* it is possible that hit + missed will overflow and be zero */ if (!(hit + missed)) { trace_printk("hit + missed overflowed and totalled zero!\n"); hit--; /* make it non zero */ } /* Caculate the average time in nanosecs */ avg = NSEC_PER_MSEC / (hit + missed); trace_printk("%ld ns per entry\n", avg); } } static void wait_to_die(void) { set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { schedule(); set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); } static int ring_buffer_consumer_thread(void *arg) { while (!break_test()) { complete(&read_start); ring_buffer_consumer(); set_current_state(TASK_INTERRUPTIBLE); if (break_test()) break; schedule(); } __set_current_state(TASK_RUNNING); if (!kthread_should_stop()) wait_to_die(); return 0; } static int ring_buffer_producer_thread(void *arg) { while (!break_test()) { ring_buffer_reset(buffer); if (consumer) { wake_up_process(consumer); wait_for_completion(&read_start); } ring_buffer_producer(); if (break_test()) goto out_kill; trace_printk("Sleeping for 10 secs\n"); set_current_state(TASK_INTERRUPTIBLE); if (break_test()) goto out_kill; schedule_timeout(HZ * SLEEP_TIME); } out_kill: __set_current_state(TASK_RUNNING); if (!kthread_should_stop()) wait_to_die(); return 0; } static int __init ring_buffer_benchmark_init(void) { int ret; /* make a one meg buffer in overwite mode */ buffer = ring_buffer_alloc(1000000, RB_FL_OVERWRITE); if (!buffer) return -ENOMEM; if (!disable_reader) { consumer = kthread_create(ring_buffer_consumer_thread, NULL, "rb_consumer"); ret = PTR_ERR(consumer); if (IS_ERR(consumer)) goto out_fail; } producer = kthread_run(ring_buffer_producer_thread, NULL, "rb_producer"); ret = PTR_ERR(producer); if (IS_ERR(producer)) goto out_kill; /* * Run them as low-prio background tasks by default: */ if (!disable_reader) { if (consumer_fifo >= 0) { struct sched_param param = { .sched_priority = consumer_fifo }; sched_setscheduler(consumer, SCHED_FIFO, ¶m); } else set_user_nice(consumer, consumer_nice); } if (producer_fifo >= 0) { struct sched_param param = { .sched_priority = producer_fifo }; sched_setscheduler(producer, SCHED_FIFO, ¶m); } else set_user_nice(producer, producer_nice); return 0; out_kill: if (consumer) kthread_stop(consumer); out_fail: ring_buffer_free(buffer); return ret; } static void __exit ring_buffer_benchmark_exit(void) { kthread_stop(producer); if (consumer) kthread_stop(consumer); ring_buffer_free(buffer); } module_init(ring_buffer_benchmark_init); module_exit(ring_buffer_benchmark_exit); MODULE_AUTHOR("Steven Rostedt"); MODULE_DESCRIPTION("ring_buffer_benchmark"); MODULE_LICENSE("GPL");