This class represents the basic building block for user interface components. A Viewoccupies a rectangular area on the screen and is responsible for drawing and event handling.
View是屏幕上的一块矩形区域,负责界面的绘制与触摸事件的处理,它是一种界面层控件的抽象,所有的控件都继承自View。
View是Android显示框架中较为复杂的一环,首先是它的生命周期会随着Activity的生命周期进行变化,掌握View的生命周期对我们自定义View有着重要的意义。另一个方面View从ViewRoot.performTraversals()开始 经历measure、layout、draw三个流程最终显示在用户面前,用户在点击屏幕时,点击事件随着Activity传入Window,最终由ViewGroup/View进行分发处理。今天我们就围绕着这些主题进行展开分析。
在View中有诸多回调方法,它们在View的不同生命周期阶段调用,常用的有以下方法。
我们写一个简单的自定义View来观察View与Activity的生命周期变化。
public class CustomView extends View {
private static final String TAG = "View";
public CustomView(Context context) {
super(context);
Log.d(TAG, "CustomView()");
}
public CustomView(Context context, @Nullable AttributeSet attrs) {
super(context, attrs);
Log.d(TAG, "CustomView()");
}
public CustomView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
Log.d(TAG, "CustomView()");
}
/**
* View在xml文件里加载完成时调用
*/
@Override
protected void onFinishInflate() {
super.onFinishInflate();
Log.d(TAG, "View onFinishInflate()");
}
/**
* 测量View及其子View大小时调用
*/
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
Log.d(TAG, "View onMeasure()");
}
/**
* 布局View及其子View大小时调用
*/
@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
super.onLayout(changed, left, top, right, bottom);
Log.d(TAG, "View onLayout() left = " + left + " top = " + top + " right = " + right + " bottom = " + bottom);
}
/**
* View大小发生改变时调用
*/
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
super.onSizeChanged(w, h, oldw, oldh);
Log.d(TAG, "View onSizeChanged() w = " + w + " h = " + h + " oldw = " + oldw + " oldh = " + oldh);
}
/**
* 绘制View及其子View大小时调用
*/
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
Log.d(TAG, "View onDraw()");
}
/**
* 物理按键事件发生时调用
*/
@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
Log.d(TAG, "View onKeyDown() event = " + event.getAction());
return super.onKeyDown(keyCode, event);
}
/**
* 物理按键事件发生时调用
*/
@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
Log.d(TAG, "View onKeyUp() event = " + event.getAction());
return super.onKeyUp(keyCode, event);
}
/**
* 触摸事件发生时调用
*/
@Override
public boolean onTouchEvent(MotionEvent event) {
Log.d(TAG, "View onTouchEvent() event = " + event.getAction());
return super.onTouchEvent(event);
}
/**
* View获取焦点或者失去焦点时调用
*/
@Override
protected void onFocusChanged(boolean gainFocus, int direction, @Nullable Rect previouslyFocusedRect) {
super.onFocusChanged(gainFocus, direction, previouslyFocusedRect);
Log.d(TAG, "View onFocusChanged() gainFocus = " + gainFocus);
}
/**
* View所在窗口获取焦点或者失去焦点时调用
*/
@Override
public void onWindowFocusChanged(boolean hasWindowFocus) {
super.onWindowFocusChanged(hasWindowFocus);
Log.d(TAG, "View onWindowFocusChanged() hasWindowFocus = " + hasWindowFocus);
}
/**
* View被关联到窗口时调用
*/
@Override
protected void onAttachedToWindow() {
super.onAttachedToWindow();
Log.d(TAG, "View onAttachedToWindow()");
}
/**
* View从窗口分离时调用
*/
@Override
protected void onDetachedFromWindow() {
super.onDetachedFromWindow();
Log.d(TAG, "View onDetachedFromWindow()");
}
/**
* View的可见性发生变化时调用
*/
@Override
protected void onVisibilityChanged(@NonNull View changedView, int visibility) {
super.onVisibilityChanged(changedView, visibility);
Log.d(TAG, "View onVisibilityChanged() visibility = " + visibility);
}
/**
* View所在窗口的可见性发生变化时调用
*/
@Override
protected void onWindowVisibilityChanged(int visibility) {
super.onWindowVisibilityChanged(visibility);
Log.d(TAG, "View onWindowVisibilityChanged() visibility = " + visibility);
}
}
Activity与View的生命周期变化一目了然。
Activity create
Activity pause
Activity resume
Activity destory
我们来总结一下View的声明周期随着Activity生命周期变化的情况。
我们了解这些生命周期方法有什么作用呢?🤔
其实这些方法在我们自定义View的时候发挥着很大的作用,我们来举几种应用场景。
场景1:在Activity启动时获取View的宽高,但是在onCreate、onStart和onResume均无法获取正确的结果。这是因为在Activity的这些方法里,Viewed绘制可能还没有完成,我们可以在View的生命周期方法里获取。
@Override
public void onWindowFocusChanged(boolean hasFocus) {
super.onWindowFocusChanged(hasFocus);
if(hasFocus){
int width = view.getMeasuredWidth();
int height = view.getMeasuredHeight();
}
}
场景2:在Activity生命周期发生变化时,View也要做响应的处理,典型的有VideoView保存进度和恢复进度。
@Override
protected void onVisibilityChanged(@NonNull View changedView, int visibility) {
super.onVisibilityChanged(changedView, visibility);
//TODO do something if activity lifecycle changed if necessary
//Activity onResume()
if(visibility == VISIBLE){
}
//Activity onPause()
else {
}
}
@Override
public void onWindowFocusChanged(boolean hasWindowFocus) {
super.onWindowFocusChanged(hasWindowFocus);
//TODO do something if activity lifecycle changed if necessary
//Activity onResume()
if (hasWindowFocus) {
}
//Activity onPause()
else {
}
}
场景3:释放线程、资源
@Override
protected void onDetachedFromWindow() {
super.onDetachedFromWindow();
//TODO release resources, thread, animation
}
View是一个矩形区域,它有自己的位置、大小与边距。
View位置
View位置:有左上角坐标(getLeft(), getTop())决定,该坐标是以它的父View的左上角为坐标原点,单位是pixels。
View大小
View大小:View的大小有两对值来表示。getMeasuredWidth()/getMeasuredHeight()这组值表示了该View在它的父View里期望的大小值,在measure()方法完成后可获得。 getWidth()/getHeight()这组值表示了该View在屏幕上的实际大小,在draw()方法完成后可获得。
View内边距
View内边距:View的内边距用padding来表示,它表示View的内容距离View边缘的距离。通过getPaddingXXX()方法获取。需要注意的是我们在自定义View的时候需要单独处理 padding,否则它不会生效,这一块的内容我们会在View自定义实践系列的文章中展开。
View外边距
View内边距:View的外边距用margin来表示,它表示View的边缘离它相邻的View的距离。
Measure过程决定了View的宽高,该过程完成后,通常都可以通过getMeasuredWith()/getMeasuredHeight()获得宽高。
理解了上面这些概念,我们接下来来看看详细的测量流程。
View的测量流程看似复杂,实际遵循着简单的逻辑。
在做测量的时候,measure()方法被父View调用,在measure()中做一些准备和优化工作后,调用onMeasure()来进行实际的自我测量。对于onMeasure(),View和ViewGroup有所区别:
在介绍测量流程之前,我们先来介绍下MeasureSpec,它用来把测量要求从父View传递给子View。我们知道View的大小最终由子View的LayoutParams与父View的测量要求公共决定,测量要求指的 就是这个MeasureSpec,它是一个32位int值。
测量模式有三种:
public static class MeasureSpec {
private static final int MODE_SHIFT = 30;
private static final int MODE_MASK = 0x3 << MODE_SHIFT;
//父View不对子View做任何限制,需要多大给多大,这种情况一般用于系统内部,表示一种测量的状态
public static final int UNSPECIFIED = 0 << MODE_SHIFT;
//父View已经检测出View所需要的精确大小,这个时候View的最终大小就是SpecSize所指定的值,它对应LayoutParams中的match_parent和具体数值这两种模式
public static final int EXACTLY = 1 << MODE_SHIFT;
//父View给子VIew提供一个最大可用的大小,子View去自适应这个大小。
public static final int AT_MOST = 2 << MODE_SHIFT;
}
日常开发中我们接触最多的不是MeasureSpec而是LayoutParams,在View测量的时候,LayoutParams会和父View的MeasureSpec相结合被换算成View的MeasureSpec,进而决定View的大小。
View的MeasureSpec计算源码如下所示:
public abstract class ViewGroup extends View implements ViewParent, ViewManager {
public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
int specMode = MeasureSpec.getMode(spec);
int specSize = MeasureSpec.getSize(spec);
int size = Math.max(0, specSize - padding);
int resultSize = 0;
int resultMode = 0;
switch (specMode) {
// Parent has imposed an exact size on us
case MeasureSpec.EXACTLY:
if (childDimension >= 0) {
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size. So be it.
resultSize = size;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent has imposed a maximum size on us
case MeasureSpec.AT_MOST:
if (childDimension >= 0) {
// Child wants a specific size... so be it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size, but our size is not fixed.
// Constrain child to not be bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent asked to see how big we want to be
case MeasureSpec.UNSPECIFIED:
if (childDimension >= 0) {
// Child wants a specific size... let him have it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size... find out how big it should
// be
resultSize = 0;
resultMode = MeasureSpec.UNSPECIFIED;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size.... find out how
// big it should be
resultSize = 0;
resultMode = MeasureSpec.UNSPECIFIED;
}
break;
}
return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
}
}
该方法用来获取子View的MeasureSpec,由参数我们就可以知道子View的MeasureSpec由父容器的spec,父容器中已占用的的空间大小 padding,以及子View自身大小childDimension共同来决定的。
通过上述方法,我们可以总结出普通View的MeasureSpec的创建规则。
了解了MeasureSpec的概念之后,我就就可以开始分析测量流程了。
View的绘制会先调用View的measure()方法,measure()方法用来测量View的大小,实际的测量工作是由View的onMeasure()来完成的。我们来看看 onMeasure(int widthMeasureSpec, int heightMeasureSpec)方法的实现。
关键点1:View.onMeasure(int widthMeasureSpec, int heightMeasureSpec)
public class View implements Drawable.Callback, KeyEvent.Callback, AccessibilityEventSource {
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}
//设置View宽高的测量值
protected final void setMeasuredDimension(int measuredWidth, int measuredHeight) {
boolean optical = isLayoutModeOptical(this);
if (optical != isLayoutModeOptical(mParent)) {
Insets insets = getOpticalInsets();
int opticalWidth = insets.left + insets.right;
int opticalHeight = insets.top + insets.bottom;
measuredWidth += optical ? opticalWidth : -opticalWidth;
measuredHeight += optical ? opticalHeight : -opticalHeight;
}
setMeasuredDimensionRaw(measuredWidth, measuredHeight);
//measureSpec指的是View测量后的大小
public static int getDefaultSize(int size, int measureSpec) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
//MeasureSpec.UNSPECIFIED一般用来系统的内部测量流程
case MeasureSpec.UNSPECIFIED:
result = size;
break;
//我们主要关注着两种情况,它们返回的是View测量后的大小
case MeasureSpec.AT_MOST:
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result;
}
//如果View没有设置背景,那么返回android:minWidth这个属性的值,这个值可以为0
//如果View设置了背景,那么返回android:minWidth和背景最小宽度两者中的最大值。
protected int getSuggestedMinimumHeight() {
int suggestedMinHeight = mMinHeight;
if (mBGDrawable != null) {
final int bgMinHeight = mBGDrawable.getMinimumHeight();
if (suggestedMinHeight < bgMinHeight) {
suggestedMinHeight = bgMinHeight;
}
}
return suggestedMinHeight;
}
}
View的onMeasure()方法实现比较简单,它调用setMeasuredDimension()方法来设置View的测量大小,测量的大小通过getDefaultSize()方法来获取。
如果我们直接继承View来自定义View时,需要重写onMeasure()方法,并设置wrap_content时的大小。为什么呢?🤔
通过上面的描述我们知道,当LayoutParams为wrap_content时,SpecMode为AT_MOST,而在
关于getDefaultSize(int size, int measureSpec) 方法需要说明一下,通过上面的描述我们知道etDefaultSize()方法中AT_MOST与EXACTLY模式下,返回的 都是specSize,这个specSize是父View当前可以使用的大小,如果不处理,那wrap_content就相当于match_parent。
如何处理?🤔
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
Log.d(TAG, "widthMeasureSpec = " + widthMeasureSpec + " heightMeasureSpec = " + heightMeasureSpec);
//指定一组默认宽高,至于具体的值是多少,这就要看你希望在wrap_cotent模式下
//控件的大小应该设置多大了
int mWidth = 200;
int mHeight = 200;
int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec);
int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec);
int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec);
int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec);
if (widthSpecMode == MeasureSpec.AT_MOST && heightMeasureSpec == MeasureSpec.AT_MOST) {
setMeasuredDimension(mWidth, mHeight);
} else if (widthSpecMode == MeasureSpec.AT_MOST) {
setMeasuredDimension(mWidth, heightSpecSize);
} else if (heightSpecMode == MeasureSpec.AT_MOST) {
setMeasuredDimension(widthSpecSize, mHeight);
}
}
注:你可以自己尝试一下自定义一个View,然后不重写onMeasure()方法,你会发现只有设置match_parent和wrap_content效果是一样的,事实上TextView、ImageView 等系统组件都在wrap_content上有自己的处理,可以去翻一翻源码。
看完了View的measure过程,我们再来看看ViewGroup的measure过程。ViewGroup继承于View,是一个抽象类,它并没有重写onMeasure()方法,因为不同布局类型的测量 流程各不相同,因此onMeasure()方法由它的子类来实现。
我们来看个FrameLayout的onMeasure()方法的实现。
关键点2:FrameLayout.onMeasure(int widthMeasureSpec, int heightMeasureSpec)
View.onMeasure()方法的具体实现一般是由其子类来完成的,对于应用窗口的顶级视图DecorView来说,它继承于FrameLayout,我们来看看FrameLayout.onMeasure() 方法的实现。
public class FrameLayout extends ViewGroup {
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
final int count = getChildCount();
int maxHeight = 0;
int maxWidth = 0;
// Find rightmost and bottommost child
for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
if (mMeasureAllChildren || child.getVisibility() != GONE) {
measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0);
maxWidth = Math.max(maxWidth, child.getMeasuredWidth());
maxHeight = Math.max(maxHeight, child.getMeasuredHeight());
}
}
// Account for padding too
maxWidth += mPaddingLeft + mPaddingRight + mForegroundPaddingLeft + mForegroundPaddingRight;
maxHeight += mPaddingTop + mPaddingBottom + mForegroundPaddingTop + mForegroundPaddingBottom;
// Check against our minimum height and width
maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight());
maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());
// Check against our foreground's minimum height and width
final Drawable drawable = getForeground();
if (drawable != null) {
maxHeight = Math.max(maxHeight, drawable.getMinimumHeight());
maxWidth = Math.max(maxWidth, drawable.getMinimumWidth());
}
setMeasuredDimension(resolveSize(maxWidth, widthMeasureSpec),
resolveSize(maxHeight, heightMeasureSpec));
}
public static int resolveSize(int size, int measureSpec) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
case MeasureSpec.UNSPECIFIED:
result = size;
break;
case MeasureSpec.AT_MOST:
result = Math.min(size, specSize);
break;
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result;
}
}
可以看到该方法主要做了以下事情:
我们再来看看resolveSize(int size, int measureSpec)方法是如果获取MeasureSpec的?
这个方法的两个参数:int size:前面计算出的最大宽/高,int measureSpec父视图指定的MeasureSpec,它们按照:
来生成最后的大小。
以上便是Measure的整个流程,该流程完成以后,我们可以通过getMeasuredWidth()与getMeasuredHeight()来获得View的宽高。但是在某些情况下,系统需要经过多次Measure才能确定 最终的宽高,因此在onMeasure()方法中拿到的宽高很可能是不正确的,比较好的做法是在onLayout()方法中获取View的宽高。
在进行布局的时候,layout()方法被父View调用,在layout()中它会保存父View传进来的自己的位置和尺寸,并且调用onLayout()来进行实际的内部布局。对于onLayout(),View和ViewGroup有所区别:
layout()方法用来确定View本身的位置,onLayout()方法用来确定子元素的位置。
public class View implements Drawable.Callback, KeyEvent.Callback, AccessibilityEventSource {
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
//1 调用setFrame()设置View四个顶点ed位置
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
//2 调用onLayout()确定View子元素的位置
onLayout(changed, l, t, r, b);
if (shouldDrawRoundScrollbar()) {
if(mRoundScrollbarRenderer == null) {
mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
}
} else {
mRoundScrollbarRenderer = null;
}
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
}
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
}
关键点1:View.invalidate()
public class View implements Drawable.Callback, KeyEvent.Callback, AccessibilityEventSource {
public void invalidate() {
if (ViewDebug.TRACE_HIERARCHY) {
ViewDebug.trace(this, ViewDebug.HierarchyTraceType.INVALIDATE);
}
//检查mPrivateFlags的DRAWN位与HAS_BOUNDS是否被置1,说明上一次请求执行的UI绘制已经完成了,这个时候才能执行新的UI绘制操作
if ((mPrivateFlags & (DRAWN | HAS_BOUNDS)) == (DRAWN | HAS_BOUNDS)) {
//将mPrivateFlags的DRAWN位与HAS_BOUNDS是否被置0
mPrivateFlags &= ~DRAWN & ~DRAWING_CACHE_VALID;
final ViewParent p = mParent;
final AttachInfo ai = mAttachInfo;
if (p != null && ai != null) {
final Rect r = ai.mTmpInvalRect;
r.set(0, 0, mRight - mLeft, mBottom - mTop);
// Don't call invalidate -- we don't want to internally scroll
// our own bounds
p.invalidateChild(this, r);
}
}
}
}
该方法检查mPrivateFlags的DRAWN位与HAS_BOUNDS是否被置1,说明上一次请求执行的UI绘制已经完成了,这个时候才能执行新的UI绘制操作,在执行新的UI绘制操作之前,还会将 这两个标志位置0,然后调用ViewParent.invalidateChild()方法来完成绘制操作,这个ViewParent指向的是ViewRoot对象。
关键点2:FrameLayout.onLayout(boolean changed, int left, int top, int right, int bottom)
onLayout的实现依赖于具体的布局,所以View/ViewGroup并没有实现这个方法,我们来看看FrameLayout的实现。
public class FrameLayout extends ViewGroup {
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
final int count = getChildCount();
final int parentLeft = mPaddingLeft + mForegroundPaddingLeft;
final int parentRight = right - left - mPaddingRight - mForegroundPaddingRight;
final int parentTop = mPaddingTop + mForegroundPaddingTop;
final int parentBottom = bottom - top - mPaddingBottom - mForegroundPaddingBottom;
mForegroundBoundsChanged = true;
for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
if (child.getVisibility() != GONE) {
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
final int width = child.getMeasuredWidth();
final int height = child.getMeasuredHeight();
int childLeft = parentLeft;
int childTop = parentTop;
final int gravity = lp.gravity;
if (gravity != -1) {
final int horizontalGravity = gravity & Gravity.HORIZONTAL_GRAVITY_MASK;
final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK;
switch (horizontalGravity) {
case Gravity.LEFT:
childLeft = parentLeft + lp.leftMargin;
break;
case Gravity.CENTER_HORIZONTAL:
childLeft = parentLeft + (parentRight - parentLeft - width) / 2 +
lp.leftMargin - lp.rightMargin;
break;
case Gravity.RIGHT:
childLeft = parentRight - width - lp.rightMargin;
break;
default:
childLeft = parentLeft + lp.leftMargin;
}
switch (verticalGravity) {
case Gravity.TOP:
childTop = parentTop + lp.topMargin;
break;
case Gravity.CENTER_VERTICAL:
childTop = parentTop + (parentBottom - parentTop - height) / 2 +
lp.topMargin - lp.bottomMargin;
break;
case Gravity.BOTTOM:
childTop = parentBottom - height - lp.bottomMargin;
break;
default:
childTop = parentTop + lp.topMargin;
}
}
child.layout(childLeft, childTop, childLeft + width, childTop + height);
}
}
}
}
我们先来解释一下这个函数里的变量的含义。
通过这些参数,我们就可以得到当前视图的子视图所能布局在的区域。
接着,该方法就会遍历它的每一个子View,并获取它的左上角的坐标位置:childLeft,childTop。这两个位置信息会根据gravity来进行计算。 最后会调用子View的layout()方法循环布局操作,直到所有的布局都完成为止。
Draw过程最终将View绘制在屏幕上。
绘制从ViewRoot.draw()开始,它首先会创建一块画布,接着再在画布上绘制Android上的UI,再把画布的内容交给SurfaceFlinger服务来渲染。
关键点1:ViewRoot.draw(boolean fullRedrawNeeded)
public final class ViewRoot extends Handler implements ViewParent,
View.AttachInfo.Callbacks {
private void draw(boolean fullRedrawNeeded) {
//surface用来操作应用窗口的绘图表面
Surface surface = mSurface;
if (surface == null || !surface.isValid()) {
return;
}
if (!sFirstDrawComplete) {
synchronized (sFirstDrawHandlers) {
sFirstDrawComplete = true;
for (int i=0; i<sFirstDrawHandlers.size(); i++) {
post(sFirstDrawHandlers.get(i));
}
}
}
scrollToRectOrFocus(null, false);
if (mAttachInfo.mViewScrollChanged) {
mAttachInfo.mViewScrollChanged = false;
mAttachInfo.mTreeObserver.dispatchOnScrollChanged();
}
int yoff;
//计算窗口是否处于滚动状态
final boolean scrolling = mScroller != null && mScroller.computeScrollOffset();
if (scrolling) {
yoff = mScroller.getCurrY();
} else {
yoff = mScrollY;
}
if (mCurScrollY != yoff) {
mCurScrollY = yoff;
fullRedrawNeeded = true;
}
//描述窗口是否正在请求大小缩放
float appScale = mAttachInfo.mApplicationScale;
boolean scalingRequired = mAttachInfo.mScalingRequired;
//描述窗口的脏区域,即需要重新绘制的区域
Rect dirty = mDirty;
if (mSurfaceHolder != null) {
// The app owns the surface, we won't draw.
dirty.setEmpty();
return;
}
//用来描述是否需要用OpenGL接口来绘制UI,当应用窗口flag等于WindowManager.LayoutParams.MEMORY_TYPE_GPU
//则表示需要用OpenGL接口来绘制UI
if (mUseGL) {
if (!dirty.isEmpty()) {
Canvas canvas = mGlCanvas;
if (mGL != null && canvas != null) {
mGL.glDisable(GL_SCISSOR_TEST);
mGL.glClearColor(0, 0, 0, 0);
mGL.glClear(GL_COLOR_BUFFER_BIT);
mGL.glEnable(GL_SCISSOR_TEST);
mAttachInfo.mDrawingTime = SystemClock.uptimeMillis();
mAttachInfo.mIgnoreDirtyState = true;
mView.mPrivateFlags |= View.DRAWN;
int saveCount = canvas.save(Canvas.MATRIX_SAVE_FLAG);
try {
canvas.translate(0, -yoff);
if (mTranslator != null) {
mTranslator.translateCanvas(canvas);
}
canvas.setScreenDensity(scalingRequired
? DisplayMetrics.DENSITY_DEVICE : 0);
mView.draw(canvas);
if (Config.DEBUG && ViewDebug.consistencyCheckEnabled) {
mView.dispatchConsistencyCheck(ViewDebug.CONSISTENCY_DRAWING);
}
} finally {
canvas.restoreToCount(saveCount);
}
mAttachInfo.mIgnoreDirtyState = false;
mEgl.eglSwapBuffers(mEglDisplay, mEglSurface);
checkEglErrors();
if (SHOW_FPS || Config.DEBUG && ViewDebug.showFps) {
int now = (int)SystemClock.elapsedRealtime();
if (sDrawTime != 0) {
nativeShowFPS(canvas, now - sDrawTime);
}
sDrawTime = now;
}
}
}
//如果窗口处于滚动状态,则应用窗口需要马上进行下一次全部重绘,调用scheduleTraversals()方法
if (scrolling) {
mFullRedrawNeeded = true;
scheduleTraversals();
}
return;
}
//是否需要全部重绘,如果是则将窗口的脏区域设置为整个窗口区域,表示整个窗口曲云都需要重绘
if (fullRedrawNeeded) {
mAttachInfo.mIgnoreDirtyState = true;
dirty.union(0, 0, (int) (mWidth * appScale + 0.5f), (int) (mHeight * appScale + 0.5f));
}
if (DEBUG_ORIENTATION || DEBUG_DRAW) {
Log.v(TAG, "Draw " + mView + "/"
+ mWindowAttributes.getTitle()
+ ": dirty={" + dirty.left + "," + dirty.top
+ "," + dirty.right + "," + dirty.bottom + "} surface="
+ surface + " surface.isValid()=" + surface.isValid() + ", appScale:" +
appScale + ", width=" + mWidth + ", height=" + mHeight);
}
if (!dirty.isEmpty() || mIsAnimating) {
Canvas canvas;
try {
int left = dirty.left;
int top = dirty.top;
int right = dirty.right;
int bottom = dirty.bottom;
//调用Surface.lockCanvas()来创建画布
canvas = surface.lockCanvas(dirty);
if (left != dirty.left || top != dirty.top || right != dirty.right ||
bottom != dirty.bottom) {
mAttachInfo.mIgnoreDirtyState = true;
}
// TODO: Do this in native
canvas.setDensity(mDensity);
} catch (Surface.OutOfResourcesException e) {
Log.e(TAG, "OutOfResourcesException locking surface", e);
// TODO: we should ask the window manager to do something!
// for now we just do nothing
return;
} catch (IllegalArgumentException e) {
Log.e(TAG, "IllegalArgumentException locking surface", e);
// TODO: we should ask the window manager to do something!
// for now we just do nothing
return;
}
try {
if (!dirty.isEmpty() || mIsAnimating) {
long startTime = 0L;
if (DEBUG_ORIENTATION || DEBUG_DRAW) {
Log.v(TAG, "Surface " + surface + " drawing to bitmap w="
+ canvas.getWidth() + ", h=" + canvas.getHeight());
//canvas.drawARGB(255, 255, 0, 0);
}
if (Config.DEBUG && ViewDebug.profileDrawing) {
startTime = SystemClock.elapsedRealtime();
}
// If this bitmap's format includes an alpha channel, we
// need to clear it before drawing so that the child will
// properly re-composite its drawing on a transparent
// background. This automatically respects the clip/dirty region
// or
// If we are applying an offset, we need to clear the area
// where the offset doesn't appear to avoid having garbage
// left in the blank areas.
if (!canvas.isOpaque() || yoff != 0) {
canvas.drawColor(0, PorterDuff.Mode.CLEAR);
}
dirty.setEmpty();
mIsAnimating = false;
mAttachInfo.mDrawingTime = SystemClock.uptimeMillis();
mView.mPrivateFlags |= View.DRAWN;
if (DEBUG_DRAW) {
Context cxt = mView.getContext();
Log.i(TAG, "Drawing: package:" + cxt.getPackageName() +
", metrics=" + cxt.getResources().getDisplayMetrics() +
", compatibilityInfo=" + cxt.getResources().getCompatibilityInfo());
}
int saveCount = canvas.save(Canvas.MATRIX_SAVE_FLAG);
try {
canvas.translate(0, -yoff);
if (mTranslator != null) {
mTranslator.translateCanvas(canvas);
}
canvas.setScreenDensity(scalingRequired
? DisplayMetrics.DENSITY_DEVICE : 0);
mView.draw(canvas);
} finally {
mAttachInfo.mIgnoreDirtyState = false;
canvas.restoreToCount(saveCount);
}
if (Config.DEBUG && ViewDebug.consistencyCheckEnabled) {
mView.dispatchConsistencyCheck(ViewDebug.CONSISTENCY_DRAWING);
}
if (SHOW_FPS || Config.DEBUG && ViewDebug.showFps) {
int now = (int)SystemClock.elapsedRealtime();
if (sDrawTime != 0) {
nativeShowFPS(canvas, now - sDrawTime);
}
sDrawTime = now;
}
if (Config.DEBUG && ViewDebug.profileDrawing) {
EventLog.writeEvent(60000, SystemClock.elapsedRealtime() - startTime);
}
}
} finally {
//UI绘制完成后,调用urface.unlockCanvasAndPost(canvas)S来请求SurfaceFlinger进行UI的渲染
surface.unlockCanvasAndPost(canvas);
}
}
if (LOCAL_LOGV) {
Log.v(TAG, "Surface " + surface + " unlockCanvasAndPost");
}
if (scrolling) {
mFullRedrawNeeded = true;
scheduleTraversals();
}
}
}
这个函数主要做了以下事情:
注:这里的Surface对象对应了C++层里的Surface对象,真正的功能在C++层,关于C++层的实现,我们会在后续的文章进一步分析。
关键点2:View.draw(Canvas canvas)
public class View implements Drawable.Callback, KeyEvent.Callback, AccessibilityEventSource {
public void draw(Canvas canvas) {
if (ViewDebug.TRACE_HIERARCHY) {
ViewDebug.trace(this, ViewDebug.HierarchyTraceType.DRAW);
}
final int privateFlags = mPrivateFlags;
//dirtyOpaque用来描述当前绘制,它有两种情况:1 检查DIRTY_OPAQUE为是否为1,如果是则说明当前视图某个子视图请求了一个不透明的UI绘制操作,此时当前
//视图会被子视图覆盖 2 如果mAttachInfo.mIgnoreDirtyState = true则表示忽略该标志位
final boolean dirtyOpaque = (privateFlags & DIRTY_MASK) == DIRTY_OPAQUE &&
(mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
//将DIRTY_MASK与DRAWN置为1,表示开始绘制
mPrivateFlags = (privateFlags & ~DIRTY_MASK) | DRAWN;
/*
* Draw traversal performs several drawing steps which must be executed
* in the appropriate order:
*
* 1. Draw the background
* 2. If necessary, save the canvas' layers to prepare for fading
* 3. Draw view's content
* 4. Draw children
* 5. If necessary, draw the fading edges and restore layers
* 6. Draw decorations (scrollbars for instance)
*/
// Step 1, draw the background, if needed
int saveCount;
if (!dirtyOpaque) {
//绘制当前视图的背景
final Drawable background = mBGDrawable;
if (background != null) {
final int scrollX = mScrollX;
final int scrollY = mScrollY;
if (mBackgroundSizeChanged) {
background.setBounds(0, 0, mRight - mLeft, mBottom - mTop);
mBackgroundSizeChanged = false;
}
if ((scrollX | scrollY) == 0) {
background.draw(canvas);
} else {
canvas.translate(scrollX, scrollY);
background.draw(canvas);
canvas.translate(-scrollX, -scrollY);
}
}
}
//检查是否可以跳过第2步和第5步,也就是绘制变量,FADING_EDGE_HORIZONTAL == 1表示处于水平
//滑动状态,则需要绘制水平边框渐变效果,FADING_EDGE_VERTICAL == 1表示处于垂直滑动状态,则
//需要绘制垂直边框渐变效果。
// skip step 2 & 5 if possible (common case)
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
//窗口内容不透明才开始绘制,透明的时候就无需绘制了
// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);
// Step 4, draw the children
dispatchDraw(canvas);
// Step 6, draw decorations (scrollbars)
onDrawScrollBars(canvas);
// we're done...
return;
}
/*
* Here we do the full fledged routine...
* (this is an uncommon case where speed matters less,
* this is why we repeat some of the tests that have been
* done above)
*/
//检查失修需要保存参数canvas所描述的一块画布的堆栈状态,并且创建额外的图层来绘制当前视图
//在滑动时的边框渐变效果
boolean drawTop = false;
boolean drawBottom = false;
boolean drawLeft = false;
boolean drawRight = false;
float topFadeStrength = 0.0f;
float bottomFadeStrength = 0.0f;
float leftFadeStrength = 0.0f;
float rightFadeStrength = 0.0f;
// Step 2, save the canvas' layers
int paddingLeft = mPaddingLeft;
int paddingTop = mPaddingTop;
final boolean offsetRequired = isPaddingOffsetRequired();
if (offsetRequired) {
paddingLeft += getLeftPaddingOffset();
paddingTop += getTopPaddingOffset();
}
//表示当前视图可以用来绘制的内容区域,这个区域已经将内置的和扩展的内边距排除之外
int left = mScrollX + paddingLeft;
int right = left + mRight - mLeft - mPaddingRight - paddingLeft;
int top = mScrollY + paddingTop;
int bottom = top + mBottom - mTop - mPaddingBottom - paddingTop;
if (offsetRequired) {
right += getRightPaddingOffset();
bottom += getBottomPaddingOffset();
}
final ScrollabilityCache scrollabilityCache = mScrollCache;
int length = scrollabilityCache.fadingEdgeLength;
// clip the fade length if top and bottom fades overlap
// overlapping fades produce odd-looking artifacts
if (verticalEdges && (top + length > bottom - length)) {
length = (bottom - top) / 2;
}
// also clip horizontal fades if necessary
if (horizontalEdges && (left + length > right - length)) {
length = (right - left) / 2;
}
if (verticalEdges) {
topFadeStrength = Math.max(0.0f, Math.min(1.0f, getTopFadingEdgeStrength()));
drawTop = topFadeStrength >= 0.0f;
bottomFadeStrength = Math.max(0.0f, Math.min(1.0f, getBottomFadingEdgeStrength()));
drawBottom = bottomFadeStrength >= 0.0f;
}
if (horizontalEdges) {
leftFadeStrength = Math.max(0.0f, Math.min(1.0f, getLeftFadingEdgeStrength()));
drawLeft = leftFadeStrength >= 0.0f;
rightFadeStrength = Math.max(0.0f, Math.min(1.0f, getRightFadingEdgeStrength()));
drawRight = rightFadeStrength >= 0.0f;
}
saveCount = canvas.getSaveCount();
int solidColor = getSolidColor();
if (solidColor == 0) {
final int flags = Canvas.HAS_ALPHA_LAYER_SAVE_FLAG;
if (drawTop) {
canvas.saveLayer(left, top, right, top + length, null, flags);
}
if (drawBottom) {
canvas.saveLayer(left, bottom - length, right, bottom, null, flags);
}
if (drawLeft) {
canvas.saveLayer(left, top, left + length, bottom, null, flags);
}
if (drawRight) {
canvas.saveLayer(right - length, top, right, bottom, null, flags);
}
} else {
scrollabilityCache.setFadeColor(solidColor);
}
// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);
// Step 4, draw the children
dispatchDraw(canvas);
//绘制当前视图的上下左右边框的渐变效果
// Step 5, draw the fade effect and restore layers
final Paint p = scrollabilityCache.paint;
final Matrix matrix = scrollabilityCache.matrix;
final Shader fade = scrollabilityCache.shader;
final float fadeHeight = scrollabilityCache.fadingEdgeLength;
if (drawTop) {
matrix.setScale(1, fadeHeight * topFadeStrength);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
canvas.drawRect(left, top, right, top + length, p);
}
if (drawBottom) {
matrix.setScale(1, fadeHeight * bottomFadeStrength);
matrix.postRotate(180);
matrix.postTranslate(left, bottom);
fade.setLocalMatrix(matrix);
canvas.drawRect(left, bottom - length, right, bottom, p);
}
if (drawLeft) {
matrix.setScale(1, fadeHeight * leftFadeStrength);
matrix.postRotate(-90);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
canvas.drawRect(left, top, left + length, bottom, p);
}
if (drawRight) {
matrix.setScale(1, fadeHeight * rightFadeStrength);
matrix.postRotate(90);
matrix.postTranslate(right, top);
fade.setLocalMatrix(matrix);
canvas.drawRect(right - length, top, right, bottom, p);
}
canvas.restoreToCount(saveCount);
//绘制当前视图的滚动条
// Step 6, draw decorations (scrollbars)
onDrawScrollBars(canvas);
}
}
该方法主要完成了以下事情:
关键点2:ViewGroup.dispatchDraw(Canvas canvas)
dispatchDraw用来循环绘制子View视图。
public abstract class ViewGroup extends View implements ViewParent, ViewManager {
protected void dispatchDraw(Canvas canvas) {
//当前视图的子视图个数
final int count = mChildrenCount;
final View[] children = mChildren;
int flags = mGroupFlags;
if ((flags & FLAG_RUN_ANIMATION) != 0 && canAnimate()) {
final boolean cache = (mGroupFlags & FLAG_ANIMATION_CACHE) == FLAG_ANIMATION_CACHE;
for (int i = 0; i < count; i++) {
final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE) {
final LayoutParams params = child.getLayoutParams();
attachLayoutAnimationParameters(child, params, i, count);
bindLayoutAnimation(child);
if (cache) {
child.setDrawingCacheEnabled(true);
child.buildDrawingCache(true);
}
}
}
final LayoutAnimationController controller = mLayoutAnimationController;
if (controller.willOverlap()) {
mGroupFlags |= FLAG_OPTIMIZE_INVALIDATE;
}
controller.start();
//检查是否需要显示动画,即FLAG_RUN_ANIMATION == 1
mGroupFlags &= ~FLAG_RUN_ANIMATION;
mGroupFlags &= ~FLAG_ANIMATION_DONE;
if (cache) {
mGroupFlags |= FLAG_CHILDREN_DRAWN_WITH_CACHE;
}
//通知动画监听者动画开始显示了
if (mAnimationListener != null) {
mAnimationListener.onAnimationStart(controller.getAnimation());
}
}
int saveCount = 0;
//如果CLIP_TO_PADDING_MASK != 1,则说明参数canvas描述的是画布的剪裁区域,该剪裁区域不包含当前视图组的内边距
final boolean clipToPadding = (flags & CLIP_TO_PADDING_MASK) == CLIP_TO_PADDING_MASK;
if (clipToPadding) {
saveCount = canvas.save();
//裁剪画布
canvas.clipRect(mScrollX + mPaddingLeft, mScrollY + mPaddingTop,
mScrollX + mRight - mLeft - mPaddingRight,
mScrollY + mBottom - mTop - mPaddingBottom);
}
// We will draw our child's animation, let's reset the flag
mPrivateFlags &= ~DRAW_ANIMATION;
mGroupFlags &= ~FLAG_INVALIDATE_REQUIRED;
boolean more = false;
final long drawingTime = getDrawingTime();
//如果FLAG_USE_CHILD_DRAWING_ORDER == 0,则说明子视图按照它们在children数组里顺序进行绘制
//否则需要调用getChildDrawingOrder来判断绘制顺序
if ((flags & FLAG_USE_CHILD_DRAWING_ORDER) == 0) {
for (int i = 0; i < count; i++) {
final View child = children[i];
//如果子视图可见,则开始绘制子视图
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
more |= drawChild(canvas, child, drawingTime);
}
}
} else {
for (int i = 0; i < count; i++) {
final View child = children[getChildDrawingOrder(count, i)];
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
more |= drawChild(canvas, child, drawingTime);
}
}
}
//mDisappearingChildren用来保存哪些正在消失的子视图,正在消失的子视图也是需要绘制的
// Draw any disappearing views that have animations
if (mDisappearingChildren != null) {
final ArrayList<View> disappearingChildren = mDisappearingChildren;
final int disappearingCount = disappearingChildren.size() - 1;
// Go backwards -- we may delete as animations finish
for (int i = disappearingCount; i >= 0; i--) {
final View child = disappearingChildren.get(i);
more |= drawChild(canvas, child, drawingTime);
}
}
if (clipToPadding) {
canvas.restoreToCount(saveCount);
}
// mGroupFlags might have been updated by drawChild()
flags = mGroupFlags;
//如果FLAG_INVALIDATE_REQUIRED == 1,则说明需要进行重新绘制
if ((flags & FLAG_INVALIDATE_REQUIRED) == FLAG_INVALIDATE_REQUIRED) {
invalidate();
}
//通知动画监听者,动画已经结束
if ((flags & FLAG_ANIMATION_DONE) == 0 && (flags & FLAG_NOTIFY_ANIMATION_LISTENER) == 0 &&
mLayoutAnimationController.isDone() && !more) {
// We want to erase the drawing cache and notify the listener after the
// next frame is drawn because one extra invalidate() is caused by
// drawChild() after the animation is over
mGroupFlags |= FLAG_NOTIFY_ANIMATION_LISTENER;
final Runnable end = new Runnable() {
public void run() {
notifyAnimationListener();
}
};
post(end);
}
}
}
dispatchDraw用来循环绘制子View视图,它主要做了以下事情:
关键点3:ViewGroup.drawChild(Canvas canvas, View child, long drawingTime)
ViewGroup.drawChild(Canvas canvas, View child, long drawingTime)用来完成子视图的绘制。
public abstract class ViewGroup extends View implements ViewParent, ViewManager {
protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
//表示子视图child是否还在显示动画
boolean more = false;
//获取子视图的绘制区域以及标志位
final int cl = child.mLeft;
final int ct = child.mTop;
final int cr = child.mRight;
final int cb = child.mBottom;
final int flags = mGroupFlags;
if ((flags & FLAG_CLEAR_TRANSFORMATION) == FLAG_CLEAR_TRANSFORMATION) {
if (mChildTransformation != null) {
mChildTransformation.clear();
}
mGroupFlags &= ~FLAG_CLEAR_TRANSFORMATION;
}
//获取子视图的变换矩阵transformToApply
Transformation transformToApply = null;
//获取子视图的动画
final Animation a = child.getAnimation();
boolean concatMatrix = false;
if (a != null) {
if (mInvalidateRegion == null) {
mInvalidateRegion = new RectF();
}
final RectF region = mInvalidateRegion;
final boolean initialized = a.isInitialized();
if (!initialized) {
a.initialize(cr - cl, cb - ct, getWidth(), getHeight());
a.initializeInvalidateRegion(0, 0, cr - cl, cb - ct);
child.onAnimationStart();
}
if (mChildTransformation == null) {
mChildTransformation = new Transformation();
}
//如果子视图需要播放动画,则调用getTransformation开始执行动画,如果动画还需要继续执行,则more == true,并且返回子视图的
//变化矩阵mChildTransformation
more = a.getTransformation(drawingTime, mChildTransformation);
transformToApply = mChildTransformation;
concatMatrix = a.willChangeTransformationMatrix();
if (more) {
if (!a.willChangeBounds()) {
if ((flags & (FLAG_OPTIMIZE_INVALIDATE | FLAG_ANIMATION_DONE)) ==
FLAG_OPTIMIZE_INVALIDATE) {
mGroupFlags |= FLAG_INVALIDATE_REQUIRED;
} else if ((flags & FLAG_INVALIDATE_REQUIRED) == 0) {
// The child need to draw an animation, potentially offscreen, so
// make sure we do not cancel invalidate requests
mPrivateFlags |= DRAW_ANIMATION;
invalidate(cl, ct, cr, cb);
}
} else {
a.getInvalidateRegion(0, 0, cr - cl, cb - ct, region, transformToApply);
// The child need to draw an animation, potentially offscreen, so
// make sure we do not cancel invalidate requests
mPrivateFlags |= DRAW_ANIMATION;
final int left = cl + (int) region.left;
final int top = ct + (int) region.top;
invalidate(left, top, left + (int) region.width(), top + (int) region.height());
}
}
}
//如果FLAG_SUPPORT_STATIC_TRANSFORMATIONS == 1,调用getChildStaticTransformation()方法检查子视图是否被设置一个
//变换矩阵,如果设置了,即hasTransform == true,则mChildTransformation就是子视图需要的变换矩阵
else if ((flags & FLAG_SUPPORT_STATIC_TRANSFORMATIONS) ==
FLAG_SUPPORT_STATIC_TRANSFORMATIONS) {
if (mChildTransformation == null) {
mChildTransformation = new Transformation();
}
final boolean hasTransform = getChildStaticTransformation(child, mChildTransformation);
if (hasTransform) {
final int transformType = mChildTransformation.getTransformationType();
transformToApply = transformType != Transformation.TYPE_IDENTITY ?
mChildTransformation : null;
concatMatrix = (transformType & Transformation.TYPE_MATRIX) != 0;
}
}
//设置mPrivateFlags的DRAWN标志位为1,标明它要开始绘制了。
// Sets the flag as early as possible to allow draw() implementations
// to call invalidate() successfully when doing animations
child.mPrivateFlags |= DRAWN;
if (!concatMatrix && canvas.quickReject(cl, ct, cr, cb, Canvas.EdgeType.BW) &&
(child.mPrivateFlags & DRAW_ANIMATION) == 0) {
return more;
}
//调用computeScroll()计算子视图的滑动位置
child.computeScroll();
final int sx = child.mScrollX;
final int sy = child.mScrollY;
boolean scalingRequired = false;
Bitmap cache = null;
//如果FLAG_CHILDREN_DRAWN_WITH_CACHE或者FLAG_CHILDREN_DRAWN_WITH_CACHE为1,则表示它采用缓冲的方式进行
//绘制,它将自己的UI缓冲在一个Bitmap里,可以调用getDrawingCache()方法来获得这个Bitmap。
if ((flags & FLAG_CHILDREN_DRAWN_WITH_CACHE) == FLAG_CHILDREN_DRAWN_WITH_CACHE ||
(flags & FLAG_ALWAYS_DRAWN_WITH_CACHE) == FLAG_ALWAYS_DRAWN_WITH_CACHE) {
cache = child.getDrawingCache(true);
if (mAttachInfo != null) scalingRequired = mAttachInfo.mScalingRequired;
}
final boolean hasNoCache = cache == null;
//设置子视图child的偏移、Alpha通道以及裁剪区域
final int restoreTo = canvas.save();
if (hasNoCache) {
canvas.translate(cl - sx, ct - sy);
} else {
canvas.translate(cl, ct);
if (scalingRequired) {
// mAttachInfo cannot be null, otherwise scalingRequired == false
final float scale = 1.0f / mAttachInfo.mApplicationScale;
canvas.scale(scale, scale);
}
}
float alpha = 1.0f;
if (transformToApply != null) {
if (concatMatrix) {
int transX = 0;
int transY = 0;
if (hasNoCache) {
transX = -sx;
transY = -sy;
}
// Undo the scroll translation, apply the transformation matrix,
// then redo the scroll translate to get the correct result.
canvas.translate(-transX, -transY);
canvas.concat(transformToApply.getMatrix());
canvas.translate(transX, transY);
mGroupFlags |= FLAG_CLEAR_TRANSFORMATION;
}
alpha = transformToApply.getAlpha();
if (alpha < 1.0f) {
mGroupFlags |= FLAG_CLEAR_TRANSFORMATION;
}
if (alpha < 1.0f && hasNoCache) {
final int multipliedAlpha = (int) (255 * alpha);
if (!child.onSetAlpha(multipliedAlpha)) {
canvas.saveLayerAlpha(sx, sy, sx + cr - cl, sy + cb - ct, multipliedAlpha,
Canvas.HAS_ALPHA_LAYER_SAVE_FLAG | Canvas.CLIP_TO_LAYER_SAVE_FLAG);
} else {
child.mPrivateFlags |= ALPHA_SET;
}
}
} else if ((child.mPrivateFlags & ALPHA_SET) == ALPHA_SET) {
child.onSetAlpha(255);
}
//如果FLAG_CLIP_CHILDREN == 1,则需要设置子视图的裁剪区域
if ((flags & FLAG_CLIP_CHILDREN) == FLAG_CLIP_CHILDREN) {
if (hasNoCache) {
canvas.clipRect(sx, sy, sx + (cr - cl), sy + (cb - ct));
} else {
if (!scalingRequired) {
canvas.clipRect(0, 0, cr - cl, cb - ct);
} else {
canvas.clipRect(0, 0, cache.getWidth(), cache.getHeight());
}
}
}
//绘制子视图的UI
if (hasNoCache) {
// Fast path for layouts with no backgrounds
if ((child.mPrivateFlags & SKIP_DRAW) == SKIP_DRAW) {
if (ViewDebug.TRACE_HIERARCHY) {
ViewDebug.trace(this, ViewDebug.HierarchyTraceType.DRAW);
}
child.mPrivateFlags &= ~DIRTY_MASK;
child.dispatchDraw(canvas);
} else {
child.draw(canvas);
}
} else {
final Paint cachePaint = mCachePaint;
if (alpha < 1.0f) {
cachePaint.setAlpha((int) (alpha * 255));
mGroupFlags |= FLAG_ALPHA_LOWER_THAN_ONE;
} else if ((flags & FLAG_ALPHA_LOWER_THAN_ONE) == FLAG_ALPHA_LOWER_THAN_ONE) {
cachePaint.setAlpha(255);
mGroupFlags &= ~FLAG_ALPHA_LOWER_THAN_ONE;
}
if (Config.DEBUG && ViewDebug.profileDrawing) {
EventLog.writeEvent(60003, hashCode());
}
canvas.drawBitmap(cache, 0.0f, 0.0f, cachePaint);
}
//恢复画布的堆栈状态,以便在绘制完当前子视图的UI后,可以继续绘制其他子视图的UI
canvas.restoreToCount(restoreTo);
if (a != null && !more) {
child.onSetAlpha(255);
finishAnimatingView(child, a);
}
return more;
}
}
ViewGroup.drawChild(Canvas canvas, View child, long drawingTime)用来完成子视图的绘制,它主要完成了以下事情:
1 获取子视图的绘制区域以及标志位 2 获取子视图的变换矩阵transformToApply,这个分两种情况:
3 如果FLAG_CHILDREN_DRAWN_WITH_CACHE或者FLAG_CHILDREN_DRAWN_WITH_CACHE为1,则表示它采用缓冲的方式进行绘制,它将自己的UI缓冲在一个Bitmap里,可以调用getDrawingCache()方法来获得这个Bitmap。 4 设置子视图child的偏移、Alpha通道以及裁剪区域。
5 绘制子视图的UI,这分为两种情况:
6 恢复画布的堆栈状态,以便在绘制完当前子视图的UI后,可以继续绘制其他子视图的UI。
总结
至此,Android应用程序窗口的渲染流程就分析完了,我们再来总结一下。
在介绍View的事件分发机制之前,我们要先了解两个概念。
现在我们再来看看View里的事件分发机制,概括来说,可以用下面代码表示:
public boolean dispatchTouchEvent(MotionEvent event){
boolean consume = false;
//父View决定是否拦截事件
if(onInterceptTouchEvent(event)){
//父View调用onTouchEvent(event)消费事件
consume = onTouchEvent(event);
}else{
//调用子View的dispatchTouchEvent(event)方法继续分发事件
consume = child.dispatchTouchEvent(event);
}
return consume;
}
我们再来具体看看各个场景中的事件分发。
当点击事件发生时,事件最先传递给Activity,Activity会首先将事件将诶所属的Window进行处理,即调用superDispatchTouchEvent()方法。
通过观察superDispatchTouchEvent()方法的调用链,我们可以发现事件的传递顺序:
事件一层层传递到了ViewGroup里,关于ViewGroup对事件的处理,我们下面会说,如果superDispatchTouchEvent()方法返回false,即没有 处理该事件,则会继续调用Activity的onTouchEvent(ev)方法来处理该事件。可见Activity的onTouchEvent(ev)在事件处理的优先级是最低的。
public class Activity extends ContextThemeWrapper
implements LayoutInflater.Factory2,
Window.Callback, KeyEvent.Callback,
OnCreateContextMenuListener, ComponentCallbacks2,
Window.OnWindowDismissedCallback, WindowControllerCallback {
public boolean dispatchTouchEvent(MotionEvent ev) {
if (ev.getAction() == MotionEvent.ACTION_DOWN) {
onUserInteraction();
}
if (getWindow().superDispatchTouchEvent(ev)) {
return true;
}
return onTouchEvent(ev);
}
}
ViewGroup作为View容器,它需要考虑自己的子View是否处理了该事件,具体说来:
public abstract class ViewGroup extends View implements ViewParent, ViewManager {
public boolean dispatchTouchEvent(MotionEvent ev) {
...
boolean handled = false;
if (onFilterTouchEventForSecurity(ev)) {
final int action = ev.getAction();
final int actionMasked = action & MotionEvent.ACTION_MASK;
//每当有ACTION_DOWN事件进来的时候,都重置成初始状态
if (actionMasked == MotionEvent.ACTION_DOWN) {
// Throw away all previous state when starting a new touch gesture.
// The framework may have dropped the up or cancel event for the previous gesture
// due to an app switch, ANR, or some other state change.
cancelAndClearTouchTargets(ev);
resetTouchState();
}
// Check for interception.
final boolean intercepted;
//MotionEvent.ACTION_DOWN事件总是会被ViewGroup拦截
if (actionMasked == MotionEvent.ACTION_DOWN
|| mFirstTouchTarget != null) {
//1. 判断是否允许ViewGroup拦截除了ACTION_DOWN以外的其他事件,通过requestDisallowInterceptTouchEvent()方法设置
//FLAG_DISALLOW_INTERCEPT标志位来完成的
final boolean disallowIntercept = (mGroupFlags & FLAG_DISALLOW_INTERCEPT) != 0;
if (!disallowIntercept) {
//2. 通过onInterceptTouchEvent(ev)方法判断是否拦截该事件
intercepted = onInterceptTouchEvent(ev);
ev.setAction(action); // restore action in case it was changed
} else {
intercepted = false;
}
} else {
//如果mFirstTouchTarget == null,即没有接受
intercepted = true;
}
//ViewGroup以链表的形式存储它的子View,mFirstTouchTarget表示链表中第一个
//被点击的子View
if (intercepted || mFirstTouchTarget != null) {
ev.setTargetAccessibilityFocus(false);
}
// Check for cancelation.
final boolean canceled = resetCancelNextUpFlag(this)
|| actionMasked == MotionEvent.ACTION_CANCEL;
// Update list of touch targets for pointer down, if needed.
final boolean split = (mGroupFlags & FLAG_SPLIT_MOTION_EVENTS) != 0;
TouchTarget newTouchTarget = null;
boolean alreadyDispatchedToNewTouchTarget = false;
if (!canceled && !intercepted) {
...
if (actionMasked == MotionEvent.ACTION_DOWN
|| (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN)
|| actionMasked == MotionEvent.ACTION_HOVER_MOVE) {
final int actionIndex = ev.getActionIndex(); // always 0 for down
final int idBitsToAssign = split ? 1 << ev.getPointerId(actionIndex)
: TouchTarget.ALL_POINTER_IDS;
// Clean up earlier touch targets for this pointer id in case they
// have become out of sync.
removePointersFromTouchTargets(idBitsToAssign);
final int childrenCount = mChildrenCount;
if (newTouchTarget == null && childrenCount != 0) {
final float x = ev.getX(actionIndex);
final float y = ev.getY(actionIndex);
// Find a child that can receive the event.
// Scan children from front to back.
final ArrayList<View> preorderedList = buildTouchDispatchChildList();
final boolean customOrder = preorderedList == null
&& isChildrenDrawingOrderEnabled();
//3. 当ViewGroup不再拦截事件时,事件会向下分发给它的子View进行处理。
final View[] children = mChildren;
for (int i = childrenCount - 1; i >= 0; i--) {
final int childIndex = getAndVerifyPreorderedIndex(
childrenCount, i, customOrder);
final View child = getAndVerifyPreorderedView(
preorderedList, children, childIndex);
//4. 判断子View是否能够接受点击事件,判断标准有两点:① 子View是否可以获取焦点
//② 点击的坐标是否落在了子View的区域内
if (childWithAccessibilityFocus != null) {
if (childWithAccessibilityFocus != child) {
continue;
}
childWithAccessibilityFocus = null;
i = childrenCount - 1;
}
if (!canViewReceivePointerEvents(child)
|| !isTransformedTouchPointInView(x, y, child, null)) {
ev.setTargetAccessibilityFocus(false);
continue;
}
newTouchTarget = getTouchTarget(child);
if (newTouchTarget != null) {
// Child is already receiving touch within its bounds.
// Give it the new pointer in addition to the ones it is handling.
newTouchTarget.pointerIdBits |= idBitsToAssign;
break;
}
resetCancelNextUpFlag(child);
//5. dispatchTransformedTouchEvent()方法会去调用子View的dispatchTouchEvent()方法来处理事件
if (dispatchTransformedTouchEvent(ev, false, child, idBitsToAssign)) {
// Child wants to receive touch within its bounds.
mLastTouchDownTime = ev.getDownTime();
if (preorderedList != null) {
// childIndex points into presorted list, find original index
for (int j = 0; j < childrenCount; j++) {
if (children[childIndex] == mChildren[j]) {
mLastTouchDownIndex = j;
break;
}
}
} else {
mLastTouchDownIndex = childIndex;
}
mLastTouchDownX = ev.getX();
mLastTouchDownY = ev.getY();
newTouchTarget = addTouchTarget(child, idBitsToAssign);
alreadyDispatchedToNewTouchTarget = true;
break;
}
// The accessibility focus didn't handle the event, so clear
// the flag and do a normal dispatch to all children.
ev.setTargetAccessibilityFocus(false);
}
if (preorderedList != null) preorderedList.clear();
}
...
}
}
、
...
return handled;
}
}
View没有子元素,无法向下传递事件,它只能自己处理事件,所以View的事件传递比较简单。
如果外界设置了OnTouchListener且OnTouchListener.onTouch(this, event)返回true,则表示该方法消费了该事件,则onTouchEvent(event)不再被调用。 可见OnTouchListener的优先级高于onTouchEvent(event),这样是为了便于外界处理事件。
public class View implements Drawable.Callback, KeyEvent.Callback,
AccessibilityEventSource {
public boolean dispatchTouchEvent(MotionEvent event) {
...
if (onFilterTouchEventForSecurity(event)) {
if ((mViewFlags & ENABLED_MASK) == ENABLED && handleScrollBarDragging(event)) {
result = true;
}
//如果外界设置了OnTouchListener且OnTouchListener.onTouch(this, event)返回true,则
//表示该方法消费了该事件,则onTouchEvent(event)不再被调用
ListenerInfo li = mListenerInfo;
//如果外界调用了setOnTouchListener()方法且
if (li != null && li.mOnTouchListener != null
&& (mViewFlags & ENABLED_MASK) == ENABLED
&& li.mOnTouchListener.onTouch(this, event)) {
result = true;
}
if (!result && onTouchEvent(event)) {
result = true;
}
}
...
return result;
}
}
我们再来看看View里的onTouchEvent(event)方法的处理。
public class View implements Drawable.Callback, KeyEvent.Callback,
AccessibilityEventSource {
public boolean onTouchEvent(MotionEvent event) {
final float x = event.getX();
final float y = event.getY();
final int viewFlags = mViewFlags;
final int action = event.getAction();
//1. View的disable属性不会影响onTouchEvent()方法的返回值,哪怕View是disable的,只要
//View的clickable或者longClickable为true,onTouchEvent()方法还是会返回true
if ((viewFlags & ENABLED_MASK) == DISABLED) {
if (action == MotionEvent.ACTION_UP && (mPrivateFlags & PFLAG_PRESSED) != 0) {
setPressed(false);
}
// A disabled view that is clickable still consumes the touch
// events, it just doesn't respond to them.
return (((viewFlags & CLICKABLE) == CLICKABLE
|| (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)
|| (viewFlags & CONTEXT_CLICKABLE) == CONTEXT_CLICKABLE);
}
if (mTouchDelegate != null) {
if (mTouchDelegate.onTouchEvent(event)) {
return true;
}
}
//2. 只要clickable或者longClickable为true,onTouchEvent()方法就会消费这个事件
if (((viewFlags & CLICKABLE) == CLICKABLE ||
(viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE) ||
(viewFlags & CONTEXT_CLICKABLE) == CONTEXT_CLICKABLE) {
switch (action) {
case MotionEvent.ACTION_UP:
boolean prepressed = (mPrivateFlags & PFLAG_PREPRESSED) != 0;
if ((mPrivateFlags & PFLAG_PRESSED) != 0 || prepressed) {
// take focus if we don't have it already and we should in
// touch mode.
boolean focusTaken = false;
if (isFocusable() && isFocusableInTouchMode() && !isFocused()) {
focusTaken = requestFocus();
}
if (prepressed) {
// The button is being released before we actually
// showed it as pressed. Make it show the pressed
// state now (before scheduling the click) to ensure
// the user sees it.
setPressed(true, x, y);
}
if (!mHasPerformedLongPress && !mIgnoreNextUpEvent) {
// This is a tap, so remove the longpress check
removeLongPressCallback();
// Only perform take click actions if we were in the pressed state
if (!focusTaken) {
// Use a Runnable and post this rather than calling
// performClick directly. This lets other visual state
// of the view update before click actions start.
if (mPerformClick == null) {
mPerformClick = new PerformClick();
}
//3. 如果View设置了OnClickListener,则performClick()会调用它的onClick方法
if (!post(mPerformClick)) {
performClick();
}
}
}
if (mUnsetPressedState == null) {
mUnsetPressedState = new UnsetPressedState();
}
if (prepressed) {
postDelayed(mUnsetPressedState,
ViewConfiguration.getPressedStateDuration());
} else if (!post(mUnsetPressedState)) {
// If the post failed, unpress right now
mUnsetPressedState.run();
}
removeTapCallback();
}
mIgnoreNextUpEvent = false;
break;
case MotionEvent.ACTION_DOWN:
...
break;
case MotionEvent.ACTION_CANCEL:
...
break;
case MotionEvent.ACTION_MOVE:
...
break;
}
return true;
}
return false;
}
}
关于onTouchEvent(MotionEvent event),有两点需要说明一下:
上面我们提到了viewFlags里的CLICKABLE与LONG_CLICKABLE,也就是xml或者代码里可以设置的clickable与longClickable,View的LONG_CLICKABLE默认为 true,CLICKABLE默认为false,值得一提的是setOnClickListener()方法和setOnLongClickListener()会将这两个值设置为true。
通过对源码的分析,我们已经掌握了各种场景下事件分发的规律,我们再来总结一下View事件分发的相关结论。
扫一扫
在手机上阅读