//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: libcpp-no-exceptions
// UNSUPPORTED: libcpp-has-no-threads
// <condition_variable>
// class condition_variable_any;
// RUN: %build
// RUN: %run 1
// RUN: %run 2
// RUN: %run 3
// RUN: %run 4
// RUN: %run 5
// RUN: %run 6
// -----------------------------------------------------------------------------
// Overview
// Check that std::terminate is called if wait(...) fails to meet its post
// conditions. This can happen when reacquiring the mutex throws
// an exception.
//
// The following methods are tested within this file
// 1. void wait(Lock& lock);
// 2. void wait(Lock& lock, Pred);
// 3. void wait_for(Lock& lock, Duration);
// 4. void wait_for(Lock& lock, Duration, Pred);
// 5. void wait_until(Lock& lock, TimePoint);
// 6. void wait_until(Lock& lock, TimePoint, Pred);
//
// Plan
// 1 Create a mutex type, 'ThrowingMutex', that throws when the lock is acquired
// for the *second* time.
//
// 2 Replace the terminate handler with one that exits with a '0' exit code.
//
// 3 Create a 'condition_variable_any' object 'cv' and a 'ThrowingMutex'
// object 'm' and lock 'm'.
//
// 4 Start a thread 'T2' that will notify 'cv' once 'm' has been unlocked.
//
// 5 From the main thread call the specified wait method on 'cv' with 'm'.
// When 'T2' notifies 'cv' and the wait method attempts to re-lock
// 'm' an exception will be thrown from 'm.lock()'.
//
// 6 Check that control flow does not return from the wait method and that
// terminate is called (If the program exits with a 0 exit code we know
// that terminate has been called)
#include <condition_variable>
#include <atomic>
#include <thread>
#include <chrono>
#include <string>
#include <cstdlib>
#include <cassert>
void my_terminate() {
std::_Exit(0); // Use _Exit to prevent cleanup from taking place.
}
// The predicate used in the cv.wait calls.
bool pred = false;
bool pred_function() {
return pred == true;
}
class ThrowingMutex
{
std::atomic_bool locked;
unsigned state = 0;
ThrowingMutex(const ThrowingMutex&) = delete;
ThrowingMutex& operator=(const ThrowingMutex&) = delete;
public:
ThrowingMutex() {
locked = false;
}
~ThrowingMutex() = default;
void lock() {
locked = true;
if (++state == 2) {
assert(pred); // Check that we actually waited until we were signaled.
throw 1; // this throw should end up calling terminate()
}
}
void unlock() { locked = false; }
bool isLocked() const { return locked == true; }
};
ThrowingMutex mut;
std::condition_variable_any cv;
void signal_me() {
while (mut.isLocked()) {} // wait until T1 releases mut inside the cv.wait call.
pred = true;
cv.notify_one();
}
typedef std::chrono::system_clock Clock;
typedef std::chrono::milliseconds MS;
int main(int argc, char** argv) {
assert(argc == 2);
int id = std::stoi(argv[1]);
assert(id >= 1 && id <= 6);
std::set_terminate(my_terminate); // set terminate after std::stoi because it can throw.
MS wait(250);
try {
mut.lock();
assert(pred == false);
std::thread(signal_me).detach();
switch (id) {
case 1: cv.wait(mut); break;
case 2: cv.wait(mut, pred_function); break;
case 3: cv.wait_for(mut, wait); break;
case 4: cv.wait_for(mut, wait, pred_function); break;
case 5: cv.wait_until(mut, Clock::now() + wait); break;
case 6: cv.wait_until(mut, Clock::now() + wait, pred_function); break;
default: assert(false);
}
} catch (...) {}
assert(false);
}