- 根目录:
- fs
- ceph
- super.h
#ifndef _FS_CEPH_SUPER_H
#define _FS_CEPH_SUPER_H
#include <linux/ceph/ceph_debug.h>
#include <asm/unaligned.h>
#include <linux/backing-dev.h>
#include <linux/completion.h>
#include <linux/exportfs.h>
#include <linux/fs.h>
#include <linux/mempool.h>
#include <linux/pagemap.h>
#include <linux/wait.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/posix_acl.h>
#include <linux/ceph/libceph.h>
#ifdef CONFIG_CEPH_FSCACHE
#include <linux/fscache.h>
#endif
/* f_type in struct statfs */
#define CEPH_SUPER_MAGIC 0x00c36400
/* large granularity for statfs utilization stats to facilitate
* large volume sizes on 32-bit machines. */
#define CEPH_BLOCK_SHIFT 22 /* 4 MB */
#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
#define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */
#define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */
#define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */
#define CEPH_MOUNT_OPT_DEFAULT (CEPH_MOUNT_OPT_RBYTES | \
CEPH_MOUNT_OPT_DCACHE)
#define ceph_set_mount_opt(fsc, opt) \
(fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
#define ceph_test_mount_opt(fsc, opt) \
(!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
#define CEPH_RSIZE_DEFAULT 0 /* max read size */
#define CEPH_RASIZE_DEFAULT (8192*1024) /* readahead */
#define CEPH_MAX_READDIR_DEFAULT 1024
#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
struct ceph_mount_options {
int flags;
int sb_flags;
int wsize; /* max write size */
int rsize; /* max read size */
int rasize; /* max readahead */
int congestion_kb; /* max writeback in flight */
int caps_wanted_delay_min, caps_wanted_delay_max;
int cap_release_safety;
int max_readdir; /* max readdir result (entires) */
int max_readdir_bytes; /* max readdir result (bytes) */
/*
* everything above this point can be memcmp'd; everything below
* is handled in compare_mount_options()
*/
char *snapdir_name; /* default ".snap" */
};
struct ceph_fs_client {
struct super_block *sb;
struct ceph_mount_options *mount_options;
struct ceph_client *client;
unsigned long mount_state;
int min_caps; /* min caps i added */
struct ceph_mds_client *mdsc;
/* writeback */
mempool_t *wb_pagevec_pool;
struct workqueue_struct *wb_wq;
struct workqueue_struct *pg_inv_wq;
struct workqueue_struct *trunc_wq;
atomic_long_t writeback_count;
struct backing_dev_info backing_dev_info;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_dentry_lru, *debugfs_caps;
struct dentry *debugfs_congestion_kb;
struct dentry *debugfs_bdi;
struct dentry *debugfs_mdsc, *debugfs_mdsmap;
struct dentry *debugfs_mds_sessions;
#endif
#ifdef CONFIG_CEPH_FSCACHE
struct fscache_cookie *fscache;
struct workqueue_struct *revalidate_wq;
#endif
};
/*
* File i/o capability. This tracks shared state with the metadata
* server that allows us to cache or writeback attributes or to read
* and write data. For any given inode, we should have one or more
* capabilities, one issued by each metadata server, and our
* cumulative access is the OR of all issued capabilities.
*
* Each cap is referenced by the inode's i_caps rbtree and by per-mds
* session capability lists.
*/
struct ceph_cap {
struct ceph_inode_info *ci;
struct rb_node ci_node; /* per-ci cap tree */
struct ceph_mds_session *session;
struct list_head session_caps; /* per-session caplist */
u64 cap_id; /* unique cap id (mds provided) */
union {
/* in-use caps */
struct {
int issued; /* latest, from the mds */
int implemented; /* implemented superset of
issued (for revocation) */
int mds, mds_wanted;
};
/* caps to release */
struct {
u64 cap_ino;
int queue_release;
};
};
u32 seq, issue_seq, mseq;
u32 cap_gen; /* active/stale cycle */
unsigned long last_used;
struct list_head caps_item;
};
#define CHECK_CAPS_NODELAY 1 /* do not delay any further */
#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */
#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */
/*
* Snapped cap state that is pending flush to mds. When a snapshot occurs,
* we first complete any in-process sync writes and writeback any dirty
* data before flushing the snapped state (tracked here) back to the MDS.
*/
struct ceph_cap_snap {
atomic_t nref;
struct ceph_inode_info *ci;
struct list_head ci_item, flushing_item;
u64 follows, flush_tid;
int issued, dirty;
struct ceph_snap_context *context;
umode_t mode;
kuid_t uid;
kgid_t gid;
struct ceph_buffer *xattr_blob;
u64 xattr_version;
u64 size;
struct timespec mtime, atime, ctime;
u64 time_warp_seq;
int writing; /* a sync write is still in progress */
int dirty_pages; /* dirty pages awaiting writeback */
bool inline_data;
bool need_flush;
};
static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
{
if (atomic_dec_and_test(&capsnap->nref)) {
if (capsnap->xattr_blob)
ceph_buffer_put(capsnap->xattr_blob);
kfree(capsnap);
}
}
struct ceph_cap_flush {
u64 tid;
int caps;
struct rb_node g_node; // global
union {
struct rb_node i_node; // inode
struct list_head list;
};
};
/*
* The frag tree describes how a directory is fragmented, potentially across
* multiple metadata servers. It is also used to indicate points where
* metadata authority is delegated, and whether/where metadata is replicated.
*
* A _leaf_ frag will be present in the i_fragtree IFF there is
* delegation info. That is, if mds >= 0 || ndist > 0.
*/
#define CEPH_MAX_DIRFRAG_REP 4
struct ceph_inode_frag {
struct rb_node node;
/* fragtree state */
u32 frag;
int split_by; /* i.e. 2^(split_by) children */
/* delegation and replication info */
int mds; /* -1 if same authority as parent */
int ndist; /* >0 if replicated */
int dist[CEPH_MAX_DIRFRAG_REP];
};
/*
* We cache inode xattrs as an encoded blob until they are first used,
* at which point we parse them into an rbtree.
*/
struct ceph_inode_xattr {
struct rb_node node;
const char *name;
int name_len;
const char *val;
int val_len;
int dirty;
int should_free_name;
int should_free_val;
};
/*
* Ceph dentry state
*/
struct ceph_dentry_info {
struct ceph_mds_session *lease_session;
u32 lease_gen, lease_shared_gen;
u32 lease_seq;
unsigned long lease_renew_after, lease_renew_from;
struct list_head lru;
struct dentry *dentry;
u64 time;
u64 offset;
};
struct ceph_inode_xattrs_info {
/*
* (still encoded) xattr blob. we avoid the overhead of parsing
* this until someone actually calls getxattr, etc.
*
* blob->vec.iov_len == 4 implies there are no xattrs; blob ==
* NULL means we don't know.
*/
struct ceph_buffer *blob, *prealloc_blob;
struct rb_root index;
bool dirty;
int count;
int names_size;
int vals_size;
u64 version, index_version;
};
/*
* Ceph inode.
*/
struct ceph_inode_info {
struct ceph_vino i_vino; /* ceph ino + snap */
spinlock_t i_ceph_lock;
u64 i_version;
u64 i_inline_version;
u32 i_time_warp_seq;
unsigned i_ceph_flags;
atomic64_t i_release_count;
atomic64_t i_ordered_count;
atomic64_t i_complete_seq[2];
struct ceph_dir_layout i_dir_layout;
struct ceph_file_layout i_layout;
char *i_symlink;
/* for dirs */
struct timespec i_rctime;
u64 i_rbytes, i_rfiles, i_rsubdirs;
u64 i_files, i_subdirs;
struct rb_root i_fragtree;
struct mutex i_fragtree_mutex;
struct ceph_inode_xattrs_info i_xattrs;
/* capabilities. protected _both_ by i_ceph_lock and cap->session's
* s_mutex. */
struct rb_root i_caps; /* cap list */
struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
struct list_head i_dirty_item, i_flushing_item;
/* we need to track cap writeback on a per-cap-bit basis, to allow
* overlapping, pipelined cap flushes to the mds. we can probably
* reduce the tid to 8 bits if we're concerned about inode size. */
struct ceph_cap_flush *i_prealloc_cap_flush;
struct rb_root i_cap_flush_tree;
wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
unsigned long i_hold_caps_min; /* jiffies */
unsigned long i_hold_caps_max; /* jiffies */
struct list_head i_cap_delay_list; /* for delayed cap release to mds */
struct ceph_cap_reservation i_cap_migration_resv;
struct list_head i_cap_snaps; /* snapped state pending flush to mds */
struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
dirty|flushing caps */
unsigned i_snap_caps; /* cap bits for snapped files */
int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */
struct mutex i_truncate_mutex;
u32 i_truncate_seq; /* last truncate to smaller size */
u64 i_truncate_size; /* and the size we last truncated down to */
int i_truncate_pending; /* still need to call vmtruncate */
u64 i_max_size; /* max file size authorized by mds */
u64 i_reported_size; /* (max_)size reported to or requested of mds */
u64 i_wanted_max_size; /* offset we'd like to write too */
u64 i_requested_max_size; /* max_size we've requested */
/* held references to caps */
int i_pin_ref;
int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
int i_wrbuffer_ref, i_wrbuffer_ref_head;
u32 i_shared_gen; /* increment each time we get FILE_SHARED */
u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
struct list_head i_unsafe_writes; /* uncommitted sync writes */
struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
struct list_head i_unsafe_iops; /* uncommitted mds inode ops */
spinlock_t i_unsafe_lock;
struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
int i_snap_realm_counter; /* snap realm (if caps) */
struct list_head i_snap_realm_item;
struct list_head i_snap_flush_item;
struct work_struct i_wb_work; /* writeback work */
struct work_struct i_pg_inv_work; /* page invalidation work */
struct work_struct i_vmtruncate_work;
#ifdef CONFIG_CEPH_FSCACHE
struct fscache_cookie *fscache;
u32 i_fscache_gen; /* sequence, for delayed fscache validate */
struct work_struct i_revalidate_work;
#endif
struct inode vfs_inode; /* at end */
};
static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
{
return container_of(inode, struct ceph_inode_info, vfs_inode);
}
static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
{
return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
}
static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
{
return (struct ceph_fs_client *)sb->s_fs_info;
}
static inline struct ceph_vino ceph_vino(struct inode *inode)
{
return ceph_inode(inode)->i_vino;
}
/*
* ino_t is <64 bits on many architectures, blech.
*
* i_ino (kernel inode) st_ino (userspace)
* i386 32 32
* x86_64+ino32 64 32
* x86_64 64 64
*/
static inline u32 ceph_ino_to_ino32(__u64 vino)
{
u32 ino = vino & 0xffffffff;
ino ^= vino >> 32;
if (!ino)
ino = 2;
return ino;
}
/*
* kernel i_ino value
*/
static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
{
#if BITS_PER_LONG == 32
return ceph_ino_to_ino32(vino.ino);
#else
return (ino_t)vino.ino;
#endif
}
/*
* user-visible ino (stat, filldir)
*/
#if BITS_PER_LONG == 32
static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
{
return ino;
}
#else
static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
{
if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
ino = ceph_ino_to_ino32(ino);
return ino;
}
#endif
/* for printf-style formatting */
#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
static inline u64 ceph_ino(struct inode *inode)
{
return ceph_inode(inode)->i_vino.ino;
}
static inline u64 ceph_snap(struct inode *inode)
{
return ceph_inode(inode)->i_vino.snap;
}
static inline int ceph_ino_compare(struct inode *inode, void *data)
{
struct ceph_vino *pvino = (struct ceph_vino *)data;
struct ceph_inode_info *ci = ceph_inode(inode);
return ci->i_vino.ino == pvino->ino &&
ci->i_vino.snap == pvino->snap;
}
static inline struct inode *ceph_find_inode(struct super_block *sb,
struct ceph_vino vino)
{
ino_t t = ceph_vino_to_ino(vino);
return ilookup5(sb, t, ceph_ino_compare, &vino);
}
/*
* Ceph inode.
*/
#define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */
#define CEPH_I_NODELAY (1 << 1) /* do not delay cap release */
#define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */
#define CEPH_I_NOFLUSH (1 << 3) /* do not flush dirty caps */
#define CEPH_I_POOL_PERM (1 << 4) /* pool rd/wr bits are valid */
#define CEPH_I_POOL_RD (1 << 5) /* can read from pool */
#define CEPH_I_POOL_WR (1 << 6) /* can write to pool */
static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
long long release_count,
long long ordered_count)
{
smp_mb__before_atomic();
atomic64_set(&ci->i_complete_seq[0], release_count);
atomic64_set(&ci->i_complete_seq[1], ordered_count);
}
static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
{
atomic64_inc(&ci->i_release_count);
}
static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci)
{
atomic64_inc(&ci->i_ordered_count);
}
static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
{
return atomic64_read(&ci->i_complete_seq[0]) ==
atomic64_read(&ci->i_release_count);
}
static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci)
{
return atomic64_read(&ci->i_complete_seq[0]) ==
atomic64_read(&ci->i_release_count) &&
atomic64_read(&ci->i_complete_seq[1]) ==
atomic64_read(&ci->i_ordered_count);
}
static inline void ceph_dir_clear_complete(struct inode *inode)
{
__ceph_dir_clear_complete(ceph_inode(inode));
}
static inline void ceph_dir_clear_ordered(struct inode *inode)
{
__ceph_dir_clear_ordered(ceph_inode(inode));
}
static inline bool ceph_dir_is_complete_ordered(struct inode *inode)
{
bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode));
smp_rmb();
return ret;
}
/* find a specific frag @f */
extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
u32 f);
/*
* choose fragment for value @v. copy frag content to pfrag, if leaf
* exists
*/
extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
struct ceph_inode_frag *pfrag,
int *found);
static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
{
return (struct ceph_dentry_info *)dentry->d_fsdata;
}
static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
{
return ((loff_t)frag << 32) | (loff_t)off;
}
/*
* caps helpers
*/
static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
{
return !RB_EMPTY_ROOT(&ci->i_caps);
}
extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
struct ceph_cap *cap);
static inline int ceph_caps_issued(struct ceph_inode_info *ci)
{
int issued;
spin_lock(&ci->i_ceph_lock);
issued = __ceph_caps_issued(ci, NULL);
spin_unlock(&ci->i_ceph_lock);
return issued;
}
static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
int touch)
{
int r;
spin_lock(&ci->i_ceph_lock);
r = __ceph_caps_issued_mask(ci, mask, touch);
spin_unlock(&ci->i_ceph_lock);
return r;
}
static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
{
return ci->i_dirty_caps | ci->i_flushing_caps;
}
extern struct ceph_cap_flush *ceph_alloc_cap_flush(void);
extern void ceph_free_cap_flush(struct ceph_cap_flush *cf);
extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
struct ceph_cap_flush **pcf);
extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
struct ceph_cap *ocap, int mask);
extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
extern int __ceph_caps_used(struct ceph_inode_info *ci);
extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
/*
* wanted, by virtue of open file modes AND cap refs (buffered/cached data)
*/
static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
{
int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
if (w & CEPH_CAP_FILE_BUFFER)
w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */
return w;
}
/* what the mds thinks we want */
extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
extern void ceph_caps_init(struct ceph_mds_client *mdsc);
extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
extern void ceph_reserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx, int need);
extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx);
extern void ceph_reservation_status(struct ceph_fs_client *client,
int *total, int *avail, int *used,
int *reserved, int *min);
/*
* we keep buffered readdir results attached to file->private_data
*/
#define CEPH_F_SYNC 1
#define CEPH_F_ATEND 2
struct ceph_file_info {
short fmode; /* initialized on open */
short flags; /* CEPH_F_* */
/* readdir: position within the dir */
u32 frag;
struct ceph_mds_request *last_readdir;
/* readdir: position within a frag */
unsigned offset; /* offset of last chunk, adjusted for . and .. */
unsigned next_offset; /* offset of next chunk (last_name's + 1) */
char *last_name; /* last entry in previous chunk */
long long dir_release_count;
long long dir_ordered_count;
int readdir_cache_idx;
/* used for -o dirstat read() on directory thing */
char *dir_info;
int dir_info_len;
};
struct ceph_readdir_cache_control {
struct page *page;
struct dentry **dentries;
int index;
};
/*
* A "snap realm" describes a subset of the file hierarchy sharing
* the same set of snapshots that apply to it. The realms themselves
* are organized into a hierarchy, such that children inherit (some of)
* the snapshots of their parents.
*
* All inodes within the realm that have capabilities are linked into a
* per-realm list.
*/
struct ceph_snap_realm {
u64 ino;
atomic_t nref;
struct rb_node node;
u64 created, seq;
u64 parent_ino;
u64 parent_since; /* snapid when our current parent became so */
u64 *prior_parent_snaps; /* snaps inherited from any parents we */
u32 num_prior_parent_snaps; /* had prior to parent_since */
u64 *snaps; /* snaps specific to this realm */
u32 num_snaps;
struct ceph_snap_realm *parent;
struct list_head children; /* list of child realms */
struct list_head child_item;
struct list_head empty_item; /* if i have ref==0 */
struct list_head dirty_item; /* if realm needs new context */
/* the current set of snaps for this realm */
struct ceph_snap_context *cached_context;
struct list_head inodes_with_caps;
spinlock_t inodes_with_caps_lock;
};
static inline int default_congestion_kb(void)
{
int congestion_kb;
/*
* Copied from NFS
*
* congestion size, scale with available memory.
*
* 64MB: 8192k
* 128MB: 11585k
* 256MB: 16384k
* 512MB: 23170k
* 1GB: 32768k
* 2GB: 46340k
* 4GB: 65536k
* 8GB: 92681k
* 16GB: 131072k
*
* This allows larger machines to have larger/more transfers.
* Limit the default to 256M
*/
congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
if (congestion_kb > 256*1024)
congestion_kb = 256*1024;
return congestion_kb;
}
/* snap.c */
extern struct ceph_snap_context *ceph_empty_snapc;
struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
u64 ino);
extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
extern int ceph_update_snap_trace(struct ceph_mds_client *m,
void *p, void *e, bool deletion,
struct ceph_snap_realm **realm_ret);
extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg);
extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
struct ceph_cap_snap *capsnap);
extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
extern int ceph_snap_init(void);
extern void ceph_snap_exit(void);
/*
* a cap_snap is "pending" if it is still awaiting an in-progress
* sync write (that may/may not still update size, mtime, etc.).
*/
static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
{
return !list_empty(&ci->i_cap_snaps) &&
list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap,
ci_item)->writing;
}
/* inode.c */
extern const struct inode_operations ceph_file_iops;
extern struct inode *ceph_alloc_inode(struct super_block *sb);
extern void ceph_destroy_inode(struct inode *inode);
extern int ceph_drop_inode(struct inode *inode);
extern struct inode *ceph_get_inode(struct super_block *sb,
struct ceph_vino vino);
extern struct inode *ceph_get_snapdir(struct inode *parent);
extern int ceph_fill_file_size(struct inode *inode, int issued,
u32 truncate_seq, u64 truncate_size, u64 size);
extern void ceph_fill_file_time(struct inode *inode, int issued,
u64 time_warp_seq, struct timespec *ctime,
struct timespec *mtime, struct timespec *atime);
extern int ceph_fill_trace(struct super_block *sb,
struct ceph_mds_request *req,
struct ceph_mds_session *session);
extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
struct ceph_mds_session *session);
extern int ceph_inode_holds_cap(struct inode *inode, int mask);
extern int ceph_inode_set_size(struct inode *inode, loff_t size);
extern void __ceph_do_pending_vmtruncate(struct inode *inode);
extern void ceph_queue_vmtruncate(struct inode *inode);
extern void ceph_queue_invalidate(struct inode *inode);
extern void ceph_queue_writeback(struct inode *inode);
extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page,
int mask, bool force);
static inline int ceph_do_getattr(struct inode *inode, int mask, bool force)
{
return __ceph_do_getattr(inode, NULL, mask, force);
}
extern int ceph_permission(struct inode *inode, int mask);
extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);
/* xattr.c */
extern int ceph_setxattr(struct dentry *, const char *, const void *,
size_t, int);
int __ceph_setxattr(struct dentry *, const char *, const void *, size_t, int);
ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
int __ceph_removexattr(struct dentry *, const char *);
extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
extern int ceph_removexattr(struct dentry *, const char *);
extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
extern void __init ceph_xattr_init(void);
extern void ceph_xattr_exit(void);
extern const struct xattr_handler *ceph_xattr_handlers[];
/* acl.c */
struct ceph_acls_info {
void *default_acl;
void *acl;
struct ceph_pagelist *pagelist;
};
#ifdef CONFIG_CEPH_FS_POSIX_ACL
struct posix_acl *ceph_get_acl(struct inode *, int);
int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type);
int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
struct ceph_acls_info *info);
void ceph_init_inode_acls(struct inode *inode, struct ceph_acls_info *info);
void ceph_release_acls_info(struct ceph_acls_info *info);
static inline void ceph_forget_all_cached_acls(struct inode *inode)
{
forget_all_cached_acls(inode);
}
#else
#define ceph_get_acl NULL
#define ceph_set_acl NULL
static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
struct ceph_acls_info *info)
{
return 0;
}
static inline void ceph_init_inode_acls(struct inode *inode,
struct ceph_acls_info *info)
{
}
static inline void ceph_release_acls_info(struct ceph_acls_info *info)
{
}
static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
{
return 0;
}
static inline void ceph_forget_all_cached_acls(struct inode *inode)
{
}
#endif
/* caps.c */
extern const char *ceph_cap_string(int c);
extern void ceph_handle_caps(struct ceph_mds_session *session,
struct ceph_msg *msg);
extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx);
extern void ceph_add_cap(struct inode *inode,
struct ceph_mds_session *session, u64 cap_id,
int fmode, unsigned issued, unsigned wanted,
unsigned cap, unsigned seq, u64 realmino, int flags,
struct ceph_cap **new_cap);
extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
extern void ceph_put_cap(struct ceph_mds_client *mdsc,
struct ceph_cap *cap);
extern int ceph_is_any_caps(struct inode *inode);
extern void ceph_queue_caps_release(struct inode *inode);
extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
int datasync);
extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session);
extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session);
extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
int mds);
extern int ceph_get_cap_mds(struct inode *inode);
extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
struct ceph_snap_context *snapc);
extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
struct ceph_mds_session **psession,
int again);
extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
struct ceph_mds_session *session);
extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
extern int ceph_encode_inode_release(void **p, struct inode *inode,
int mds, int drop, int unless, int force);
extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
int mds, int drop, int unless);
extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
loff_t endoff, int *got, struct page **pinned_page);
/* for counting open files by mode */
static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
{
ci->i_nr_by_mode[mode]++;
}
extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
/* addr.c */
extern const struct address_space_operations ceph_aops;
extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
extern int ceph_uninline_data(struct file *filp, struct page *locked_page);
extern int ceph_pool_perm_check(struct ceph_inode_info *ci, int need);
extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc);
/* file.c */
extern const struct file_operations ceph_file_fops;
extern int ceph_open(struct inode *inode, struct file *file);
extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
struct file *file, unsigned flags, umode_t mode,
int *opened);
extern int ceph_release(struct inode *inode, struct file *filp);
extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
char *data, size_t len);
/* dir.c */
extern const struct file_operations ceph_dir_fops;
extern const struct file_operations ceph_snapdir_fops;
extern const struct inode_operations ceph_dir_iops;
extern const struct inode_operations ceph_snapdir_iops;
extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
ceph_snapdir_dentry_ops;
extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
extern int ceph_handle_snapdir(struct ceph_mds_request *req,
struct dentry *dentry, int err);
extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
struct dentry *dentry, int err);
extern void ceph_dentry_lru_add(struct dentry *dn);
extern void ceph_dentry_lru_touch(struct dentry *dn);
extern void ceph_dentry_lru_del(struct dentry *dn);
extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry);
extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl);
/*
* our d_ops vary depending on whether the inode is live,
* snapshotted (read-only), or a virtual ".snap" directory.
*/
int ceph_init_dentry(struct dentry *dentry);
/* ioctl.c */
extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
/* export.c */
extern const struct export_operations ceph_export_ops;
/* locks.c */
extern __init void ceph_flock_init(void);
extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
extern int ceph_encode_locks_to_buffer(struct inode *inode,
struct ceph_filelock *flocks,
int num_fcntl_locks,
int num_flock_locks);
extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
struct ceph_pagelist *pagelist,
int num_fcntl_locks, int num_flock_locks);
extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c);
/* debugfs.c */
extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
#endif /* _FS_CEPH_SUPER_H */