//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <unordered_map>
// template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>,
// class Alloc = allocator<pair<const Key, T>>>
// class unordered_multimap
// void rehash(size_type n);
#include <unordered_map>
#include <string>
#include <set>
#include <cassert>
#include <cfloat>
#include <cmath>
#include <cstddef>
#include "test_macros.h"
#include "min_allocator.h"
template <class C>
void rehash_postcondition(const C& c, size_t n)
{
assert(c.bucket_count() >= c.size() / c.max_load_factor() && c.bucket_count() >= n);
}
template <class C>
void test(const C& c)
{
assert(c.size() == 6);
typedef std::pair<typename C::const_iterator, typename C::const_iterator> Eq;
Eq eq = c.equal_range(1);
assert(std::distance(eq.first, eq.second) == 2);
typename C::const_iterator i = eq.first;
{
std::set<std::string> s;
s.insert("one");
s.insert("four");
for ( int n = 0; n < 2; ++n )
{
assert(i->first == 1);
assert(s.find(i->second) != s.end());
s.erase(s.find(i->second));
++i;
}
}
eq = c.equal_range(2);
assert(std::distance(eq.first, eq.second) == 2);
i = eq.first;
{
std::set<std::string> s;
s.insert("two");
s.insert("four");
for ( int n = 0; n < 2; ++n )
{
assert(i->first == 2);
assert(s.find(i->second) != s.end());
s.erase(s.find(i->second));
++i;
}
}
eq = c.equal_range(3);
assert(std::distance(eq.first, eq.second) == 1);
i = eq.first;
assert(i->first == 3);
assert(i->second == "three");
eq = c.equal_range(4);
assert(std::distance(eq.first, eq.second) == 1);
i = eq.first;
assert(i->first == 4);
assert(i->second == "four");
assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size());
assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size());
assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON);
}
int main()
{
{
typedef std::unordered_multimap<int, std::string> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(1, "one"),
P(2, "two"),
P(3, "three"),
P(4, "four"),
P(1, "four"),
P(2, "four"),
};
C c(a, a + sizeof(a)/sizeof(a[0]));
test(c);
assert(c.bucket_count() >= 7);
c.rehash(3);
rehash_postcondition(c, 3);
LIBCPP_ASSERT(c.bucket_count() == 7);
test(c);
c.max_load_factor(2);
c.rehash(3);
rehash_postcondition(c, 3);
LIBCPP_ASSERT(c.bucket_count() == 3);
test(c);
c.rehash(31);
rehash_postcondition(c, 31);
LIBCPP_ASSERT(c.bucket_count() == 31);
test(c);
}
#if TEST_STD_VER >= 11
{
typedef std::unordered_multimap<int, std::string, std::hash<int>, std::equal_to<int>,
min_allocator<std::pair<const int, std::string>>> C;
typedef std::pair<int, std::string> P;
P a[] =
{
P(1, "one"),
P(2, "two"),
P(3, "three"),
P(4, "four"),
P(1, "four"),
P(2, "four"),
};
C c(a, a + sizeof(a)/sizeof(a[0]));
test(c);
assert(c.bucket_count() >= 7);
c.rehash(3);
rehash_postcondition(c, 3);
LIBCPP_ASSERT(c.bucket_count() == 7);
test(c);
c.max_load_factor(2);
c.rehash(3);
rehash_postcondition(c, 3);
LIBCPP_ASSERT(c.bucket_count() == 3);
test(c);
c.rehash(31);
rehash_postcondition(c, 31);
LIBCPP_ASSERT(c.bucket_count() == 31);
test(c);
}
#endif
}