Kernel  |  4.4

下载     查看原文件
C++程序  |  798行  |  19.29 KB
/*
 *  Copyright (C) 1994-1998	   Linus Torvalds & authors (see below)
 *  Copyright (C) 1998-2002	   Linux ATA Development
 *				      Andre Hedrick <andre@linux-ide.org>
 *  Copyright (C) 2003		   Red Hat
 *  Copyright (C) 2003-2005, 2007  Bartlomiej Zolnierkiewicz
 */

/*
 *  Mostly written by Mark Lord <mlord@pobox.com>
 *                and Gadi Oxman <gadio@netvision.net.il>
 *                and Andre Hedrick <andre@linux-ide.org>
 *
 * This is the IDE/ATA disk driver, as evolved from hd.c and ide.c.
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/genhd.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/leds.h>
#include <linux/ide.h>

#include <asm/byteorder.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/div64.h>

#include "ide-disk.h"

static const u8 ide_rw_cmds[] = {
	ATA_CMD_READ_MULTI,
	ATA_CMD_WRITE_MULTI,
	ATA_CMD_READ_MULTI_EXT,
	ATA_CMD_WRITE_MULTI_EXT,
	ATA_CMD_PIO_READ,
	ATA_CMD_PIO_WRITE,
	ATA_CMD_PIO_READ_EXT,
	ATA_CMD_PIO_WRITE_EXT,
	ATA_CMD_READ,
	ATA_CMD_WRITE,
	ATA_CMD_READ_EXT,
	ATA_CMD_WRITE_EXT,
};

static void ide_tf_set_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 dma)
{
	u8 index, lba48, write;

	lba48 = (cmd->tf_flags & IDE_TFLAG_LBA48) ? 2 : 0;
	write = (cmd->tf_flags & IDE_TFLAG_WRITE) ? 1 : 0;

	if (dma) {
		cmd->protocol = ATA_PROT_DMA;
		index = 8;
	} else {
		cmd->protocol = ATA_PROT_PIO;
		if (drive->mult_count) {
			cmd->tf_flags |= IDE_TFLAG_MULTI_PIO;
			index = 0;
		} else
			index = 4;
	}

	cmd->tf.command = ide_rw_cmds[index + lba48 + write];
}

/*
 * __ide_do_rw_disk() issues READ and WRITE commands to a disk,
 * using LBA if supported, or CHS otherwise, to address sectors.
 */
static ide_startstop_t __ide_do_rw_disk(ide_drive_t *drive, struct request *rq,
					sector_t block)
{
	ide_hwif_t *hwif	= drive->hwif;
	u16 nsectors		= (u16)blk_rq_sectors(rq);
	u8 lba48		= !!(drive->dev_flags & IDE_DFLAG_LBA48);
	u8 dma			= !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
	struct ide_cmd		cmd;
	struct ide_taskfile	*tf = &cmd.tf;
	ide_startstop_t		rc;

	if ((hwif->host_flags & IDE_HFLAG_NO_LBA48_DMA) && lba48 && dma) {
		if (block + blk_rq_sectors(rq) > 1ULL << 28)
			dma = 0;
		else
			lba48 = 0;
	}

	memset(&cmd, 0, sizeof(cmd));
	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;

	if (drive->dev_flags & IDE_DFLAG_LBA) {
		if (lba48) {
			pr_debug("%s: LBA=0x%012llx\n", drive->name,
					(unsigned long long)block);

			tf->nsect  = nsectors & 0xff;
			tf->lbal   = (u8) block;
			tf->lbam   = (u8)(block >>  8);
			tf->lbah   = (u8)(block >> 16);
			tf->device = ATA_LBA;

			tf = &cmd.hob;
			tf->nsect = (nsectors >> 8) & 0xff;
			tf->lbal  = (u8)(block >> 24);
			if (sizeof(block) != 4) {
				tf->lbam = (u8)((u64)block >> 32);
				tf->lbah = (u8)((u64)block >> 40);
			}

			cmd.valid.out.hob = IDE_VALID_OUT_HOB;
			cmd.valid.in.hob  = IDE_VALID_IN_HOB;
			cmd.tf_flags |= IDE_TFLAG_LBA48;
		} else {
			tf->nsect  = nsectors & 0xff;
			tf->lbal   = block;
			tf->lbam   = block >>= 8;
			tf->lbah   = block >>= 8;
			tf->device = ((block >> 8) & 0xf) | ATA_LBA;
		}
	} else {
		unsigned int sect, head, cyl, track;

		track = (int)block / drive->sect;
		sect  = (int)block % drive->sect + 1;
		head  = track % drive->head;
		cyl   = track / drive->head;

		pr_debug("%s: CHS=%u/%u/%u\n", drive->name, cyl, head, sect);

		tf->nsect  = nsectors & 0xff;
		tf->lbal   = sect;
		tf->lbam   = cyl;
		tf->lbah   = cyl >> 8;
		tf->device = head;
	}

	cmd.tf_flags |= IDE_TFLAG_FS;

	if (rq_data_dir(rq))
		cmd.tf_flags |= IDE_TFLAG_WRITE;

	ide_tf_set_cmd(drive, &cmd, dma);
	cmd.rq = rq;

	if (dma == 0) {
		ide_init_sg_cmd(&cmd, nsectors << 9);
		ide_map_sg(drive, &cmd);
	}

	rc = do_rw_taskfile(drive, &cmd);

	if (rc == ide_stopped && dma) {
		/* fallback to PIO */
		cmd.tf_flags |= IDE_TFLAG_DMA_PIO_FALLBACK;
		ide_tf_set_cmd(drive, &cmd, 0);
		ide_init_sg_cmd(&cmd, nsectors << 9);
		rc = do_rw_taskfile(drive, &cmd);
	}

	return rc;
}

/*
 * 268435455  == 137439 MB or 28bit limit
 * 320173056  == 163929 MB or 48bit addressing
 * 1073741822 == 549756 MB or 48bit addressing fake drive
 */

static ide_startstop_t ide_do_rw_disk(ide_drive_t *drive, struct request *rq,
				      sector_t block)
{
	ide_hwif_t *hwif = drive->hwif;

	BUG_ON(drive->dev_flags & IDE_DFLAG_BLOCKED);
	BUG_ON(rq->cmd_type != REQ_TYPE_FS);

	ledtrig_ide_activity();

	pr_debug("%s: %sing: block=%llu, sectors=%u\n",
		 drive->name, rq_data_dir(rq) == READ ? "read" : "writ",
		 (unsigned long long)block, blk_rq_sectors(rq));

	if (hwif->rw_disk)
		hwif->rw_disk(drive, rq);

	return __ide_do_rw_disk(drive, rq, block);
}

/*
 * Queries for true maximum capacity of the drive.
 * Returns maximum LBA address (> 0) of the drive, 0 if failed.
 */
static u64 idedisk_read_native_max_address(ide_drive_t *drive, int lba48)
{
	struct ide_cmd cmd;
	struct ide_taskfile *tf = &cmd.tf;
	u64 addr = 0;

	memset(&cmd, 0, sizeof(cmd));
	if (lba48)
		tf->command = ATA_CMD_READ_NATIVE_MAX_EXT;
	else
		tf->command = ATA_CMD_READ_NATIVE_MAX;
	tf->device  = ATA_LBA;

	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
	if (lba48) {
		cmd.valid.out.hob = IDE_VALID_OUT_HOB;
		cmd.valid.in.hob  = IDE_VALID_IN_HOB;
		cmd.tf_flags = IDE_TFLAG_LBA48;
	}

	ide_no_data_taskfile(drive, &cmd);

	/* if OK, compute maximum address value */
	if (!(tf->status & ATA_ERR))
		addr = ide_get_lba_addr(&cmd, lba48) + 1;

	return addr;
}

/*
 * Sets maximum virtual LBA address of the drive.
 * Returns new maximum virtual LBA address (> 0) or 0 on failure.
 */
static u64 idedisk_set_max_address(ide_drive_t *drive, u64 addr_req, int lba48)
{
	struct ide_cmd cmd;
	struct ide_taskfile *tf = &cmd.tf;
	u64 addr_set = 0;

	addr_req--;

	memset(&cmd, 0, sizeof(cmd));
	tf->lbal     = (addr_req >>  0) & 0xff;
	tf->lbam     = (addr_req >>= 8) & 0xff;
	tf->lbah     = (addr_req >>= 8) & 0xff;
	if (lba48) {
		cmd.hob.lbal = (addr_req >>= 8) & 0xff;
		cmd.hob.lbam = (addr_req >>= 8) & 0xff;
		cmd.hob.lbah = (addr_req >>= 8) & 0xff;
		tf->command  = ATA_CMD_SET_MAX_EXT;
	} else {
		tf->device   = (addr_req >>= 8) & 0x0f;
		tf->command  = ATA_CMD_SET_MAX;
	}
	tf->device |= ATA_LBA;

	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
	if (lba48) {
		cmd.valid.out.hob = IDE_VALID_OUT_HOB;
		cmd.valid.in.hob  = IDE_VALID_IN_HOB;
		cmd.tf_flags = IDE_TFLAG_LBA48;
	}

	ide_no_data_taskfile(drive, &cmd);

	/* if OK, compute maximum address value */
	if (!(tf->status & ATA_ERR))
		addr_set = ide_get_lba_addr(&cmd, lba48) + 1;

	return addr_set;
}

static unsigned long long sectors_to_MB(unsigned long long n)
{
	n <<= 9;		/* make it bytes */
	do_div(n, 1000000);	/* make it MB */
	return n;
}

/*
 * Some disks report total number of sectors instead of
 * maximum sector address.  We list them here.
 */
static const struct drive_list_entry hpa_list[] = {
	{ "ST340823A",	NULL },
	{ "ST320413A",	NULL },
	{ "ST310211A",	NULL },
	{ NULL,		NULL }
};

static u64 ide_disk_hpa_get_native_capacity(ide_drive_t *drive, int lba48)
{
	u64 capacity, set_max;

	capacity = drive->capacity64;
	set_max  = idedisk_read_native_max_address(drive, lba48);

	if (ide_in_drive_list(drive->id, hpa_list)) {
		/*
		 * Since we are inclusive wrt to firmware revisions do this
		 * extra check and apply the workaround only when needed.
		 */
		if (set_max == capacity + 1)
			set_max--;
	}

	return set_max;
}

static u64 ide_disk_hpa_set_capacity(ide_drive_t *drive, u64 set_max, int lba48)
{
	set_max = idedisk_set_max_address(drive, set_max, lba48);
	if (set_max)
		drive->capacity64 = set_max;

	return set_max;
}

static void idedisk_check_hpa(ide_drive_t *drive)
{
	u64 capacity, set_max;
	int lba48 = ata_id_lba48_enabled(drive->id);

	capacity = drive->capacity64;
	set_max  = ide_disk_hpa_get_native_capacity(drive, lba48);

	if (set_max <= capacity)
		return;

	drive->probed_capacity = set_max;

	printk(KERN_INFO "%s: Host Protected Area detected.\n"
			 "\tcurrent capacity is %llu sectors (%llu MB)\n"
			 "\tnative  capacity is %llu sectors (%llu MB)\n",
			 drive->name,
			 capacity, sectors_to_MB(capacity),
			 set_max, sectors_to_MB(set_max));

	if ((drive->dev_flags & IDE_DFLAG_NOHPA) == 0)
		return;

	set_max = ide_disk_hpa_set_capacity(drive, set_max, lba48);
	if (set_max)
		printk(KERN_INFO "%s: Host Protected Area disabled.\n",
				 drive->name);
}

static int ide_disk_get_capacity(ide_drive_t *drive)
{
	u16 *id = drive->id;
	int lba;

	if (ata_id_lba48_enabled(id)) {
		/* drive speaks 48-bit LBA */
		lba = 1;
		drive->capacity64 = ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
	} else if (ata_id_has_lba(id) && ata_id_is_lba_capacity_ok(id)) {
		/* drive speaks 28-bit LBA */
		lba = 1;
		drive->capacity64 = ata_id_u32(id, ATA_ID_LBA_CAPACITY);
	} else {
		/* drive speaks boring old 28-bit CHS */
		lba = 0;
		drive->capacity64 = drive->cyl * drive->head * drive->sect;
	}

	drive->probed_capacity = drive->capacity64;

	if (lba) {
		drive->dev_flags |= IDE_DFLAG_LBA;

		/*
		* If this device supports the Host Protected Area feature set,
		* then we may need to change our opinion about its capacity.
		*/
		if (ata_id_hpa_enabled(id))
			idedisk_check_hpa(drive);
	}

	/* limit drive capacity to 137GB if LBA48 cannot be used */
	if ((drive->dev_flags & IDE_DFLAG_LBA48) == 0 &&
	    drive->capacity64 > 1ULL << 28) {
		printk(KERN_WARNING "%s: cannot use LBA48 - full capacity "
		       "%llu sectors (%llu MB)\n",
		       drive->name, (unsigned long long)drive->capacity64,
		       sectors_to_MB(drive->capacity64));
		drive->probed_capacity = drive->capacity64 = 1ULL << 28;
	}

	if ((drive->hwif->host_flags & IDE_HFLAG_NO_LBA48_DMA) &&
	    (drive->dev_flags & IDE_DFLAG_LBA48)) {
		if (drive->capacity64 > 1ULL << 28) {
			printk(KERN_INFO "%s: cannot use LBA48 DMA - PIO mode"
					 " will be used for accessing sectors "
					 "> %u\n", drive->name, 1 << 28);
		} else
			drive->dev_flags &= ~IDE_DFLAG_LBA48;
	}

	return 0;
}

static void ide_disk_unlock_native_capacity(ide_drive_t *drive)
{
	u16 *id = drive->id;
	int lba48 = ata_id_lba48_enabled(id);

	if ((drive->dev_flags & IDE_DFLAG_LBA) == 0 ||
	    ata_id_hpa_enabled(id) == 0)
		return;

	/*
	 * according to the spec the SET MAX ADDRESS command shall be
	 * immediately preceded by a READ NATIVE MAX ADDRESS command
	 */
	if (!ide_disk_hpa_get_native_capacity(drive, lba48))
		return;

	if (ide_disk_hpa_set_capacity(drive, drive->probed_capacity, lba48))
		drive->dev_flags |= IDE_DFLAG_NOHPA; /* disable HPA on resume */
}

static int idedisk_prep_fn(struct request_queue *q, struct request *rq)
{
	ide_drive_t *drive = q->queuedata;
	struct ide_cmd *cmd;

	if (!(rq->cmd_flags & REQ_FLUSH))
		return BLKPREP_OK;

	if (rq->special) {
		cmd = rq->special;
		memset(cmd, 0, sizeof(*cmd));
	} else {
		cmd = kzalloc(sizeof(*cmd), GFP_ATOMIC);
	}

	/* FIXME: map struct ide_taskfile on rq->cmd[] */
	BUG_ON(cmd == NULL);

	if (ata_id_flush_ext_enabled(drive->id) &&
	    (drive->capacity64 >= (1UL << 28)))
		cmd->tf.command = ATA_CMD_FLUSH_EXT;
	else
		cmd->tf.command = ATA_CMD_FLUSH;
	cmd->valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
	cmd->tf_flags = IDE_TFLAG_DYN;
	cmd->protocol = ATA_PROT_NODATA;

	rq->cmd_type = REQ_TYPE_ATA_TASKFILE;
	rq->special = cmd;
	cmd->rq = rq;

	return BLKPREP_OK;
}

ide_devset_get(multcount, mult_count);

/*
 * This is tightly woven into the driver->do_special can not touch.
 * DON'T do it again until a total personality rewrite is committed.
 */
static int set_multcount(ide_drive_t *drive, int arg)
{
	struct request *rq;
	int error;

	if (arg < 0 || arg > (drive->id[ATA_ID_MAX_MULTSECT] & 0xff))
		return -EINVAL;

	if (drive->special_flags & IDE_SFLAG_SET_MULTMODE)
		return -EBUSY;

	rq = blk_get_request(drive->queue, READ, __GFP_RECLAIM);
	rq->cmd_type = REQ_TYPE_ATA_TASKFILE;

	drive->mult_req = arg;
	drive->special_flags |= IDE_SFLAG_SET_MULTMODE;
	error = blk_execute_rq(drive->queue, NULL, rq, 0);
	blk_put_request(rq);

	return (drive->mult_count == arg) ? 0 : -EIO;
}

ide_devset_get_flag(nowerr, IDE_DFLAG_NOWERR);

static int set_nowerr(ide_drive_t *drive, int arg)
{
	if (arg < 0 || arg > 1)
		return -EINVAL;

	if (arg)
		drive->dev_flags |= IDE_DFLAG_NOWERR;
	else
		drive->dev_flags &= ~IDE_DFLAG_NOWERR;

	drive->bad_wstat = arg ? BAD_R_STAT : BAD_W_STAT;

	return 0;
}

static int ide_do_setfeature(ide_drive_t *drive, u8 feature, u8 nsect)
{
	struct ide_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.tf.feature = feature;
	cmd.tf.nsect   = nsect;
	cmd.tf.command = ATA_CMD_SET_FEATURES;
	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;

	return ide_no_data_taskfile(drive, &cmd);
}

static void update_flush(ide_drive_t *drive)
{
	u16 *id = drive->id;
	unsigned flush = 0;

	if (drive->dev_flags & IDE_DFLAG_WCACHE) {
		unsigned long long capacity;
		int barrier;
		/*
		 * We must avoid issuing commands a drive does not
		 * understand or we may crash it. We check flush cache
		 * is supported. We also check we have the LBA48 flush
		 * cache if the drive capacity is too large. By this
		 * time we have trimmed the drive capacity if LBA48 is
		 * not available so we don't need to recheck that.
		 */
		capacity = ide_gd_capacity(drive);
		barrier = ata_id_flush_enabled(id) &&
			(drive->dev_flags & IDE_DFLAG_NOFLUSH) == 0 &&
			((drive->dev_flags & IDE_DFLAG_LBA48) == 0 ||
			 capacity <= (1ULL << 28) ||
			 ata_id_flush_ext_enabled(id));

		printk(KERN_INFO "%s: cache flushes %ssupported\n",
		       drive->name, barrier ? "" : "not ");

		if (barrier) {
			flush = REQ_FLUSH;
			blk_queue_prep_rq(drive->queue, idedisk_prep_fn);
		}
	}

	blk_queue_flush(drive->queue, flush);
}

ide_devset_get_flag(wcache, IDE_DFLAG_WCACHE);

static int set_wcache(ide_drive_t *drive, int arg)
{
	int err = 1;

	if (arg < 0 || arg > 1)
		return -EINVAL;

	if (ata_id_flush_enabled(drive->id)) {
		err = ide_do_setfeature(drive,
			arg ? SETFEATURES_WC_ON : SETFEATURES_WC_OFF, 0);
		if (err == 0) {
			if (arg)
				drive->dev_flags |= IDE_DFLAG_WCACHE;
			else
				drive->dev_flags &= ~IDE_DFLAG_WCACHE;
		}
	}

	update_flush(drive);

	return err;
}

static int do_idedisk_flushcache(ide_drive_t *drive)
{
	struct ide_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (ata_id_flush_ext_enabled(drive->id))
		cmd.tf.command = ATA_CMD_FLUSH_EXT;
	else
		cmd.tf.command = ATA_CMD_FLUSH;
	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;

	return ide_no_data_taskfile(drive, &cmd);
}

ide_devset_get(acoustic, acoustic);

static int set_acoustic(ide_drive_t *drive, int arg)
{
	if (arg < 0 || arg > 254)
		return -EINVAL;

	ide_do_setfeature(drive,
		arg ? SETFEATURES_AAM_ON : SETFEATURES_AAM_OFF, arg);

	drive->acoustic = arg;

	return 0;
}

ide_devset_get_flag(addressing, IDE_DFLAG_LBA48);

/*
 * drive->addressing:
 *	0: 28-bit
 *	1: 48-bit
 *	2: 48-bit capable doing 28-bit
 */
static int set_addressing(ide_drive_t *drive, int arg)
{
	if (arg < 0 || arg > 2)
		return -EINVAL;

	if (arg && ((drive->hwif->host_flags & IDE_HFLAG_NO_LBA48) ||
	    ata_id_lba48_enabled(drive->id) == 0))
		return -EIO;

	if (arg == 2)
		arg = 0;

	if (arg)
		drive->dev_flags |= IDE_DFLAG_LBA48;
	else
		drive->dev_flags &= ~IDE_DFLAG_LBA48;

	return 0;
}

ide_ext_devset_rw(acoustic, acoustic);
ide_ext_devset_rw(address, addressing);
ide_ext_devset_rw(multcount, multcount);
ide_ext_devset_rw(wcache, wcache);

ide_ext_devset_rw_sync(nowerr, nowerr);

static int ide_disk_check(ide_drive_t *drive, const char *s)
{
	return 1;
}

static void ide_disk_setup(ide_drive_t *drive)
{
	struct ide_disk_obj *idkp = drive->driver_data;
	struct request_queue *q = drive->queue;
	ide_hwif_t *hwif = drive->hwif;
	u16 *id = drive->id;
	char *m = (char *)&id[ATA_ID_PROD];
	unsigned long long capacity;

	ide_proc_register_driver(drive, idkp->driver);

	if ((drive->dev_flags & IDE_DFLAG_ID_READ) == 0)
		return;

	if (drive->dev_flags & IDE_DFLAG_REMOVABLE) {
		/*
		 * Removable disks (eg. SYQUEST); ignore 'WD' drives
		 */
		if (m[0] != 'W' || m[1] != 'D')
			drive->dev_flags |= IDE_DFLAG_DOORLOCKING;
	}

	(void)set_addressing(drive, 1);

	if (drive->dev_flags & IDE_DFLAG_LBA48) {
		int max_s = 2048;

		if (max_s > hwif->rqsize)
			max_s = hwif->rqsize;

		blk_queue_max_hw_sectors(q, max_s);
	}

	printk(KERN_INFO "%s: max request size: %dKiB\n", drive->name,
	       queue_max_sectors(q) / 2);

	if (ata_id_is_ssd(id)) {
		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
	}

	/* calculate drive capacity, and select LBA if possible */
	ide_disk_get_capacity(drive);

	/*
	 * if possible, give fdisk access to more of the drive,
	 * by correcting bios_cyls:
	 */
	capacity = ide_gd_capacity(drive);

	if ((drive->dev_flags & IDE_DFLAG_FORCED_GEOM) == 0) {
		if (ata_id_lba48_enabled(drive->id)) {
			/* compatibility */
			drive->bios_sect = 63;
			drive->bios_head = 255;
		}

		if (drive->bios_sect && drive->bios_head) {
			unsigned int cap0 = capacity; /* truncate to 32 bits */
			unsigned int cylsz, cyl;

			if (cap0 != capacity)
				drive->bios_cyl = 65535;
			else {
				cylsz = drive->bios_sect * drive->bios_head;
				cyl = cap0 / cylsz;
				if (cyl > 65535)
					cyl = 65535;
				if (cyl > drive->bios_cyl)
					drive->bios_cyl = cyl;
			}
		}
	}
	printk(KERN_INFO "%s: %llu sectors (%llu MB)",
			 drive->name, capacity, sectors_to_MB(capacity));

	/* Only print cache size when it was specified */
	if (id[ATA_ID_BUF_SIZE])
		printk(KERN_CONT " w/%dKiB Cache", id[ATA_ID_BUF_SIZE] / 2);

	printk(KERN_CONT ", CHS=%d/%d/%d\n",
			 drive->bios_cyl, drive->bios_head, drive->bios_sect);

	/* write cache enabled? */
	if ((id[ATA_ID_CSFO] & 1) || ata_id_wcache_enabled(id))
		drive->dev_flags |= IDE_DFLAG_WCACHE;

	set_wcache(drive, 1);

	if ((drive->dev_flags & IDE_DFLAG_LBA) == 0 &&
	    (drive->head == 0 || drive->head > 16)) {
		printk(KERN_ERR "%s: invalid geometry: %d physical heads?\n",
			drive->name, drive->head);
		drive->dev_flags &= ~IDE_DFLAG_ATTACH;
	} else
		drive->dev_flags |= IDE_DFLAG_ATTACH;
}

static void ide_disk_flush(ide_drive_t *drive)
{
	if (ata_id_flush_enabled(drive->id) == 0 ||
	    (drive->dev_flags & IDE_DFLAG_WCACHE) == 0)
		return;

	if (do_idedisk_flushcache(drive))
		printk(KERN_INFO "%s: wcache flush failed!\n", drive->name);
}

static int ide_disk_init_media(ide_drive_t *drive, struct gendisk *disk)
{
	return 0;
}

static int ide_disk_set_doorlock(ide_drive_t *drive, struct gendisk *disk,
				 int on)
{
	struct ide_cmd cmd;
	int ret;

	if ((drive->dev_flags & IDE_DFLAG_DOORLOCKING) == 0)
		return 0;

	memset(&cmd, 0, sizeof(cmd));
	cmd.tf.command = on ? ATA_CMD_MEDIA_LOCK : ATA_CMD_MEDIA_UNLOCK;
	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;

	ret = ide_no_data_taskfile(drive, &cmd);

	if (ret)
		drive->dev_flags &= ~IDE_DFLAG_DOORLOCKING;

	return ret;
}

const struct ide_disk_ops ide_ata_disk_ops = {
	.check			= ide_disk_check,
	.unlock_native_capacity	= ide_disk_unlock_native_capacity,
	.get_capacity		= ide_disk_get_capacity,
	.setup			= ide_disk_setup,
	.flush			= ide_disk_flush,
	.init_media		= ide_disk_init_media,
	.set_doorlock		= ide_disk_set_doorlock,
	.do_request		= ide_do_rw_disk,
	.ioctl			= ide_disk_ioctl,
};