/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "glsl_parser_extras.h"
#include "ir.h"
#include "ir_uniform.h"
#include "linker.h"
#include "main/macros.h"
namespace {
/*
* Atomic counter uniform as seen by the program.
*/
struct active_atomic_counter_uniform {
unsigned uniform_loc;
ir_variable *var;
};
/*
* Atomic counter buffer referenced by the program. There is a one
* to one correspondence between these and the objects that can be
* queried using glGetActiveAtomicCounterBufferiv().
*/
struct active_atomic_buffer {
active_atomic_buffer()
: uniforms(0), num_uniforms(0), stage_counter_references(), size(0)
{}
~active_atomic_buffer()
{
free(uniforms);
}
void push_back(unsigned uniform_loc, ir_variable *var)
{
active_atomic_counter_uniform *new_uniforms;
new_uniforms = (active_atomic_counter_uniform *)
realloc(uniforms, sizeof(active_atomic_counter_uniform) *
(num_uniforms + 1));
if (new_uniforms == NULL) {
_mesa_error_no_memory(__func__);
return;
}
uniforms = new_uniforms;
uniforms[num_uniforms].uniform_loc = uniform_loc;
uniforms[num_uniforms].var = var;
num_uniforms++;
}
active_atomic_counter_uniform *uniforms;
unsigned num_uniforms;
unsigned stage_counter_references[MESA_SHADER_STAGES];
unsigned size;
};
int
cmp_actives(const void *a, const void *b)
{
const active_atomic_counter_uniform *const first = (active_atomic_counter_uniform *) a;
const active_atomic_counter_uniform *const second = (active_atomic_counter_uniform *) b;
return int(first->var->data.offset) - int(second->var->data.offset);
}
bool
check_atomic_counters_overlap(const ir_variable *x, const ir_variable *y)
{
return ((x->data.offset >= y->data.offset &&
x->data.offset < y->data.offset + y->type->atomic_size()) ||
(y->data.offset >= x->data.offset &&
y->data.offset < x->data.offset + x->type->atomic_size()));
}
void
process_atomic_variable(const glsl_type *t, struct gl_shader_program *prog,
unsigned *uniform_loc, ir_variable *var,
active_atomic_buffer *const buffers,
unsigned *num_buffers, int *offset,
const unsigned shader_stage)
{
/* FIXME: Arrays of arrays get counted separately. For example:
* x1[3][3][2] = 9 uniforms, 18 atomic counters
* x2[3][2] = 3 uniforms, 6 atomic counters
* x3[2] = 1 uniform, 2 atomic counters
*
* However this code marks all the counters as active even when they
* might not be used.
*/
if (t->is_array() && t->fields.array->is_array()) {
for (unsigned i = 0; i < t->length; i++) {
process_atomic_variable(t->fields.array, prog, uniform_loc,
var, buffers, num_buffers, offset,
shader_stage);
}
} else {
active_atomic_buffer *buf = &buffers[var->data.binding];
gl_uniform_storage *const storage =
&prog->data->UniformStorage[*uniform_loc];
/* If this is the first time the buffer is used, increment
* the counter of buffers used.
*/
if (buf->size == 0)
(*num_buffers)++;
buf->push_back(*uniform_loc, var);
/* When checking for atomic counters we should count every member in
* an array as an atomic counter reference.
*/
if (t->is_array())
buf->stage_counter_references[shader_stage] += t->length;
else
buf->stage_counter_references[shader_stage]++;
buf->size = MAX2(buf->size, *offset + t->atomic_size());
storage->offset = *offset;
*offset += t->atomic_size();
(*uniform_loc)++;
}
}
active_atomic_buffer *
find_active_atomic_counters(struct gl_context *ctx,
struct gl_shader_program *prog,
unsigned *num_buffers)
{
active_atomic_buffer *const buffers =
new active_atomic_buffer[ctx->Const.MaxAtomicBufferBindings];
*num_buffers = 0;
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh == NULL)
continue;
foreach_in_list(ir_instruction, node, sh->ir) {
ir_variable *var = node->as_variable();
if (var && var->type->contains_atomic()) {
int offset = var->data.offset;
unsigned uniform_loc = var->data.location;
process_atomic_variable(var->type, prog, &uniform_loc,
var, buffers, num_buffers, &offset, i);
}
}
}
for (unsigned i = 0; i < ctx->Const.MaxAtomicBufferBindings; i++) {
if (buffers[i].size == 0)
continue;
qsort(buffers[i].uniforms, buffers[i].num_uniforms,
sizeof(active_atomic_counter_uniform),
cmp_actives);
for (unsigned j = 1; j < buffers[i].num_uniforms; j++) {
/* If an overlapping counter found, it must be a reference to the
* same counter from a different shader stage.
*/
if (check_atomic_counters_overlap(buffers[i].uniforms[j-1].var,
buffers[i].uniforms[j].var)
&& strcmp(buffers[i].uniforms[j-1].var->name,
buffers[i].uniforms[j].var->name) != 0) {
linker_error(prog, "Atomic counter %s declared at offset %d "
"which is already in use.",
buffers[i].uniforms[j].var->name,
buffers[i].uniforms[j].var->data.offset);
}
}
}
return buffers;
}
}
void
link_assign_atomic_counter_resources(struct gl_context *ctx,
struct gl_shader_program *prog)
{
unsigned num_buffers;
unsigned num_atomic_buffers[MESA_SHADER_STAGES] = {};
active_atomic_buffer *abs =
find_active_atomic_counters(ctx, prog, &num_buffers);
prog->data->AtomicBuffers = rzalloc_array(prog->data, gl_active_atomic_buffer,
num_buffers);
prog->data->NumAtomicBuffers = num_buffers;
unsigned i = 0;
for (unsigned binding = 0;
binding < ctx->Const.MaxAtomicBufferBindings;
binding++) {
/* If the binding was not used, skip.
*/
if (abs[binding].size == 0)
continue;
active_atomic_buffer &ab = abs[binding];
gl_active_atomic_buffer &mab = prog->data->AtomicBuffers[i];
/* Assign buffer-specific fields. */
mab.Binding = binding;
mab.MinimumSize = ab.size;
mab.Uniforms = rzalloc_array(prog->data->AtomicBuffers, GLuint,
ab.num_uniforms);
mab.NumUniforms = ab.num_uniforms;
/* Assign counter-specific fields. */
for (unsigned j = 0; j < ab.num_uniforms; j++) {
ir_variable *const var = ab.uniforms[j].var;
gl_uniform_storage *const storage =
&prog->data->UniformStorage[ab.uniforms[j].uniform_loc];
mab.Uniforms[j] = ab.uniforms[j].uniform_loc;
if (!var->data.explicit_binding)
var->data.binding = i;
storage->atomic_buffer_index = i;
storage->offset = var->data.offset;
storage->array_stride = (var->type->is_array() ?
var->type->without_array()->atomic_size() : 0);
if (!var->type->is_matrix())
storage->matrix_stride = 0;
}
/* Assign stage-specific fields. */
for (unsigned j = 0; j < MESA_SHADER_STAGES; ++j) {
if (ab.stage_counter_references[j]) {
mab.StageReferences[j] = GL_TRUE;
num_atomic_buffers[j]++;
} else {
mab.StageReferences[j] = GL_FALSE;
}
}
i++;
}
/* Store a list pointers to atomic buffers per stage and store the index
* to the intra-stage buffer list in uniform storage.
*/
for (unsigned j = 0; j < MESA_SHADER_STAGES; ++j) {
if (prog->_LinkedShaders[j] && num_atomic_buffers[j] > 0) {
struct gl_program *gl_prog = prog->_LinkedShaders[j]->Program;
gl_prog->info.num_abos = num_atomic_buffers[j];
gl_prog->sh.AtomicBuffers =
rzalloc_array(gl_prog, gl_active_atomic_buffer *,
num_atomic_buffers[j]);
unsigned intra_stage_idx = 0;
for (unsigned i = 0; i < num_buffers; i++) {
struct gl_active_atomic_buffer *atomic_buffer =
&prog->data->AtomicBuffers[i];
if (atomic_buffer->StageReferences[j]) {
gl_prog->sh.AtomicBuffers[intra_stage_idx] = atomic_buffer;
for (unsigned u = 0; u < atomic_buffer->NumUniforms; u++) {
prog->data->UniformStorage[atomic_buffer->Uniforms[u]].opaque[j].index =
intra_stage_idx;
prog->data->UniformStorage[atomic_buffer->Uniforms[u]].opaque[j].active =
true;
}
intra_stage_idx++;
}
}
}
}
delete [] abs;
assert(i == num_buffers);
}
void
link_check_atomic_counter_resources(struct gl_context *ctx,
struct gl_shader_program *prog)
{
unsigned num_buffers;
active_atomic_buffer *const abs =
find_active_atomic_counters(ctx, prog, &num_buffers);
unsigned atomic_counters[MESA_SHADER_STAGES] = {};
unsigned atomic_buffers[MESA_SHADER_STAGES] = {};
unsigned total_atomic_counters = 0;
unsigned total_atomic_buffers = 0;
/* Sum the required resources. Note that this counts buffers and
* counters referenced by several shader stages multiple times
* against the combined limit -- That's the behavior the spec
* requires.
*/
for (unsigned i = 0; i < ctx->Const.MaxAtomicBufferBindings; i++) {
if (abs[i].size == 0)
continue;
for (unsigned j = 0; j < MESA_SHADER_STAGES; ++j) {
const unsigned n = abs[i].stage_counter_references[j];
if (n) {
atomic_counters[j] += n;
total_atomic_counters += n;
atomic_buffers[j]++;
total_atomic_buffers++;
}
}
}
/* Check that they are within the supported limits. */
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (atomic_counters[i] > ctx->Const.Program[i].MaxAtomicCounters)
linker_error(prog, "Too many %s shader atomic counters",
_mesa_shader_stage_to_string(i));
if (atomic_buffers[i] > ctx->Const.Program[i].MaxAtomicBuffers)
linker_error(prog, "Too many %s shader atomic counter buffers",
_mesa_shader_stage_to_string(i));
}
if (total_atomic_counters > ctx->Const.MaxCombinedAtomicCounters)
linker_error(prog, "Too many combined atomic counters");
if (total_atomic_buffers > ctx->Const.MaxCombinedAtomicBuffers)
linker_error(prog, "Too many combined atomic buffers");
delete [] abs;
}