Kernel  |  4.4

下载     查看原文件
C++程序  |  981行  |  25.61 KB
/*
 * soc-ops.c  --  Generic ASoC operations
 *
 * Copyright 2005 Wolfson Microelectronics PLC.
 * Copyright 2005 Openedhand Ltd.
 * Copyright (C) 2010 Slimlogic Ltd.
 * Copyright (C) 2010 Texas Instruments Inc.
 *
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
 *         with code, comments and ideas from :-
 *         Richard Purdie <richard@openedhand.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/ctype.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dpcm.h>
#include <sound/initval.h>

/**
 * snd_soc_info_enum_double - enumerated double mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a double enumerated
 * mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_info *uinfo)
{
	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;

	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
				 e->items, e->texts);
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);

/**
 * snd_soc_get_enum_double - enumerated double mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
	unsigned int val, item;
	unsigned int reg_val;
	int ret;

	ret = snd_soc_component_read(component, e->reg, &reg_val);
	if (ret)
		return ret;
	val = (reg_val >> e->shift_l) & e->mask;
	item = snd_soc_enum_val_to_item(e, val);
	ucontrol->value.enumerated.item[0] = item;
	if (e->shift_l != e->shift_r) {
		val = (reg_val >> e->shift_l) & e->mask;
		item = snd_soc_enum_val_to_item(e, val);
		ucontrol->value.enumerated.item[1] = item;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);

/**
 * snd_soc_put_enum_double - enumerated double mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
	unsigned int *item = ucontrol->value.enumerated.item;
	unsigned int val;
	unsigned int mask;

	if (item[0] >= e->items)
		return -EINVAL;
	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
	mask = e->mask << e->shift_l;
	if (e->shift_l != e->shift_r) {
		if (item[1] >= e->items)
			return -EINVAL;
		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
		mask |= e->mask << e->shift_r;
	}

	return snd_soc_component_update_bits(component, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);

/**
 * snd_soc_read_signed - Read a codec register and interprete as signed value
 * @component: component
 * @reg: Register to read
 * @mask: Mask to use after shifting the register value
 * @shift: Right shift of register value
 * @sign_bit: Bit that describes if a number is negative or not.
 * @signed_val: Pointer to where the read value should be stored
 *
 * This functions reads a codec register. The register value is shifted right
 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
 * the given registervalue into a signed integer if sign_bit is non-zero.
 *
 * Returns 0 on sucess, otherwise an error value
 */
static int snd_soc_read_signed(struct snd_soc_component *component,
	unsigned int reg, unsigned int mask, unsigned int shift,
	unsigned int sign_bit, int *signed_val)
{
	int ret;
	unsigned int val;

	ret = snd_soc_component_read(component, reg, &val);
	if (ret < 0)
		return ret;

	val = (val >> shift) & mask;

	if (!sign_bit) {
		*signed_val = val;
		return 0;
	}

	/* non-negative number */
	if (!(val & BIT(sign_bit))) {
		*signed_val = val;
		return 0;
	}

	ret = val;

	/*
	 * The register most probably does not contain a full-sized int.
	 * Instead we have an arbitrary number of bits in a signed
	 * representation which has to be translated into a full-sized int.
	 * This is done by filling up all bits above the sign-bit.
	 */
	ret |= ~((int)(BIT(sign_bit) - 1));

	*signed_val = ret;

	return 0;
}

/**
 * snd_soc_info_volsw - single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single mixer control, or a double
 * mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_info *uinfo)
{
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	int platform_max;

	if (!mc->platform_max)
		mc->platform_max = mc->max;
	platform_max = mc->platform_max;

	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
	else
		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = platform_max - mc->min;
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);

/**
 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single mixer control, or a double
 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
 * have a range that represents both positive and negative values either side
 * of zero but without a sign bit.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
			  struct snd_ctl_elem_info *uinfo)
{
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;

	snd_soc_info_volsw(kcontrol, uinfo);
	/* Max represents the number of levels in an SX control not the
	 * maximum value, so add the minimum value back on
	 */
	uinfo->value.integer.max += mc->min;

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);

/**
 * snd_soc_get_volsw - single mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a single mixer control, or a double mixer
 * control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int reg2 = mc->rreg;
	unsigned int shift = mc->shift;
	unsigned int rshift = mc->rshift;
	int max = mc->max;
	int min = mc->min;
	int sign_bit = mc->sign_bit;
	unsigned int mask = (1 << fls(max)) - 1;
	unsigned int invert = mc->invert;
	int val;
	int ret;

	if (sign_bit)
		mask = BIT(sign_bit + 1) - 1;

	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
	if (ret)
		return ret;

	ucontrol->value.integer.value[0] = val - min;
	if (invert)
		ucontrol->value.integer.value[0] =
			max - ucontrol->value.integer.value[0];

	if (snd_soc_volsw_is_stereo(mc)) {
		if (reg == reg2)
			ret = snd_soc_read_signed(component, reg, mask, rshift,
				sign_bit, &val);
		else
			ret = snd_soc_read_signed(component, reg2, mask, shift,
				sign_bit, &val);
		if (ret)
			return ret;

		ucontrol->value.integer.value[1] = val - min;
		if (invert)
			ucontrol->value.integer.value[1] =
				max - ucontrol->value.integer.value[1];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);

/**
 * snd_soc_put_volsw - single mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a single mixer control, or a double mixer
 * control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int reg2 = mc->rreg;
	unsigned int shift = mc->shift;
	unsigned int rshift = mc->rshift;
	int max = mc->max;
	int min = mc->min;
	unsigned int sign_bit = mc->sign_bit;
	unsigned int mask = (1 << fls(max)) - 1;
	unsigned int invert = mc->invert;
	int err;
	bool type_2r = false;
	unsigned int val2 = 0;
	unsigned int val, val_mask;

	if (sign_bit)
		mask = BIT(sign_bit + 1) - 1;

	val = ((ucontrol->value.integer.value[0] + min) & mask);
	if (invert)
		val = max - val;
	val_mask = mask << shift;
	val = val << shift;
	if (snd_soc_volsw_is_stereo(mc)) {
		val2 = ((ucontrol->value.integer.value[1] + min) & mask);
		if (invert)
			val2 = max - val2;
		if (reg == reg2) {
			val_mask |= mask << rshift;
			val |= val2 << rshift;
		} else {
			val2 = val2 << shift;
			type_2r = true;
		}
	}
	err = snd_soc_component_update_bits(component, reg, val_mask, val);
	if (err < 0)
		return err;

	if (type_2r)
		err = snd_soc_component_update_bits(component, reg2, val_mask,
			val2);

	return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);

/**
 * snd_soc_get_volsw_sx - single mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a single mixer control, or a double mixer
 * control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
		      struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mixer_control *mc =
	    (struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int reg2 = mc->rreg;
	unsigned int shift = mc->shift;
	unsigned int rshift = mc->rshift;
	int max = mc->max;
	int min = mc->min;
	int mask = (1 << (fls(min + max) - 1)) - 1;
	unsigned int val;
	int ret;

	ret = snd_soc_component_read(component, reg, &val);
	if (ret < 0)
		return ret;

	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;

	if (snd_soc_volsw_is_stereo(mc)) {
		ret = snd_soc_component_read(component, reg2, &val);
		if (ret < 0)
			return ret;

		val = ((val >> rshift) - min) & mask;
		ucontrol->value.integer.value[1] = val;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);

/**
 * snd_soc_put_volsw_sx - double mixer set callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
			 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mixer_control *mc =
	    (struct soc_mixer_control *)kcontrol->private_value;

	unsigned int reg = mc->reg;
	unsigned int reg2 = mc->rreg;
	unsigned int shift = mc->shift;
	unsigned int rshift = mc->rshift;
	int max = mc->max;
	int min = mc->min;
	int mask = (1 << (fls(min + max) - 1)) - 1;
	int err = 0;
	unsigned int val, val_mask, val2 = 0;

	val_mask = mask << shift;
	val = (ucontrol->value.integer.value[0] + min) & mask;
	val = val << shift;

	err = snd_soc_component_update_bits(component, reg, val_mask, val);
	if (err < 0)
		return err;

	if (snd_soc_volsw_is_stereo(mc)) {
		val_mask = mask << rshift;
		val2 = (ucontrol->value.integer.value[1] + min) & mask;
		val2 = val2 << rshift;

		err = snd_soc_component_update_bits(component, reg2, val_mask,
			val2);
	}
	return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);

/**
 * snd_soc_info_volsw_range - single mixer info callback with range.
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information, within a range, about a single
 * mixer control.
 *
 * returns 0 for success.
 */
int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_info *uinfo)
{
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	int platform_max;
	int min = mc->min;

	if (!mc->platform_max)
		mc->platform_max = mc->max;
	platform_max = mc->platform_max;

	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = platform_max - min;

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);

/**
 * snd_soc_put_volsw_range - single mixer put value callback with range.
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value, within a range, for a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	unsigned int reg = mc->reg;
	unsigned int rreg = mc->rreg;
	unsigned int shift = mc->shift;
	int min = mc->min;
	int max = mc->max;
	unsigned int mask = (1 << fls(max)) - 1;
	unsigned int invert = mc->invert;
	unsigned int val, val_mask;
	int ret;

	if (invert)
		val = (max - ucontrol->value.integer.value[0]) & mask;
	else
		val = ((ucontrol->value.integer.value[0] + min) & mask);
	val_mask = mask << shift;
	val = val << shift;

	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
	if (ret < 0)
		return ret;

	if (snd_soc_volsw_is_stereo(mc)) {
		if (invert)
			val = (max - ucontrol->value.integer.value[1]) & mask;
		else
			val = ((ucontrol->value.integer.value[1] + min) & mask);
		val_mask = mask << shift;
		val = val << shift;

		ret = snd_soc_component_update_bits(component, rreg, val_mask,
			val);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);

/**
 * snd_soc_get_volsw_range - single mixer get callback with range
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value, within a range, of a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int rreg = mc->rreg;
	unsigned int shift = mc->shift;
	int min = mc->min;
	int max = mc->max;
	unsigned int mask = (1 << fls(max)) - 1;
	unsigned int invert = mc->invert;
	unsigned int val;
	int ret;

	ret = snd_soc_component_read(component, reg, &val);
	if (ret)
		return ret;

	ucontrol->value.integer.value[0] = (val >> shift) & mask;
	if (invert)
		ucontrol->value.integer.value[0] =
			max - ucontrol->value.integer.value[0];
	else
		ucontrol->value.integer.value[0] =
			ucontrol->value.integer.value[0] - min;

	if (snd_soc_volsw_is_stereo(mc)) {
		ret = snd_soc_component_read(component, rreg, &val);
		if (ret)
			return ret;

		ucontrol->value.integer.value[1] = (val >> shift) & mask;
		if (invert)
			ucontrol->value.integer.value[1] =
				max - ucontrol->value.integer.value[1];
		else
			ucontrol->value.integer.value[1] =
				ucontrol->value.integer.value[1] - min;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);

/**
 * snd_soc_limit_volume - Set new limit to an existing volume control.
 *
 * @card: where to look for the control
 * @name: Name of the control
 * @max: new maximum limit
 *
 * Return 0 for success, else error.
 */
int snd_soc_limit_volume(struct snd_soc_card *card,
	const char *name, int max)
{
	struct snd_card *snd_card = card->snd_card;
	struct snd_kcontrol *kctl;
	struct soc_mixer_control *mc;
	int found = 0;
	int ret = -EINVAL;

	/* Sanity check for name and max */
	if (unlikely(!name || max <= 0))
		return -EINVAL;

	list_for_each_entry(kctl, &snd_card->controls, list) {
		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
			found = 1;
			break;
		}
	}
	if (found) {
		mc = (struct soc_mixer_control *)kctl->private_value;
		if (max <= mc->max) {
			mc->platform_max = max;
			ret = 0;
		}
	}
	return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_limit_volume);

int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
		       struct snd_ctl_elem_info *uinfo)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_bytes *params = (void *)kcontrol->private_value;

	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
	uinfo->count = params->num_regs * component->val_bytes;

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info);

int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
		      struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_bytes *params = (void *)kcontrol->private_value;
	int ret;

	if (component->regmap)
		ret = regmap_raw_read(component->regmap, params->base,
				      ucontrol->value.bytes.data,
				      params->num_regs * component->val_bytes);
	else
		ret = -EINVAL;

	/* Hide any masked bytes to ensure consistent data reporting */
	if (ret == 0 && params->mask) {
		switch (component->val_bytes) {
		case 1:
			ucontrol->value.bytes.data[0] &= ~params->mask;
			break;
		case 2:
			((u16 *)(&ucontrol->value.bytes.data))[0]
				&= cpu_to_be16(~params->mask);
			break;
		case 4:
			((u32 *)(&ucontrol->value.bytes.data))[0]
				&= cpu_to_be32(~params->mask);
			break;
		default:
			return -EINVAL;
		}
	}

	return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_get);

int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
		      struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_bytes *params = (void *)kcontrol->private_value;
	int ret, len;
	unsigned int val, mask;
	void *data;

	if (!component->regmap || !params->num_regs)
		return -EINVAL;

	len = params->num_regs * component->val_bytes;

	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
	if (!data)
		return -ENOMEM;

	/*
	 * If we've got a mask then we need to preserve the register
	 * bits.  We shouldn't modify the incoming data so take a
	 * copy.
	 */
	if (params->mask) {
		ret = regmap_read(component->regmap, params->base, &val);
		if (ret != 0)
			goto out;

		val &= params->mask;

		switch (component->val_bytes) {
		case 1:
			((u8 *)data)[0] &= ~params->mask;
			((u8 *)data)[0] |= val;
			break;
		case 2:
			mask = ~params->mask;
			ret = regmap_parse_val(component->regmap,
							&mask, &mask);
			if (ret != 0)
				goto out;

			((u16 *)data)[0] &= mask;

			ret = regmap_parse_val(component->regmap,
							&val, &val);
			if (ret != 0)
				goto out;

			((u16 *)data)[0] |= val;
			break;
		case 4:
			mask = ~params->mask;
			ret = regmap_parse_val(component->regmap,
							&mask, &mask);
			if (ret != 0)
				goto out;

			((u32 *)data)[0] &= mask;

			ret = regmap_parse_val(component->regmap,
							&val, &val);
			if (ret != 0)
				goto out;

			((u32 *)data)[0] |= val;
			break;
		default:
			ret = -EINVAL;
			goto out;
		}
	}

	ret = regmap_raw_write(component->regmap, params->base,
			       data, len);

out:
	kfree(data);

	return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_put);

int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
			struct snd_ctl_elem_info *ucontrol)
{
	struct soc_bytes_ext *params = (void *)kcontrol->private_value;

	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
	ucontrol->count = params->max;

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);

int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
				unsigned int size, unsigned int __user *tlv)
{
	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
	unsigned int count = size < params->max ? size : params->max;
	int ret = -ENXIO;

	switch (op_flag) {
	case SNDRV_CTL_TLV_OP_READ:
		if (params->get)
			ret = params->get(tlv, count);
		break;
	case SNDRV_CTL_TLV_OP_WRITE:
		if (params->put)
			ret = params->put(tlv, count);
		break;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);

/**
 * snd_soc_info_xr_sx - signed multi register info callback
 * @kcontrol: mreg control
 * @uinfo: control element information
 *
 * Callback to provide information of a control that can
 * span multiple codec registers which together
 * forms a single signed value in a MSB/LSB manner.
 *
 * Returns 0 for success.
 */
int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_info *uinfo)
{
	struct soc_mreg_control *mc =
		(struct soc_mreg_control *)kcontrol->private_value;
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = mc->min;
	uinfo->value.integer.max = mc->max;

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);

/**
 * snd_soc_get_xr_sx - signed multi register get callback
 * @kcontrol: mreg control
 * @ucontrol: control element information
 *
 * Callback to get the value of a control that can span
 * multiple codec registers which together forms a single
 * signed value in a MSB/LSB manner. The control supports
 * specifying total no of bits used to allow for bitfields
 * across the multiple codec registers.
 *
 * Returns 0 for success.
 */
int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mreg_control *mc =
		(struct soc_mreg_control *)kcontrol->private_value;
	unsigned int regbase = mc->regbase;
	unsigned int regcount = mc->regcount;
	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
	unsigned int regwmask = (1<<regwshift)-1;
	unsigned int invert = mc->invert;
	unsigned long mask = (1UL<<mc->nbits)-1;
	long min = mc->min;
	long max = mc->max;
	long val = 0;
	unsigned int regval;
	unsigned int i;
	int ret;

	for (i = 0; i < regcount; i++) {
		ret = snd_soc_component_read(component, regbase+i, &regval);
		if (ret)
			return ret;
		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
	}
	val &= mask;
	if (min < 0 && val > max)
		val |= ~mask;
	if (invert)
		val = max - val;
	ucontrol->value.integer.value[0] = val;

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);

/**
 * snd_soc_put_xr_sx - signed multi register get callback
 * @kcontrol: mreg control
 * @ucontrol: control element information
 *
 * Callback to set the value of a control that can span
 * multiple codec registers which together forms a single
 * signed value in a MSB/LSB manner. The control supports
 * specifying total no of bits used to allow for bitfields
 * across the multiple codec registers.
 *
 * Returns 0 for success.
 */
int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mreg_control *mc =
		(struct soc_mreg_control *)kcontrol->private_value;
	unsigned int regbase = mc->regbase;
	unsigned int regcount = mc->regcount;
	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
	unsigned int regwmask = (1<<regwshift)-1;
	unsigned int invert = mc->invert;
	unsigned long mask = (1UL<<mc->nbits)-1;
	long max = mc->max;
	long val = ucontrol->value.integer.value[0];
	unsigned int i, regval, regmask;
	int err;

	if (invert)
		val = max - val;
	val &= mask;
	for (i = 0; i < regcount; i++) {
		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
		err = snd_soc_component_update_bits(component, regbase+i,
				regmask, regval);
		if (err < 0)
			return err;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);

/**
 * snd_soc_get_strobe - strobe get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback get the value of a strobe mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int shift = mc->shift;
	unsigned int mask = 1 << shift;
	unsigned int invert = mc->invert != 0;
	unsigned int val;
	int ret;

	ret = snd_soc_component_read(component, reg, &val);
	if (ret)
		return ret;

	val &= mask;

	if (shift != 0 && val != 0)
		val = val >> shift;
	ucontrol->value.enumerated.item[0] = val ^ invert;

	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_strobe);

/**
 * snd_soc_put_strobe - strobe put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback strobe a register bit to high then low (or the inverse)
 * in one pass of a single mixer enum control.
 *
 * Returns 1 for success.
 */
int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
	struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int shift = mc->shift;
	unsigned int mask = 1 << shift;
	unsigned int invert = mc->invert != 0;
	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
	unsigned int val1 = (strobe ^ invert) ? mask : 0;
	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
	int err;

	err = snd_soc_component_update_bits(component, reg, mask, val1);
	if (err < 0)
		return err;

	return snd_soc_component_update_bits(component, reg, mask, val2);
}
EXPORT_SYMBOL_GPL(snd_soc_put_strobe);