案例分析|线程池相关故障梳理&总结

618次阅读  |  发布于10月以前

阿里妹导读

本文作者梳理和分享了线程池类的故障,分别从故障视角和技术视角两个角度来分析总结,故障视角可以看到现象和教训,而技术视角可以透过现象看到本质更进一步可以看看如何避免。

背景

团队新同学反馈想学习了解线程池类的故障,由笔者做梳理和分享(所梳理的故障材料来自团队多年积累的故障复盘报告),内容对外部开发者来说也有借鉴意义,因此发出来希望能帮助到一些开发者。我会从故障视角和技术视角两个角度来分析总结,故障视角可以看到现象和血淋淋的教训,而技术视角可以透过现象看到本质更进一步可以看看如何避免。

故障视角

笔者在管控团队耕耘多年,经历了很多大大小小的故障,总结来看确实有很多线程池满导致服务不可用的故障。一般线程池满只是结果,诱因还是系统某个地方慢了,最典型的一类 Case 就是数据库 SQL 慢导致数据库连接池满,数据库连接池满进而导致对外提供服务的业务线程池(如 Dubbo 线程池)满,线程池一旦满了,就大概率无法响应新的请求,或者能响应新的请求但一直在排队无法及时处理请求导致请求耗时增加,在用户侧看来就变成了超时-服务不可用。下面贴一些典型的常见 Case,开发同学基本一看就懂并不神奇。

数据库相关

热更新

在事务里热更新同一条数据容易引发锁等待造成慢 SQL,常见于一些 update count,update quota 类的业务场景。

大表加字段

DDL 变更有多种方式,最原始的方式会造成锁表问题进而引发大量相关联 SQL 锁等待产生慢 SQL;DDL 变更建议走 Online DDL。历史上出现过的一些锁表的 Case 应该是没有走 Online DDL,也可能当时数据库版本不支持 Online DDL。

索引没走对(走了主键全表扫描)

常见于 order by id limit 场景,就算 where 条件里的字段有索引还是有可能走全表扫描。可以通过 IGNORE INDEX(PRIMARY),FORCE INDEX(idx_xxx) 等方式来解决。

深分页

数据量大时深分页引发慢 SQL 也是个常见的经典问题。解法可以是使用 NexToken 或者叫游标的方式查询,目前阿里云有很多 OpenAPI 已经提供了 NextToken 的查询方式。- 故障案例:某账号(数据量巨大)调用某查询接口分页查询引发慢 SQL 导致数据库连接池满进而导致 Dubbo 线程池满无法对外服务,紧急限流该账号对该接口的调用后恢复。

调用量大

故障案例1:故障恢复后,短时间重试待处理任务到单机执行,量太大导致单机线程池满导致服务受损。

故障案例2:压测未预热,直接一次性并发到压测值导致线程池满,导致数据库有很多事务等待的慢 SQL。

其他

故障案例:查询没加 Limit 导致应用 Full GC- 该 Case 不涉及线程池满问题,但笔者觉得有一定的代表性因此也分享下。不管是查询还是删除还是更新数据,不管是代码还是日常的 SQL 订正,建议都增加 Limit 来兜底保护自己,缩小影响面。

技术视角

线程池类的故障,一般都是某个地方慢了堵了,从技术角度大多是:

  1. 远程调用 IO 慢导致耗时增加;
  2. 计算密集型应用 CPU 飙升导致耗时增加;
  3. 自定义业务线程池满造成排队等待导致耗时增加;

其中 2 不算常见,笔者也遇到过,发生于某 CPU 密集运算的应用系统,突增的高并发请求引起 CPU 100%;其中 1 比较常见,一般远程调用有:Dubbo、Http、DB、Redis,这些实践中都会使用连接池来与远程服务交互,凡是连接池都是有共性的,有两个需要关注的点:

下面列一下各个连接池需要关注的点。

Dubbo 线程池

  1. 线程池做好隔离,避免互相影响
    • 如内部运维接口和对外服务的接口做隔离。
    • 对外服务里核心接口和非核心接口做隔离。
  2. Dubbo consumer 侧设置 timeout,根据 fast-fail 理念设置的越小越好;provider 侧的 timeout 仅仅是起到声明的效果供 consumer 参考,无实际超时杀线程的作用。

Http 连接池

  1. 设置 ConnectTimeout、SocketTimeout、ConnectionRequestTimeout
    • 故障案例:某次发布的代码引入了一个 SDK,该 SDK 集成了 HttpClient,但并没有设置 ConnectionTimeout,在某次网络抖动发生时,Http 连接池被迅速打满,进而导致业务线程池满导致服务受损。
  2. DefaultMaxPerRoute 太小也容易导致阻塞。
    • 故障案例:某 SDK 默认设置的 128,在某次压测中发现客户端耗时较高,但服务端耗时并无波动,排查后怀疑是 DefaultMaxPerRoute 太小导致的阻塞,调大后问题解决。

数据库连接池 Druid

  1. 设置 ConnectTimeout、SocketTimeout。
    • 故障案例:凌晨 1 点多收到 API 成功率降低报警,排查发现部分 SQL 执行超时,原因是数据库发生了主备切换,进一步排查发现应用侧对数据库连接池没有设置 SocketTimeout 导致切换前的老的连接不会被超时 Kill 导致相关 SQL 执行超时,直到 900秒系统默认超时后才会断开连接再次重连。
  2. 设置 TransactionTimeout 即事务超时时间,事务就是一把锁,超时时间越长锁越久,导致不在事务里的相关 SQL 锁等待导致性能差。
    • 故障案例:在某次变更时由于代码有 bug 导致事务未提交,同时由于事务没设置超时时间,导致大量相关 SQL 超时服务受损。
  3. 设置 Ibatis 的 defaultStatementTimeout、queryTimeout。4、设置 MaxWait:获取新连接的等待超时时间。
    • 小插曲:之前 Druid 默认设置的 60 秒,后来笔者与作者有过沟通反馈这个默认值太长容易坑大家,后来发现已经改为了 6 秒[1]

自定义线程池

  1. 线程池设置的队列过长容易造成阻塞影响吞吐。
  2. future.get,默认没有超时时间,需显式传入。
    • 故障案例:Dubbo 线程池满报警,排查后发现是业务代码里使用了 future.get 没有设置超时时间,同时线程池的拒绝策略设置的是 DiscardPolicy,会导致在线程池满后新的任务被丢弃时 future.get 阻塞,进而导致 Dubbo 线程池满服务受损。

Redis连接池

  1. 设置 Jedis pool MaxWait,与 Druid 的 MaxWait 类似,也与 Http 连接池的 ConnectionRequestTimeout 类似。
  2. 设置 ConnectionTimeout、SocketTimeout,与 Druid/Http 连接池的类似。

总结

fast-fail 理念

  1. 本质上是不浪费系统资源,一些超时时间设置过长其实是在做无效的 IO 等待。
  2. 有一些个人的经验值贴一下:ConnectionTimeout 建议1-3 秒最佳,最大不超过 5 秒。SocketTimeout 根据业务请求时间情况设置建议最大不超过 10 秒,MaxWait/ConnectionTimeout 建议 3~5 秒,最大不超过 6 秒。

保护好自己:流控/背压

  1. 数据库后台运维平台设置自动限流,紧急情况下收到预警后第一时间手动执行限流。
  2. 实现 单机维度、集群维度(Region/AZ)、用户维度、接口维度 流控。
  3. 消息中间件拉取消息的 Client 实现背压机制。

谨慎重试

Retry 会加速系统雪崩,AWS 有一篇博客介绍了相关的经验,https://aws.amazon.com/cn/builders-library/timeouts-retries-and-backoff-with-jitter/?did=ba_card&trk=ba_card。核心要点如下:

最后,本文有很多血淋淋的教训,大多是常见问题,本文肯定有不全面的地方,欢迎评论区多多指教。

参考链接:

Copyright© 2013-2019

京ICP备2023019179号-2