/* * Apple Onboard Audio driver for tas codec * * Copyright 2006 Johannes Berg <johannes@sipsolutions.net> * * GPL v2, can be found in COPYING. * * Open questions: * - How to distinguish between 3004 and versions? * * FIXMEs: * - This codec driver doesn't honour the 'connected' * property of the aoa_codec struct, hence if * it is used in machines where not everything is * connected it will display wrong mixer elements. * - Driver assumes that the microphone is always * monaureal and connected to the right channel of * the input. This should also be a codec-dependent * flag, maybe the codec should have 3 different * bits for the three different possibilities how * it can be hooked up... * But as long as I don't see any hardware hooked * up that way... * - As Apple notes in their code, the tas3004 seems * to delay the right channel by one sample. You can * see this when for example recording stereo in * audacity, or recording the tas output via cable * on another machine (use a sinus generator or so). * I tried programming the BiQuads but couldn't * make the delay work, maybe someone can read the * datasheet and fix it. The relevant Apple comment * is in AppleTAS3004Audio.cpp lines 1637 ff. Note * that their comment describing how they program * the filters sucks... * * Other things: * - this should actually register *two* aoa_codec * structs since it has two inputs. Then it must * use the prepare callback to forbid running the * secondary output on a different clock. * Also, whatever bus knows how to do this must * provide two soundbus_dev devices and the fabric * must be able to link them correctly. * * I don't even know if Apple ever uses the second * port on the tas3004 though, I don't think their * i2s controllers can even do it. OTOH, they all * derive the clocks from common clocks, so it * might just be possible. The framework allows the * codec to refine the transfer_info items in the * usable callback, so we can simply remove the * rates the second instance is not using when it * actually is in use. * Maybe we'll need to make the sound busses have * a 'clock group id' value so the codec can * determine if the two outputs can be driven at * the same time. But that is likely overkill, up * to the fabric to not link them up incorrectly, * and up to the hardware designer to not wire * them up in some weird unusable way. */ #include <stddef.h> #include <linux/i2c.h> #include <asm/pmac_low_i2c.h> #include <asm/prom.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("tas codec driver for snd-aoa"); #include "tas.h" #include "tas-gain-table.h" #include "tas-basstreble.h" #include "../aoa.h" #include "../soundbus/soundbus.h" #define PFX "snd-aoa-codec-tas: " struct tas { struct aoa_codec codec; struct i2c_client *i2c; u32 mute_l:1, mute_r:1 , controls_created:1 , drc_enabled:1, hw_enabled:1; u8 cached_volume_l, cached_volume_r; u8 mixer_l[3], mixer_r[3]; u8 bass, treble; u8 acr; int drc_range; /* protects hardware access against concurrency from * userspace when hitting controls and during * codec init/suspend/resume */ struct mutex mtx; }; static int tas_reset_init(struct tas *tas); static struct tas *codec_to_tas(struct aoa_codec *codec) { return container_of(codec, struct tas, codec); } static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data) { if (len == 1) return i2c_smbus_write_byte_data(tas->i2c, reg, *data); else return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data); } static void tas3004_set_drc(struct tas *tas) { unsigned char val[6]; if (tas->drc_enabled) val[0] = 0x50; /* 3:1 above threshold */ else val[0] = 0x51; /* disabled */ val[1] = 0x02; /* 1:1 below threshold */ if (tas->drc_range > 0xef) val[2] = 0xef; else if (tas->drc_range < 0) val[2] = 0x00; else val[2] = tas->drc_range; val[3] = 0xb0; val[4] = 0x60; val[5] = 0xa0; tas_write_reg(tas, TAS_REG_DRC, 6, val); } static void tas_set_treble(struct tas *tas) { u8 tmp; tmp = tas3004_treble(tas->treble); tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp); } static void tas_set_bass(struct tas *tas) { u8 tmp; tmp = tas3004_bass(tas->bass); tas_write_reg(tas, TAS_REG_BASS, 1, &tmp); } static void tas_set_volume(struct tas *tas) { u8 block[6]; int tmp; u8 left, right; left = tas->cached_volume_l; right = tas->cached_volume_r; if (left > 177) left = 177; if (right > 177) right = 177; if (tas->mute_l) left = 0; if (tas->mute_r) right = 0; /* analysing the volume and mixer tables shows * that they are similar enough when we shift * the mixer table down by 4 bits. The error * is miniscule, in just one item the error * is 1, at a value of 0x07f17b (mixer table * value is 0x07f17a) */ tmp = tas_gaintable[left]; block[0] = tmp>>20; block[1] = tmp>>12; block[2] = tmp>>4; tmp = tas_gaintable[right]; block[3] = tmp>>20; block[4] = tmp>>12; block[5] = tmp>>4; tas_write_reg(tas, TAS_REG_VOL, 6, block); } static void tas_set_mixer(struct tas *tas) { u8 block[9]; int tmp, i; u8 val; for (i=0;i<3;i++) { val = tas->mixer_l[i]; if (val > 177) val = 177; tmp = tas_gaintable[val]; block[3*i+0] = tmp>>16; block[3*i+1] = tmp>>8; block[3*i+2] = tmp; } tas_write_reg(tas, TAS_REG_LMIX, 9, block); for (i=0;i<3;i++) { val = tas->mixer_r[i]; if (val > 177) val = 177; tmp = tas_gaintable[val]; block[3*i+0] = tmp>>16; block[3*i+1] = tmp>>8; block[3*i+2] = tmp; } tas_write_reg(tas, TAS_REG_RMIX, 9, block); } /* alsa stuff */ static int tas_dev_register(struct snd_device *dev) { return 0; } static struct snd_device_ops ops = { .dev_register = tas_dev_register, }; static int tas_snd_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 177; return 0; } static int tas_snd_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); ucontrol->value.integer.value[0] = tas->cached_volume_l; ucontrol->value.integer.value[1] = tas->cached_volume_r; mutex_unlock(&tas->mtx); return 0; } static int tas_snd_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); if (ucontrol->value.integer.value[0] < 0 || ucontrol->value.integer.value[0] > 177) return -EINVAL; if (ucontrol->value.integer.value[1] < 0 || ucontrol->value.integer.value[1] > 177) return -EINVAL; mutex_lock(&tas->mtx); if (tas->cached_volume_l == ucontrol->value.integer.value[0] && tas->cached_volume_r == ucontrol->value.integer.value[1]) { mutex_unlock(&tas->mtx); return 0; } tas->cached_volume_l = ucontrol->value.integer.value[0]; tas->cached_volume_r = ucontrol->value.integer.value[1]; if (tas->hw_enabled) tas_set_volume(tas); mutex_unlock(&tas->mtx); return 1; } static struct snd_kcontrol_new volume_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = tas_snd_vol_info, .get = tas_snd_vol_get, .put = tas_snd_vol_put, }; #define tas_snd_mute_info snd_ctl_boolean_stereo_info static int tas_snd_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); ucontrol->value.integer.value[0] = !tas->mute_l; ucontrol->value.integer.value[1] = !tas->mute_r; mutex_unlock(&tas->mtx); return 0; } static int tas_snd_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); if (tas->mute_l == !ucontrol->value.integer.value[0] && tas->mute_r == !ucontrol->value.integer.value[1]) { mutex_unlock(&tas->mtx); return 0; } tas->mute_l = !ucontrol->value.integer.value[0]; tas->mute_r = !ucontrol->value.integer.value[1]; if (tas->hw_enabled) tas_set_volume(tas); mutex_unlock(&tas->mtx); return 1; } static struct snd_kcontrol_new mute_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = tas_snd_mute_info, .get = tas_snd_mute_get, .put = tas_snd_mute_put, }; static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 177; return 0; } static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); int idx = kcontrol->private_value; mutex_lock(&tas->mtx); ucontrol->value.integer.value[0] = tas->mixer_l[idx]; ucontrol->value.integer.value[1] = tas->mixer_r[idx]; mutex_unlock(&tas->mtx); return 0; } static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); int idx = kcontrol->private_value; mutex_lock(&tas->mtx); if (tas->mixer_l[idx] == ucontrol->value.integer.value[0] && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) { mutex_unlock(&tas->mtx); return 0; } tas->mixer_l[idx] = ucontrol->value.integer.value[0]; tas->mixer_r[idx] = ucontrol->value.integer.value[1]; if (tas->hw_enabled) tas_set_mixer(tas); mutex_unlock(&tas->mtx); return 1; } #define MIXER_CONTROL(n,descr,idx) \ static struct snd_kcontrol_new n##_control = { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = descr " Playback Volume", \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas_snd_mixer_info, \ .get = tas_snd_mixer_get, \ .put = tas_snd_mixer_put, \ .private_value = idx, \ } MIXER_CONTROL(pcm1, "PCM", 0); MIXER_CONTROL(monitor, "Monitor", 2); static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = TAS3004_DRC_MAX; return 0; } static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); ucontrol->value.integer.value[0] = tas->drc_range; mutex_unlock(&tas->mtx); return 0; } static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); if (ucontrol->value.integer.value[0] < 0 || ucontrol->value.integer.value[0] > TAS3004_DRC_MAX) return -EINVAL; mutex_lock(&tas->mtx); if (tas->drc_range == ucontrol->value.integer.value[0]) { mutex_unlock(&tas->mtx); return 0; } tas->drc_range = ucontrol->value.integer.value[0]; if (tas->hw_enabled) tas3004_set_drc(tas); mutex_unlock(&tas->mtx); return 1; } static struct snd_kcontrol_new drc_range_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Range", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = tas_snd_drc_range_info, .get = tas_snd_drc_range_get, .put = tas_snd_drc_range_put, }; #define tas_snd_drc_switch_info snd_ctl_boolean_mono_info static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); ucontrol->value.integer.value[0] = tas->drc_enabled; mutex_unlock(&tas->mtx); return 0; } static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); if (tas->drc_enabled == ucontrol->value.integer.value[0]) { mutex_unlock(&tas->mtx); return 0; } tas->drc_enabled = !!ucontrol->value.integer.value[0]; if (tas->hw_enabled) tas3004_set_drc(tas); mutex_unlock(&tas->mtx); return 1; } static struct snd_kcontrol_new drc_switch_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Range Switch", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = tas_snd_drc_switch_info, .get = tas_snd_drc_switch_get, .put = tas_snd_drc_switch_put, }; static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[] = { "Line-In", "Microphone" }; return snd_ctl_enum_info(uinfo, 1, 2, texts); } static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B); mutex_unlock(&tas->mtx); return 0; } static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); int oldacr; if (ucontrol->value.enumerated.item[0] > 1) return -EINVAL; mutex_lock(&tas->mtx); oldacr = tas->acr; /* * Despite what the data sheet says in one place, the * TAS_ACR_B_MONAUREAL bit forces mono output even when * input A (line in) is selected. */ tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL); if (ucontrol->value.enumerated.item[0]) tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL | TAS_ACR_B_MON_SEL_RIGHT; if (oldacr == tas->acr) { mutex_unlock(&tas->mtx); return 0; } if (tas->hw_enabled) tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); mutex_unlock(&tas->mtx); return 1; } static struct snd_kcontrol_new capture_source_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, /* If we name this 'Input Source', it properly shows up in * alsamixer as a selection, * but it's shown under the * 'Playback' category. * If I name it 'Capture Source', it shows up in strange * ways (two bools of which one can be selected at a * time) but at least it's shown in the 'Capture' * category. * I was told that this was due to backward compatibility, * but I don't understand then why the mangling is *not* * done when I name it "Input Source"..... */ .name = "Capture Source", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = tas_snd_capture_source_info, .get = tas_snd_capture_source_get, .put = tas_snd_capture_source_put, }; static int tas_snd_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = TAS3004_TREBLE_MIN; uinfo->value.integer.max = TAS3004_TREBLE_MAX; return 0; } static int tas_snd_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); ucontrol->value.integer.value[0] = tas->treble; mutex_unlock(&tas->mtx); return 0; } static int tas_snd_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN || ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX) return -EINVAL; mutex_lock(&tas->mtx); if (tas->treble == ucontrol->value.integer.value[0]) { mutex_unlock(&tas->mtx); return 0; } tas->treble = ucontrol->value.integer.value[0]; if (tas->hw_enabled) tas_set_treble(tas); mutex_unlock(&tas->mtx); return 1; } static struct snd_kcontrol_new treble_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Treble", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = tas_snd_treble_info, .get = tas_snd_treble_get, .put = tas_snd_treble_put, }; static int tas_snd_bass_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = TAS3004_BASS_MIN; uinfo->value.integer.max = TAS3004_BASS_MAX; return 0; } static int tas_snd_bass_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); mutex_lock(&tas->mtx); ucontrol->value.integer.value[0] = tas->bass; mutex_unlock(&tas->mtx); return 0; } static int tas_snd_bass_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas *tas = snd_kcontrol_chip(kcontrol); if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN || ucontrol->value.integer.value[0] > TAS3004_BASS_MAX) return -EINVAL; mutex_lock(&tas->mtx); if (tas->bass == ucontrol->value.integer.value[0]) { mutex_unlock(&tas->mtx); return 0; } tas->bass = ucontrol->value.integer.value[0]; if (tas->hw_enabled) tas_set_bass(tas); mutex_unlock(&tas->mtx); return 1; } static struct snd_kcontrol_new bass_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Bass", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = tas_snd_bass_info, .get = tas_snd_bass_get, .put = tas_snd_bass_put, }; static struct transfer_info tas_transfers[] = { { /* input */ .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, .transfer_in = 1, }, { /* output */ .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, .transfer_in = 0, }, {} }; static int tas_usable(struct codec_info_item *cii, struct transfer_info *ti, struct transfer_info *out) { return 1; } static int tas_reset_init(struct tas *tas) { u8 tmp; tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); msleep(5); tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); msleep(5); tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1); msleep(20); tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); msleep(10); tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT; if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp)) goto outerr; tas->acr |= TAS_ACR_ANALOG_PDOWN; if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) goto outerr; tmp = 0; if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp)) goto outerr; tas3004_set_drc(tas); /* Set treble & bass to 0dB */ tas->treble = TAS3004_TREBLE_ZERO; tas->bass = TAS3004_BASS_ZERO; tas_set_treble(tas); tas_set_bass(tas); tas->acr &= ~TAS_ACR_ANALOG_PDOWN; if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) goto outerr; return 0; outerr: return -ENODEV; } static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock) { struct tas *tas = cii->codec_data; switch(clock) { case CLOCK_SWITCH_PREPARE_SLAVE: /* Clocks are going away, mute mute mute */ tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); tas->hw_enabled = 0; break; case CLOCK_SWITCH_SLAVE: /* Clocks are back, re-init the codec */ mutex_lock(&tas->mtx); tas_reset_init(tas); tas_set_volume(tas); tas_set_mixer(tas); tas->hw_enabled = 1; tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); mutex_unlock(&tas->mtx); break; default: /* doesn't happen as of now */ return -EINVAL; } return 0; } #ifdef CONFIG_PM /* we are controlled via i2c and assume that is always up * If that wasn't the case, we'd have to suspend once * our i2c device is suspended, and then take note of that! */ static int tas_suspend(struct tas *tas) { mutex_lock(&tas->mtx); tas->hw_enabled = 0; tas->acr |= TAS_ACR_ANALOG_PDOWN; tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); mutex_unlock(&tas->mtx); return 0; } static int tas_resume(struct tas *tas) { /* reset codec */ mutex_lock(&tas->mtx); tas_reset_init(tas); tas_set_volume(tas); tas_set_mixer(tas); tas->hw_enabled = 1; mutex_unlock(&tas->mtx); return 0; } static int _tas_suspend(struct codec_info_item *cii, pm_message_t state) { return tas_suspend(cii->codec_data); } static int _tas_resume(struct codec_info_item *cii) { return tas_resume(cii->codec_data); } #else /* CONFIG_PM */ #define _tas_suspend NULL #define _tas_resume NULL #endif /* CONFIG_PM */ static struct codec_info tas_codec_info = { .transfers = tas_transfers, /* in theory, we can drive it at 512 too... * but so far the framework doesn't allow * for that and I don't see much point in it. */ .sysclock_factor = 256, /* same here, could be 32 for just one 16 bit format */ .bus_factor = 64, .owner = THIS_MODULE, .usable = tas_usable, .switch_clock = tas_switch_clock, .suspend = _tas_suspend, .resume = _tas_resume, }; static int tas_init_codec(struct aoa_codec *codec) { struct tas *tas = codec_to_tas(codec); int err; if (!tas->codec.gpio || !tas->codec.gpio->methods) { printk(KERN_ERR PFX "gpios not assigned!!\n"); return -EINVAL; } mutex_lock(&tas->mtx); if (tas_reset_init(tas)) { printk(KERN_ERR PFX "tas failed to initialise\n"); mutex_unlock(&tas->mtx); return -ENXIO; } tas->hw_enabled = 1; mutex_unlock(&tas->mtx); if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev, aoa_get_card(), &tas_codec_info, tas)) { printk(KERN_ERR PFX "error attaching tas to soundbus\n"); return -ENODEV; } if (aoa_snd_device_new(SNDRV_DEV_CODEC, tas, &ops)) { printk(KERN_ERR PFX "failed to create tas snd device!\n"); return -ENODEV; } err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas)); if (err) goto error; err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas)); if (err) goto error; return 0; error: tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); snd_device_free(aoa_get_card(), tas); return err; } static void tas_exit_codec(struct aoa_codec *codec) { struct tas *tas = codec_to_tas(codec); if (!tas->codec.soundbus_dev) return; tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); } static int tas_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device_node *node = client->dev.of_node; struct tas *tas; tas = kzalloc(sizeof(struct tas), GFP_KERNEL); if (!tas) return -ENOMEM; mutex_init(&tas->mtx); tas->i2c = client; i2c_set_clientdata(client, tas); /* seems that half is a saner default */ tas->drc_range = TAS3004_DRC_MAX / 2; strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN); tas->codec.owner = THIS_MODULE; tas->codec.init = tas_init_codec; tas->codec.exit = tas_exit_codec; tas->codec.node = of_node_get(node); if (aoa_codec_register(&tas->codec)) { goto fail; } printk(KERN_DEBUG "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n", (unsigned int)client->addr, node->full_name); return 0; fail: mutex_destroy(&tas->mtx); kfree(tas); return -EINVAL; } static int tas_i2c_remove(struct i2c_client *client) { struct tas *tas = i2c_get_clientdata(client); u8 tmp = TAS_ACR_ANALOG_PDOWN; aoa_codec_unregister(&tas->codec); of_node_put(tas->codec.node); /* power down codec chip */ tas_write_reg(tas, TAS_REG_ACR, 1, &tmp); mutex_destroy(&tas->mtx); kfree(tas); return 0; } static const struct i2c_device_id tas_i2c_id[] = { { "MAC,tas3004", 0 }, { } }; MODULE_DEVICE_TABLE(i2c,tas_i2c_id); static struct i2c_driver tas_driver = { .driver = { .name = "aoa_codec_tas", }, .probe = tas_i2c_probe, .remove = tas_i2c_remove, .id_table = tas_i2c_id, }; module_i2c_driver(tas_driver);