/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/rand.h>
#include <stdio.h>
#include <gtest/gtest.h>
#include <openssl/cpu.h>
#include <openssl/span.h>
#include "../fipsmodule/rand/internal.h"
#include "../test/abi_test.h"
#include "../test/test_util.h"
#if defined(OPENSSL_THREADS)
#include <array>
#include <thread>
#include <vector>
#endif
#if !defined(OPENSSL_WINDOWS)
#include <errno.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#endif
// These tests are, strictly speaking, flaky, but we use large enough buffers
// that the probability of failing when we should pass is negligible.
TEST(RandTest, NotObviouslyBroken) {
static const uint8_t kZeros[256] = {0};
uint8_t buf1[256], buf2[256];
RAND_bytes(buf1, sizeof(buf1));
RAND_bytes(buf2, sizeof(buf2));
EXPECT_NE(Bytes(buf1), Bytes(buf2));
EXPECT_NE(Bytes(buf1), Bytes(kZeros));
EXPECT_NE(Bytes(buf2), Bytes(kZeros));
}
#if !defined(OPENSSL_WINDOWS) && !defined(OPENSSL_IOS) && \
!defined(OPENSSL_FUCHSIA) && !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
static bool ForkAndRand(bssl::Span<uint8_t> out) {
int pipefds[2];
if (pipe(pipefds) < 0) {
perror("pipe");
return false;
}
// This is a multi-threaded process, but GTest does not run tests concurrently
// and there currently are no threads, so this should be safe.
pid_t child = fork();
if (child < 0) {
perror("fork");
close(pipefds[0]);
close(pipefds[1]);
return false;
}
if (child == 0) {
// This is the child. Generate entropy and write it to the parent.
close(pipefds[0]);
RAND_bytes(out.data(), out.size());
while (!out.empty()) {
ssize_t ret = write(pipefds[1], out.data(), out.size());
if (ret < 0) {
if (errno == EINTR) {
continue;
}
perror("write");
_exit(1);
}
out = out.subspan(static_cast<size_t>(ret));
}
_exit(0);
}
// This is the parent. Read the entropy from the child.
close(pipefds[1]);
while (!out.empty()) {
ssize_t ret = read(pipefds[0], out.data(), out.size());
if (ret <= 0) {
if (ret == 0) {
fprintf(stderr, "Unexpected EOF from child.\n");
} else {
if (errno == EINTR) {
continue;
}
perror("read");
}
close(pipefds[0]);
return false;
}
out = out.subspan(static_cast<size_t>(ret));
}
close(pipefds[0]);
// Wait for the child to exit.
int status;
if (waitpid(child, &status, 0) < 0) {
perror("waitpid");
return false;
}
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
fprintf(stderr, "Child did not exit cleanly.\n");
return false;
}
return true;
}
TEST(RandTest, Fork) {
static const uint8_t kZeros[16] = {0};
// Draw a little entropy to initialize any internal PRNG buffering.
uint8_t byte;
RAND_bytes(&byte, 1);
// Draw entropy in two child processes and the parent process. This test
// intentionally uses smaller buffers than the others, to minimize the chance
// of sneaking by with a large enough buffer that we've since reseeded from
// the OS.
uint8_t buf1[16], buf2[16], buf3[16];
ASSERT_TRUE(ForkAndRand(buf1));
ASSERT_TRUE(ForkAndRand(buf2));
RAND_bytes(buf3, sizeof(buf3));
// All should be different.
EXPECT_NE(Bytes(buf1), Bytes(buf2));
EXPECT_NE(Bytes(buf2), Bytes(buf3));
EXPECT_NE(Bytes(buf1), Bytes(buf3));
EXPECT_NE(Bytes(buf1), Bytes(kZeros));
EXPECT_NE(Bytes(buf2), Bytes(kZeros));
EXPECT_NE(Bytes(buf3), Bytes(kZeros));
}
#endif // !OPENSSL_WINDOWS && !OPENSSL_IOS &&
// !OPENSSL_FUCHSIA && !BORINGSSL_UNSAFE_DETERMINISTIC_MODE
#if defined(OPENSSL_THREADS)
static void RunConcurrentRands(size_t num_threads) {
static const uint8_t kZeros[256] = {0};
std::vector<std::array<uint8_t, 256>> bufs(num_threads);
std::vector<std::thread> threads(num_threads);
for (size_t i = 0; i < num_threads; i++) {
threads[i] =
std::thread([i, &bufs] { RAND_bytes(bufs[i].data(), bufs[i].size()); });
}
for (size_t i = 0; i < num_threads; i++) {
threads[i].join();
}
for (size_t i = 0; i < num_threads; i++) {
EXPECT_NE(Bytes(bufs[i]), Bytes(kZeros));
for (size_t j = i + 1; j < num_threads; j++) {
EXPECT_NE(Bytes(bufs[i]), Bytes(bufs[j]));
}
}
}
// Test that threads may concurrently draw entropy without tripping TSan.
TEST(RandTest, Threads) {
constexpr size_t kFewerThreads = 10;
constexpr size_t kMoreThreads = 20;
// Draw entropy in parallel.
RunConcurrentRands(kFewerThreads);
// Draw entropy in parallel with higher concurrency than the previous maximum.
RunConcurrentRands(kMoreThreads);
// Draw entropy in parallel with lower concurrency than the previous maximum.
RunConcurrentRands(kFewerThreads);
}
#endif // OPENSSL_THREADS
#if defined(OPENSSL_X86_64) && defined(SUPPORTS_ABI_TEST)
TEST(RandTest, RdrandABI) {
if (!have_rdrand()) {
fprintf(stderr, "rdrand not supported. Skipping.\n");
return;
}
uint8_t buf[32];
CHECK_ABI_SEH(CRYPTO_rdrand, buf);
CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, nullptr, 0);
CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 8);
CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 16);
CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 24);
CHECK_ABI_SEH(CRYPTO_rdrand_multiple8_buf, buf, 32);
}
#endif // OPENSSL_X86_64 && SUPPORTS_ABI_TEST