Android 图形显示系统 - 初识 ANativeWindow/Surface/SurfaceControl

4042次阅读  |  发布于2年以前

"行百里者半九十",是说步行一百里路,走过九十里,只能算是走了一半。因为步行越接近目的地,走起来越困难。借指凡事到了接近成功,往往是最吃力、最艰难的时段。劝人做事贵在坚持,有始容易,有终实难。

不多说了,希望自己能坚持写完这个系列 ……

ANativeWindow


ANativeWindow 顾名思义,这个结构体是对一个本地窗口的抽象描述。老规矩先看代码:

其定义位于:/frameworks/native/libs/nativewindow/include/system/window.h

struct ANativeWindow
{
    // C++ 代码下会定义构造函数,并初始化common成员中的部分信息
#ifdef __cplusplus
    ANativeWindow()
        : flags(0), minSwapInterval(0), maxSwapInterval(0), xdpi(0), ydpi(0)
    {
        common.magic = ANDROID_NATIVE_WINDOW_MAGIC;
        common.version = sizeof(ANativeWindow);
        memset(common.reserved, 0, sizeof(common.reserved));
    }

    /* Implement the methods that sp<ANativeWindow> expects so that it
       can be used to automatically refcount ANativeWindow's. */
    void incStrong(const void* /*id*/) const {
        common.incRef(const_cast<android_native_base_t*>(&common));
    }
    void decStrong(const void* /*id*/) const {
        common.decRef(const_cast<android_native_base_t*>(&common));
    }
#endif
    // 结构体第一个成员,相当于继承自android_native_base_t,其主要用于引用计数,还有版本信息
    struct android_native_base_t common;

    /* flags describing some attributes of this surface or its updater */
    const uint32_t flags;

    /* min swap interval supported by this updated */
    const int   minSwapInterval;

    /* max swap interval supported by this updated */
    const int   maxSwapInterval;

    /* horizontal and vertical resolution in DPI */
    const float xdpi;
    const float ydpi;

    /* Some storage reserved for the OEM's driver. */
    intptr_t    oem[4];

    /* 设置swap间隔,跟踪源码可发现其最终调用了mGraphicBufferProducer->setAsyncMode,
       也就是设置Producer是同步or异步模式 */
    int     (*setSwapInterval)(struct ANativeWindow* window,
                int interval);

    /* 请求(出队列)一块buffer。执行后这块buffer就不是locked锁定状态,因此内容不能被修改。
       如果没有可用的buffer,这个方法会被阻塞。
       该方法已被弃用。*/
    int     (*dequeueBuffer_DEPRECATED)(struct ANativeWindow* window,
                struct ANativeWindowBuffer** buffer);

    /* 锁住buffer。在修改buffer中的内容前一定要先调用lock方法。
       这块buffer首先是dequeueBuffer请求到的。
       该方法已被弃用。*/
     */
    int     (*lockBuffer_DEPRECATED)(struct ANativeWindow* window,
                struct ANativeWindowBuffer* buffer);

    /* 当修改完buffer内容,调用这个方法,把buffer返回到队列中,用于后续显示输出。
       该方法已被弃用。*/
    int     (*queueBuffer_DEPRECATED)(struct ANativeWindow* window,
                struct ANativeWindowBuffer* buffer);

    /* 检索查询有关 native window 的信息 
       what指明要查询信息的类型,比如 NATIVE_WINDOW_WIDTH 、NATIVE_WINDOW_HEIGHT 查询宽高*/
    int     (*query)(const struct ANativeWindow* window,
                int what, int* value);

    /* 对surface执行各种操作,比如 NATIVE_WINDOW_SET_USAGE or NATIVE_WINDOW_CONNECT
       一般不会直接调用这个方法,而是使用辅助方法,比如 native_window_set_usage */
    int     (*perform)(struct ANativeWindow* window,
                int operation, ... );

    /* 取消已出队列的buffer。这个方法已被弃用 */
    int     (*cancelBuffer_DEPRECATED)(struct ANativeWindow* window,
                struct ANativeWindowBuffer* buffer);

    /* 请求(出队列)一块buffer。如果没有可用的buffer,这个方法会被阻塞。
       fenceFd是一个fence文件描述符,可以简单理解为一个资源同步锁
       当发出fence信号后才可以写buffer */
    int     (*dequeueBuffer)(struct ANativeWindow* window,
                struct ANativeWindowBuffer** buffer, int* fenceFd);

    /* 入队列一块buffer */
    int     (*queueBuffer)(struct ANativeWindow* window,
                struct ANativeWindowBuffer* buffer, int fenceFd);

    /* 取消一块已经dequeue的buffer */
    int     (*cancelBuffer)(struct ANativeWindow* window,
                struct ANativeWindowBuffer* buffer, int fenceFd);
};

在/frameworks/native/libs/nativewindow/include/system/window.h这个头文件中,还定义很多enum常量,这些常量的作用这源码中都有详细的英文注释,建议直接阅读理解。

用于query()函数检索信息的常量

/* attributes queriable with query() */
enum {
    NATIVE_WINDOW_WIDTH = 0,
    NATIVE_WINDOW_HEIGHT = 1,
    NATIVE_WINDOW_FORMAT = 2,
    NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS = ANATIVEWINDOW_QUERY_MIN_UNDEQUEUED_BUFFERS,
    NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER = 4,
    NATIVE_WINDOW_CONCRETE_TYPE = 5,
    NATIVE_WINDOW_DEFAULT_WIDTH = ANATIVEWINDOW_QUERY_DEFAULT_WIDTH,
    NATIVE_WINDOW_DEFAULT_HEIGHT = ANATIVEWINDOW_QUERY_DEFAULT_HEIGHT,
    NATIVE_WINDOW_TRANSFORM_HINT = ANATIVEWINDOW_QUERY_TRANSFORM_HINT,
    NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND = 9,
    NATIVE_WINDOW_CONSUMER_USAGE_BITS = 10, /* deprecated */
    NATIVE_WINDOW_STICKY_TRANSFORM = 11,
    NATIVE_WINDOW_DEFAULT_DATASPACE = 12,
    NATIVE_WINDOW_BUFFER_AGE = ANATIVEWINDOW_QUERY_BUFFER_AGE,
    NATIVE_WINDOW_LAST_DEQUEUE_DURATION = 14,
    NATIVE_WINDOW_LAST_QUEUE_DURATION = 15,
    NATIVE_WINDOW_LAYER_COUNT = 16,
    NATIVE_WINDOW_IS_VALID = 17,
    NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT = 18,
    NATIVE_WINDOW_CONSUMER_IS_PROTECTED = 19,
    NATIVE_WINDOW_DATASPACE = 20,
    NATIVE_WINDOW_MAX_BUFFER_COUNT = 21,
};

用于(*perform)()的标识各种操作的常量

deprecated标记的可能已被弃用或被其他功能函数取代

标记为“私有”的值应被视为框架私有。可以访问ANativeWindow的HAL实现代码不应该使用这些,因为它可能无法与框架对ANativeWindow的使用进行正确的交互。

/* Valid operations for the (*perform)() hook. */
enum {
    // clang-format off
    NATIVE_WINDOW_SET_USAGE                       =  ANATIVEWINDOW_PERFORM_SET_USAGE,   /* deprecated */
    NATIVE_WINDOW_CONNECT                         =  1,   /* deprecated */
    NATIVE_WINDOW_DISCONNECT                      =  2,   /* deprecated */
    NATIVE_WINDOW_SET_CROP                        =  3,   /* private */

    // 完整内容,请参考源码    
}

用于NATIVE_WINDOW_[API_][DIS]CONNECT的参数

两个函数native_window_api_connect 和 native_window_api_disconnect

下面的这些常量值,我的理解是:谁在产生图形数据?即填充buffer数据的生产者类型

/* parameter for NATIVE_WINDOW_[API_][DIS]CONNECT */
enum {
    NATIVE_WINDOW_API_EGL = 1, // 使用OpenGL ES填充buffer后,EGL通过eglSwapBuffers入队列这个buffer
    NATIVE_WINDOW_API_CPU = 2, // 使用CPU填充buffer后,入队列buffer
    NATIVE_WINDOW_API_MEDIA = 3, // video解码器填充buffer后,Stagefright入队列这个buffer
    NATIVE_WINDOW_API_CAMERA = 4,// camera HAL 入队列buffer
};

用于NATIVE_WINDOW_SET_BUFFERS_TRANSFORM 图像转换的参数

/* parameter for NATIVE_WINDOW_SET_BUFFERS_TRANSFORM */
enum {
    NATIVE_WINDOW_TRANSFORM_FLIP_H = HAL_TRANSFORM_FLIP_H ,// 水平翻转
    NATIVE_WINDOW_TRANSFORM_FLIP_V = HAL_TRANSFORM_FLIP_V, // 垂直翻转
    NATIVE_WINDOW_TRANSFORM_ROT_90 = HAL_TRANSFORM_ROT_90, // 将源图像按时钟方向旋转90度
    NATIVE_WINDOW_TRANSFORM_ROT_180 = HAL_TRANSFORM_ROT_180,// 将源图像按时钟方向旋转180度
    NATIVE_WINDOW_TRANSFORM_ROT_270 = HAL_TRANSFORM_ROT_270, // 将源图像按时钟方向旋转270度
    NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY = 0x08 // 通过对其显示的屏幕进行逆变换来转换源。
};

上述参数即用于如下这个函数,buffer显示时就会按照我们设置的转换类型进行翻转、旋转。

/*
 * native_window_set_buffers_transform(..., int transform)
 * All buffers queued after this call will be displayed transformed according
 * to the transform parameter specified.
 */
static inline int native_window_set_buffers_transform(
        struct ANativeWindow* window,
        int transform)
{
    return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_TRANSFORM,
            transform);
}

用于NATIVE_WINDOW_SET_SCALING_MODE设置缩放模式的常量

/* parameter for NATIVE_WINDOW_SET_SCALING_MODE */
enum {
    /* the window content is not updated (frozen) until a buffer of
     * the window size is received (enqueued)
     */
    NATIVE_WINDOW_SCALING_MODE_FREEZE           = 0,
    /* the buffer is scaled in both dimensions to match the window size */
    NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW  = 1,
    /* the buffer is scaled uniformly such that the smaller dimension
     * of the buffer matches the window size (cropping in the process)
     */
    NATIVE_WINDOW_SCALING_MODE_SCALE_CROP       = 2,
    /* the window is clipped to the size of the buffer's crop rectangle; pixels
     * outside the crop rectangle are treated as if they are completely
     * transparent.
     */
    NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP    = 3,
};

上述参数即用于如下这个函数

/*
 * native_window_set_scaling_mode(..., int mode)
 * All buffers queued after this call will be associated with the scaling mode
 * specified.
 */
static inline int native_window_set_scaling_mode(
        struct ANativeWindow* window,
        int mode)
{
    return window->perform(window, NATIVE_WINDOW_SET_SCALING_MODE,
            mode);
}

Surface


Surface和ANativeWindow存在千丝万缕的联系,Surface继承了ANativeWindow,并对其中的功能做了具体实现。

ANativeWindow这个结构体中定义了大量的函数指针,这些函数指针指向了哪里?或函数功能在哪里?答案就在Surface中。

Surface的定义位于:/frameworks/native/libs/gui/include/gui/Surface.h

先看看它的声明:

class Surface
    : public ANativeObjectBase<ANativeWindow, Surface, RefBase>
{
    ......
}

ANativeObjectBase是一个模板类,作为辅助类将ANativeXXXX的对象类型转换为C++的引用计数类型

template <typename NATIVE_TYPE, typename TYPE, typename REF,
        typename NATIVE_BASE = android_native_base_t>
class ANativeObjectBase : public NATIVE_TYPE, public REF
{

我们结合上面这两段代码来看,是不是很清晰了:

在Surface的定义中,NATIVE_TYPE==ANativeWindow , REF==RefBas ==> ANativeObjectBase 继承了ANativeWindow

根据继承的逻辑关系,很明显Surface继承了ANativeWindow

Surface中定义了很多函数接口,不过也有些规律。

♦ hook_*的函数

hook函数有10个,这些函数和ANativeWindow中定义的函数指针对应,hook钩连一块

他们是怎么样钩连起来的呢?可以看/frameworks/native/libs/gui/Surface.cpp 中构造函数

Surface::Surface(const sp<IGraphicBufferProducer>& bufferProducer, bool controlledByApp,
                 const sp<IBinder>& surfaceControlHandle)
      : .... {
    // Initialize the ANativeWindow function pointers.
    ANativeWindow::setSwapInterval  = hook_setSwapInterval;
    ANativeWindow::dequeueBuffer    = hook_dequeueBuffer;
    ANativeWindow::cancelBuffer     = hook_cancelBuffer;
    ANativeWindow::queueBuffer      = hook_queueBuffer;
    ANativeWindow::query            = hook_query;
    ANativeWindow::perform          = hook_perform;

    ANativeWindow::dequeueBuffer_DEPRECATED = hook_dequeueBuffer_DEPRECATED;
    ANativeWindow::cancelBuffer_DEPRECATED  = hook_cancelBuffer_DEPRECATED;
    ANativeWindow::lockBuffer_DEPRECATED    = hook_lockBuffer_DEPRECATED;
    ANativeWindow::queueBuffer_DEPRECATED   = hook_queueBuffer_DEPRECATED;
}

一目了然,Initialize the ANativeWindow function pointers. 初始化函数指针。

比如我们程序中如果调用ANativeWindow::query函数,即会调用实现具体功能的Surface::hook_query.

♦ dispatch*的函数

dispatch函数有46个,前面我们有讲到perform函数对应的各种操作,都是会走到对应的dispatch函数中。

我们通过一个例子来说明下具体流程:Android 12(S) 图形显示系统 - 示例应用(二)

之前的demo中 ,比如有用到

    // 3. set the ANativeWindow format
    err = native_window_set_buffers_format(nativeWindow, PIXEL_FORMAT_RGBX_8888);

看!native_window_set_buffers_format的定义


二的次方


static inline int native_window_set_buffers_format(
        struct ANativeWindow* window,
        int format)
{
    return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_FORMAT, format);
}

其中继续调用 window->perform(),这个函数对应到了Surface::hook_perform

int Surface::hook_perform(ANativeWindow* window, int operation, ...) {
    va_list args;
    va_start(args, operation);
    Surface* c = getSelf(window); // 类型转换
    int result;
    // Don't acquire shared ownership of the interceptor mutex if we're going to
    // do interceptor registration, as otherwise we'll deadlock on acquiring
    // exclusive ownership.
    if (!isInterceptorRegistrationOp(operation)) {
        std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);
        if (c->mPerformInterceptor != nullptr) {
            result = c->mPerformInterceptor(window, Surface::performInternal,
                                            c->mPerformInterceptorData, operation, args);
            va_end(args);
            return result;
        }
    }
    result = c->perform(operation, args);
    va_end(args);
    return result;
}

接着看!调用c->perform(),流程到了Surface::perform

int Surface::perform(int operation, va_list args)
{
    int res = NO_ERROR;
    switch (operation) {
        ...... 
        case NATIVE_WINDOW_SET_BUFFERS_FORMAT:
        res = dispatchSetBuffersFormat(args);
        break;
        ......   
    }

}

switch语句中判断是哪种case(哪中操作),调用对应的dispatchXXX,在我们的例子中即调用dispatchSetBuffersFormat

int Surface::dispatchSetBuffersFormat(va_list args) {
    PixelFormat format = va_arg(args, PixelFormat);
    return setBuffersFormat(format);
}

私有方法Surface::setBuffersFormat 中来完成最终的工作。

通过上面这个例子应该就理清了 perform <--> dispatchXXX 的处理流程了

♦ 其它的函数和私有成员

Surface中还有很多函数和数据成员,它们提供了操作surface的接口或用于存surface的属性信息。

比如 宽、高、像素格式等属性信息

   BufferSlot mSlots[NUM_BUFFER_SLOTS];
    uint32_t mReqWidth;
    uint32_t mReqHeight;
    PixelFormat mReqFormat;
    uint64_t mReqUsage;

我们在此就不展开介绍了,后续讲解中如有遇到会再解释。


简单小结下:ANativeWindow中定义很多函数指针成员变量,Surface继承自ANativeWindow,当然那些函数指针成员变量也是属于Surface了,Surface实现了各种功能函数,并且让ANativeWindow中函数指针成员变量与实际功能函数建立关联(hook)

window.h中有很多static函数,使用这些函数时就可以透过ANativeWindow呼叫到Surface中的功能了

绕啊绕,绕啊绕,为啥要这样绕….


SurfaceControl


SurfaceControl 顾名思义是用于控制surface的一个类。他是如何进行控制的呢?且让我们慢慢看….

还记得我们例子中如何创建surface的吗?可以回头再看看 Android 12(S) 图形显示系统 - 示例应用(二)

使用SurfaceComposerClient::createSurface 获得了SurfaceControl对象,神奇吧!

    sp<SurfaceControl> surfaceControl = surfaceComposerClient->createSurface(mName, resolution.getWidth(), 
                                                                             resolution.getHeight(), PIXEL_FORMAT_RGBA_8888,
                                                                             ISurfaceComposerClient::eFXSurfaceBufferState,
                                                                             /*parent*/ nullptr);

深入其中,一探究竟,createSurface做了什么神奇操作呢?

sp<SurfaceControl> SurfaceComposerClient::createSurface(const String8& name, uint32_t w, uint32_t h,
                                                        PixelFormat format, uint32_t flags,
                                                        const sp<IBinder>& parentHandle,
                                                        LayerMetadata metadata,
                                                        uint32_t* outTransformHint) {
    sp<SurfaceControl> s;
    createSurfaceChecked(name, w, h, format, &s, flags, parentHandle, std::move(metadata),
                         outTransformHint);
    return s;
}

继续去调用 createSurfaceChecked

status_t SurfaceComposerClient::createSurfaceChecked(const String8& name, uint32_t w, uint32_t h,
                                                     PixelFormat format,
                                                     sp<SurfaceControl>* outSurface, uint32_t flags,
                                                     const sp<IBinder>& parentHandle,
                                                     LayerMetadata metadata,
                                                     uint32_t* outTransformHint) {
    sp<SurfaceControl> sur;
    status_t err = mStatus;

    if (mStatus == NO_ERROR) {
        sp<IBinder> handle;
        sp<IGraphicBufferProducer> gbp;

        uint32_t transformHint = 0;
        int32_t id = -1;
        err = mClient->createSurface(name, w, h, format, flags, parentHandle, std::move(metadata),
                                     &handle, &gbp, &id, &transformHint);

        if (outTransformHint) {
            *outTransformHint = transformHint;
        }
        ALOGE_IF(err, "SurfaceComposerClient::createSurface error %s", strerror(-err));
        if (err == NO_ERROR) {
            *outSurface =
                    new SurfaceControl(this, handle, gbp, id, w, h, format, transformHint, flags);
        }
    }
    return err;
}

真相已浮现,看到 new SurfaceControl 了

在前面文章

Android 12(S) 图形显示系统 - createSurface的流程(五)Android 12(S) 图形显示系统 - BufferQueue/BLASTBufferQueue之初识(六)

我们详细分析过createSurface的流程,还有SurfaceControl中的信息,我们再贴一下信息:

源码位置:/frameworks/native/libs/gui/include/gui/SurfaceControl.h

class SurfaceControl : public RefBase
    ...
private:
    sp<SurfaceComposerClient>   mClient;                 // 应用创建的SurfaceComposerClient对象指针,里面封装了和SurfaceFlinger通信的Binder客户端
    sp<IBinder>                 mHandle;                 // 应用中显式创建的layer handle,这是个BufferStateLayer 它作为parent
    sp<IGraphicBufferProducer>  mGraphicBufferProducer;  // 这个貌似没有实际用了?
    mutable Mutex               mLock;
    mutable sp<Surface>         mSurfaceData;            // 
    mutable sp<BLASTBufferQueue> mBbq;                   // BLASTBufferQueue对象实例
    mutable sp<SurfaceControl> mBbqChild;                // child layer,它会和mBbq相关联
    int32_t mLayerId;                                    // layer id
    uint32_t mTransformHint;                             // 方向
    uint32_t mWidth;                                     // surface 宽
    uint32_t mHeight;                                    // surface 高
    PixelFormat mFormat;
    uint32_t mCreateFlags;                               // createSurface的标志信息
};

SurfaceControl中持有Surface:mSurfaceData, 持有BufferQueue:mBbq 这就是控制的基础

总结一张图


ANativeWindow/Surface/SurfaceControl的基本就介绍这些了,主要是了解这些类内有什么内容,可以使用他们做些什么操作,以及他们与其它图形组件的关系。

原文链接: https://www.cnblogs.com/roger-yu/p/15773010.html

-- END --

Copyright© 2013-2019

京ICP备2023019179号-2