/* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_vec4.h"
#include "brw_cfg.h"
#include "brw_eu.h"
#include "common/gen_debug.h"
using namespace brw;
static void
generate_math1_gen4(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src)
{
gen4_math(p,
dst,
brw_math_function(inst->opcode),
inst->base_mrf,
src,
BRW_MATH_PRECISION_FULL);
}
static void
check_gen6_math_src_arg(struct brw_reg src)
{
/* Source swizzles are ignored. */
assert(!src.abs);
assert(!src.negate);
assert(src.swizzle == BRW_SWIZZLE_XYZW);
}
static void
generate_math_gen6(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
/* Can't do writemask because math can't be align16. */
assert(dst.writemask == WRITEMASK_XYZW);
/* Source swizzles are ignored. */
check_gen6_math_src_arg(src0);
if (src1.file == BRW_GENERAL_REGISTER_FILE)
check_gen6_math_src_arg(src1);
brw_set_default_access_mode(p, BRW_ALIGN_1);
gen6_math(p, dst, brw_math_function(inst->opcode), src0, src1);
brw_set_default_access_mode(p, BRW_ALIGN_16);
}
static void
generate_math2_gen4(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
/* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
* "Message Payload":
*
* "Operand0[7]. For the INT DIV functions, this operand is the
* denominator."
* ...
* "Operand1[7]. For the INT DIV functions, this operand is the
* numerator."
*/
bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
struct brw_reg &op0 = is_int_div ? src1 : src0;
struct brw_reg &op1 = is_int_div ? src0 : src1;
brw_push_insn_state(p);
brw_set_default_saturate(p, false);
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1);
brw_pop_insn_state(p);
gen4_math(p,
dst,
brw_math_function(inst->opcode),
inst->base_mrf,
op0,
BRW_MATH_PRECISION_FULL);
}
static void
generate_tex(struct brw_codegen *p,
struct brw_vue_prog_data *prog_data,
gl_shader_stage stage,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src,
struct brw_reg surface_index,
struct brw_reg sampler_index)
{
const struct gen_device_info *devinfo = p->devinfo;
int msg_type = -1;
if (devinfo->gen >= 5) {
switch (inst->opcode) {
case SHADER_OPCODE_TEX:
case SHADER_OPCODE_TXL:
if (inst->shadow_compare) {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
}
break;
case SHADER_OPCODE_TXD:
if (inst->shadow_compare) {
/* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */
assert(devinfo->gen >= 8 || devinfo->is_haswell);
msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
}
break;
case SHADER_OPCODE_TXF:
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
break;
case SHADER_OPCODE_TXF_CMS_W:
assert(devinfo->gen >= 9);
msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
break;
case SHADER_OPCODE_TXF_CMS:
if (devinfo->gen >= 7)
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
else
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
break;
case SHADER_OPCODE_TXF_MCS:
assert(devinfo->gen >= 7);
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
break;
case SHADER_OPCODE_TXS:
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
break;
case SHADER_OPCODE_TG4:
if (inst->shadow_compare) {
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
} else {
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
}
break;
case SHADER_OPCODE_TG4_OFFSET:
if (inst->shadow_compare) {
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
} else {
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
}
break;
case SHADER_OPCODE_SAMPLEINFO:
msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
break;
default:
unreachable("should not get here: invalid vec4 texture opcode");
}
} else {
switch (inst->opcode) {
case SHADER_OPCODE_TEX:
case SHADER_OPCODE_TXL:
if (inst->shadow_compare) {
msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
assert(inst->mlen == 3);
} else {
msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
assert(inst->mlen == 2);
}
break;
case SHADER_OPCODE_TXD:
/* There is no sample_d_c message; comparisons are done manually. */
msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
assert(inst->mlen == 4);
break;
case SHADER_OPCODE_TXF:
msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
assert(inst->mlen == 2);
break;
case SHADER_OPCODE_TXS:
msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
assert(inst->mlen == 2);
break;
default:
unreachable("should not get here: invalid vec4 texture opcode");
}
}
assert(msg_type != -1);
assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
/* Load the message header if present. If there's a texture offset, we need
* to set it up explicitly and load the offset bitfield. Otherwise, we can
* use an implied move from g0 to the first message register.
*/
if (inst->header_size != 0) {
if (devinfo->gen < 6 && !inst->offset) {
/* Set up an implied move from g0 to the MRF. */
src = brw_vec8_grf(0, 0);
} else {
struct brw_reg header =
retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
uint32_t dw2 = 0;
/* Explicitly set up the message header by copying g0 to the MRF. */
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
brw_set_default_access_mode(p, BRW_ALIGN_1);
if (inst->offset)
/* Set the texel offset bits in DWord 2. */
dw2 = inst->offset;
if (devinfo->gen >= 9)
/* SKL+ overloads BRW_SAMPLER_SIMD_MODE_SIMD4X2 to also do SIMD8D,
* based on bit 22 in the header.
*/
dw2 |= GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2;
/* The VS, DS, and FS stages have the g0.2 payload delivered as 0,
* so header0.2 is 0 when g0 is copied. The HS and GS stages do
* not, so we must set to to 0 to avoid setting undesirable bits
* in the message header.
*/
if (dw2 ||
stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_GEOMETRY) {
brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2));
}
brw_adjust_sampler_state_pointer(p, header, sampler_index);
brw_pop_insn_state(p);
}
}
uint32_t return_format;
switch (dst.type) {
case BRW_REGISTER_TYPE_D:
return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
break;
case BRW_REGISTER_TYPE_UD:
return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
break;
default:
return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
break;
}
uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
inst->opcode == SHADER_OPCODE_TG4_OFFSET)
? prog_data->base.binding_table.gather_texture_start
: prog_data->base.binding_table.texture_start;
if (surface_index.file == BRW_IMMEDIATE_VALUE &&
sampler_index.file == BRW_IMMEDIATE_VALUE) {
uint32_t surface = surface_index.ud;
uint32_t sampler = sampler_index.ud;
brw_SAMPLE(p,
dst,
inst->base_mrf,
src,
surface + base_binding_table_index,
sampler % 16,
msg_type,
1, /* response length */
inst->mlen,
inst->header_size != 0,
BRW_SAMPLER_SIMD_MODE_SIMD4X2,
return_format);
brw_mark_surface_used(&prog_data->base, sampler + base_binding_table_index);
} else {
/* Non-constant sampler index. */
struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_access_mode(p, BRW_ALIGN_1);
if (brw_regs_equal(&surface_reg, &sampler_reg)) {
brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
} else {
if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
} else {
brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
brw_OR(p, addr, addr, surface_reg);
}
}
if (base_binding_table_index)
brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
brw_AND(p, addr, addr, brw_imm_ud(0xfff));
brw_pop_insn_state(p);
if (inst->base_mrf != -1)
gen6_resolve_implied_move(p, &src, inst->base_mrf);
/* dst = send(offset, a0.0 | <descriptor>) */
brw_inst *insn = brw_send_indirect_message(
p, BRW_SFID_SAMPLER, dst, src, addr);
brw_set_sampler_message(p, insn,
0 /* surface */,
0 /* sampler */,
msg_type,
1 /* rlen */,
inst->mlen /* mlen */,
inst->header_size != 0 /* header */,
BRW_SAMPLER_SIMD_MODE_SIMD4X2,
return_format);
/* visitor knows more than we do about the surface limit required,
* so has already done marking.
*/
}
}
static void
generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
{
brw_urb_WRITE(p,
brw_null_reg(), /* dest */
inst->base_mrf, /* starting mrf reg nr */
brw_vec8_grf(0, 0), /* src */
inst->urb_write_flags,
inst->mlen,
0, /* response len */
inst->offset, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
}
static void
generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
{
struct brw_reg src = brw_message_reg(inst->base_mrf);
brw_urb_WRITE(p,
brw_null_reg(), /* dest */
inst->base_mrf, /* starting mrf reg nr */
src,
inst->urb_write_flags,
inst->mlen,
0, /* response len */
inst->offset, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
}
static void
generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst)
{
struct brw_reg src = brw_message_reg(inst->base_mrf);
/* We pass the temporary passed in src0 as the writeback register */
brw_urb_WRITE(p,
inst->src[0].as_brw_reg(), /* dest */
inst->base_mrf, /* starting mrf reg nr */
src,
BRW_URB_WRITE_ALLOCATE_COMPLETE,
inst->mlen,
1, /* response len */
inst->offset, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
/* Now put allocated urb handle in dst.0 */
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0),
get_element_ud(inst->src[0].as_brw_reg(), 0));
brw_pop_insn_state(p);
}
static void
generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
{
struct brw_reg src = brw_message_reg(inst->base_mrf);
brw_urb_WRITE(p,
brw_null_reg(), /* dest */
inst->base_mrf, /* starting mrf reg nr */
src,
BRW_URB_WRITE_EOT | inst->urb_write_flags,
inst->mlen,
0, /* response len */
0, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
}
static void
generate_gs_set_write_offset(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
/* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
* Header: M0.3):
*
* Slot 0 Offset. This field, after adding to the Global Offset field
* in the message descriptor, specifies the offset (in 256-bit units)
* from the start of the URB entry, as referenced by URB Handle 0, at
* which the data will be accessed.
*
* Similar text describes DWORD M0.4, which is slot 1 offset.
*
* Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components
* of the register for geometry shader invocations 0 and 1) by the
* immediate value in src1, and store the result in DWORDs 3 and 4 of dst.
*
* We can do this with the following EU instruction:
*
* mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW { Align1 WE_all }
*/
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
assert(p->devinfo->gen >= 7 &&
src1.file == BRW_IMMEDIATE_VALUE &&
src1.type == BRW_REGISTER_TYPE_UD &&
src1.ud <= USHRT_MAX);
if (src0.file == BRW_IMMEDIATE_VALUE) {
brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3),
brw_imm_ud(src0.ud * src1.ud));
} else {
brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4),
retype(src1, BRW_REGISTER_TYPE_UW));
}
brw_pop_insn_state(p);
}
static void
generate_gs_set_vertex_count(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg src)
{
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
if (p->devinfo->gen >= 8) {
/* Move the vertex count into the second MRF for the EOT write. */
brw_MOV(p, retype(brw_message_reg(dst.nr + 1), BRW_REGISTER_TYPE_UD),
src);
} else {
/* If we think of the src and dst registers as composed of 8 DWORDs each,
* we want to pick up the contents of DWORDs 0 and 4 from src, truncate
* them to WORDs, and then pack them into DWORD 2 of dst.
*
* It's easier to get the EU to do this if we think of the src and dst
* registers as composed of 16 WORDS each; then, we want to pick up the
* contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5
* of dst.
*
* We can do that by the following EU instruction:
*
* mov (2) dst.4<1>:uw src<8;1,0>:uw { Align1, Q1, NoMask }
*/
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p,
suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4),
stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0));
}
brw_pop_insn_state(p);
}
static void
generate_gs_svb_write(struct brw_codegen *p,
struct brw_vue_prog_data *prog_data,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
int binding = inst->sol_binding;
bool final_write = inst->sol_final_write;
brw_push_insn_state(p);
brw_set_default_exec_size(p, BRW_EXECUTE_4);
/* Copy Vertex data into M0.x */
brw_MOV(p, stride(dst, 4, 4, 1),
stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1));
brw_pop_insn_state(p);
brw_push_insn_state(p);
/* Send SVB Write */
brw_svb_write(p,
final_write ? src1 : brw_null_reg(), /* dest == src1 */
1, /* msg_reg_nr */
dst, /* src0 == previous dst */
BRW_GEN6_SOL_BINDING_START + binding, /* binding_table_index */
final_write); /* send_commit_msg */
/* Finally, wait for the write commit to occur so that we can proceed to
* other things safely.
*
* From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
*
* The write commit does not modify the destination register, but
* merely clears the dependency associated with the destination
* register. Thus, a simple “mov” instruction using the register as a
* source is sufficient to wait for the write commit to occur.
*/
if (final_write) {
brw_MOV(p, src1, src1);
}
brw_pop_insn_state(p);
}
static void
generate_gs_svb_set_destination_index(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src)
{
int vertex = inst->sol_vertex;
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex));
brw_pop_insn_state(p);
}
static void
generate_gs_set_dword_2(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg src)
{
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0));
brw_pop_insn_state(p);
}
static void
generate_gs_prepare_channel_masks(struct brw_codegen *p,
struct brw_reg dst)
{
/* We want to left shift just DWORD 4 (the x component belonging to the
* second geometry shader invocation) by 4 bits. So generate the
* instruction:
*
* shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all }
*/
dst = suboffset(vec1(dst), 4);
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_SHL(p, dst, dst, brw_imm_ud(4));
brw_pop_insn_state(p);
}
static void
generate_gs_set_channel_masks(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg src)
{
/* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
* Header: M0.5):
*
* 15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
*
* When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
* DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
* Vertex 0 DATA[7]. This bit is ANDed with the corresponding
* channel enable to determine the final channel enable. For the
* URB_READ_OWORD & URB_READ_HWORD messages, when final channel
* enable is 1 it indicates that Vertex 1 DATA [3] will be included
* in the writeback message. For the URB_WRITE_OWORD &
* URB_WRITE_HWORD messages, when final channel enable is 1 it
* indicates that Vertex 1 DATA [3] will be written to the surface.
*
* 0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
* 1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
*
* 14 Vertex 1 DATA [2] Channel Mask
* 13 Vertex 1 DATA [1] Channel Mask
* 12 Vertex 1 DATA [0] Channel Mask
* 11 Vertex 0 DATA [3] Channel Mask
* 10 Vertex 0 DATA [2] Channel Mask
* 9 Vertex 0 DATA [1] Channel Mask
* 8 Vertex 0 DATA [0] Channel Mask
*
* (This is from a section of the PRM that is agnostic to the particular
* type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
* geometry shader invocations 0 and 1, respectively). Since we have the
* enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
* and the enable flags for geometry shader invocation 1 in bits 7:0 of
* DWORD 4, we just need to OR them together and store the result in bits
* 15:8 of DWORD 5.
*
* It's easier to get the EU to do this if we think of the src and dst
* registers as composed of 32 bytes each; then, we want to pick up the
* contents of bytes 0 and 16 from src, OR them together, and store them in
* byte 21.
*
* We can do that by the following EU instruction:
*
* or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
*
* Note: this relies on the source register having zeros in (a) bits 7:4 of
* DWORD 0 and (b) bits 3:0 of DWORD 4. We can rely on (b) because the
* source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
* shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
* the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
* contain valid channel mask values (which are in the range 0x0-0xf).
*/
dst = retype(dst, BRW_REGISTER_TYPE_UB);
src = retype(src, BRW_REGISTER_TYPE_UB);
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
brw_pop_insn_state(p);
}
static void
generate_gs_get_instance_id(struct brw_codegen *p,
struct brw_reg dst)
{
/* We want to right shift R0.0 & R0.1 by GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT
* and store into dst.0 & dst.4. So generate the instruction:
*
* shr(8) dst<1> R0<1,4,0> GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q }
*/
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
dst = retype(dst, BRW_REGISTER_TYPE_UD);
struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
brw_SHR(p, dst, stride(r0, 1, 4, 0),
brw_imm_ud(GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT));
brw_pop_insn_state(p);
}
static void
generate_gs_ff_sync_set_primitives(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1,
struct brw_reg src2)
{
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
/* Save src0 data in 16:31 bits of dst.0 */
brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0),
brw_imm_ud(0xffffu));
brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16));
/* Save src1 data in 0:15 bits of dst.0 */
brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0),
brw_imm_ud(0xffffu));
brw_OR(p, suboffset(vec1(dst), 0),
suboffset(vec1(dst), 0),
suboffset(vec1(src2), 0));
brw_pop_insn_state(p);
}
static void
generate_gs_ff_sync(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
/* This opcode uses an implied MRF register for:
* - the header of the ff_sync message. And as such it is expected to be
* initialized to r0 before calling here.
* - the destination where we will write the allocated URB handle.
*/
struct brw_reg header =
retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
/* Overwrite dword 0 of the header (SO vertices to write) and
* dword 1 (number of primitives written).
*/
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0));
brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0));
brw_pop_insn_state(p);
/* Allocate URB handle in dst */
brw_ff_sync(p,
dst,
0,
header,
1, /* allocate */
1, /* response length */
0 /* eot */);
/* Now put allocated urb handle in header.0 */
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0));
/* src1 is not an immediate when we use transform feedback */
if (src1.file != BRW_IMMEDIATE_VALUE) {
brw_set_default_exec_size(p, BRW_EXECUTE_4);
brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1));
}
brw_pop_insn_state(p);
}
static void
generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst)
{
/* In gen6, PrimitiveID is delivered in R0.1 of the payload */
struct brw_reg src = brw_vec8_grf(0, 0);
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1));
brw_pop_insn_state(p);
}
static void
generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst)
{
const struct gen_device_info *devinfo = p->devinfo;
const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
/* "Instance Count" comes as part of the payload in r0.2 bits 23:17.
*
* Since we operate in SIMD4x2 mode, we need run half as many threads
* as necessary. So we assign (2i + 1, 2i) as the thread counts. We
* shift right by one less to accomplish the multiplication by two.
*/
dst = retype(dst, BRW_REGISTER_TYPE_UD);
struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
const int shift = ivb ? 16 : 17;
brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask));
brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0),
brw_imm_ud(shift - 1));
brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1));
brw_pop_insn_state(p);
}
static void
generate_tcs_urb_write(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg urb_header)
{
const struct gen_device_info *devinfo = p->devinfo;
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, brw_null_reg());
brw_set_src0(p, send, urb_header);
brw_set_message_descriptor(p, send, BRW_SFID_URB,
inst->mlen /* mlen */, 0 /* rlen */,
true /* header */, false /* eot */);
brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD);
brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
if (inst->urb_write_flags & BRW_URB_WRITE_EOT) {
brw_inst_set_eot(devinfo, send, 1);
} else {
brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
}
/* what happens to swizzles? */
}
static void
generate_tcs_input_urb_offsets(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg vertex,
struct brw_reg offset)
{
/* Generates an URB read/write message header for HS/DS operation.
* Inputs are a vertex index, and a byte offset from the beginning of
* the vertex. */
/* If `vertex` is not an immediate, we clobber a0.0 */
assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE);
assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D);
assert(dst.file == BRW_GENERAL_REGISTER_FILE);
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, dst, brw_imm_ud(0));
/* m0.5 bits 8-15 are channel enables */
brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
/* m0.0-0.1: URB handles */
if (vertex.file == BRW_IMMEDIATE_VALUE) {
uint32_t vertex_index = vertex.ud;
struct brw_reg index_reg = brw_vec1_grf(
1 + (vertex_index >> 3), vertex_index & 7);
brw_MOV(p, vec2(get_element_ud(dst, 0)),
retype(index_reg, BRW_REGISTER_TYPE_UD));
} else {
/* Use indirect addressing. ICP Handles are DWords (single channels
* of a register) and start at g1.0.
*
* In order to start our region at g1.0, we add 8 to the vertex index,
* effectively skipping over the 8 channels in g0.0. This gives us a
* DWord offset to the ICP Handle.
*
* Indirect addressing works in terms of bytes, so we then multiply
* the DWord offset by 4 (by shifting left by 2).
*/
struct brw_reg addr = brw_address_reg(0);
/* bottom half: m0.0 = g[1.0 + vertex.0]UD */
brw_ADD(p, addr, retype(get_element_ud(vertex, 0), BRW_REGISTER_TYPE_UW),
brw_imm_uw(0x8));
brw_SHL(p, addr, addr, brw_imm_uw(2));
brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0));
/* top half: m0.1 = g[1.0 + vertex.4]UD */
brw_ADD(p, addr, retype(get_element_ud(vertex, 4), BRW_REGISTER_TYPE_UW),
brw_imm_uw(0x8));
brw_SHL(p, addr, addr, brw_imm_uw(2));
brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0));
}
/* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
if (offset.file != ARF)
brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
brw_pop_insn_state(p);
}
static void
generate_tcs_output_urb_offsets(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg write_mask,
struct brw_reg offset)
{
/* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */
assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE);
assert(write_mask.file == BRW_IMMEDIATE_VALUE);
assert(write_mask.type == BRW_REGISTER_TYPE_UD);
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, dst, brw_imm_ud(0));
unsigned mask = write_mask.ud;
/* m0.5 bits 15:12 and 11:8 are channel enables */
brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12)));
/* HS patch URB handle is delivered in r0.0 */
struct brw_reg urb_handle = brw_vec1_grf(0, 0);
/* m0.0-0.1: URB handles */
brw_MOV(p, vec2(get_element_ud(dst, 0)),
retype(urb_handle, BRW_REGISTER_TYPE_UD));
/* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
if (offset.file != ARF)
brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
brw_pop_insn_state(p);
}
static void
generate_tes_create_input_read_header(struct brw_codegen *p,
struct brw_reg dst)
{
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
/* Initialize the register to 0 */
brw_MOV(p, dst, brw_imm_ud(0));
/* Enable all the channels in m0.5 bits 15:8 */
brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
/* Copy g1.3 (the patch URB handle) to m0.0 and m0.1. For safety,
* mask out irrelevant "Reserved" bits, as they're not marked MBZ.
*/
brw_AND(p, vec2(get_element_ud(dst, 0)),
retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD),
brw_imm_ud(0x1fff));
brw_pop_insn_state(p);
}
static void
generate_tes_add_indirect_urb_offset(struct brw_codegen *p,
struct brw_reg dst,
struct brw_reg header,
struct brw_reg offset)
{
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, dst, header);
/* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */
brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
brw_pop_insn_state(p);
}
static void
generate_vec4_urb_read(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg header)
{
const struct gen_device_info *devinfo = p->devinfo;
assert(header.file == BRW_GENERAL_REGISTER_FILE);
assert(header.type == BRW_REGISTER_TYPE_UD);
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, dst);
brw_set_src0(p, send, header);
brw_set_message_descriptor(p, send, BRW_SFID_URB,
1 /* mlen */, 1 /* rlen */,
true /* header */, false /* eot */);
brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
}
static void
generate_tcs_release_input(struct brw_codegen *p,
struct brw_reg header,
struct brw_reg vertex,
struct brw_reg is_unpaired)
{
const struct gen_device_info *devinfo = p->devinfo;
assert(vertex.file == BRW_IMMEDIATE_VALUE);
assert(vertex.type == BRW_REGISTER_TYPE_UD);
/* m0.0-0.1: URB handles */
struct brw_reg urb_handles =
retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7),
BRW_REGISTER_TYPE_UD);
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, header, brw_imm_ud(0));
brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles);
brw_pop_insn_state(p);
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, brw_null_reg());
brw_set_src0(p, send, header);
brw_set_message_descriptor(p, send, BRW_SFID_URB,
1 /* mlen */, 0 /* rlen */,
true /* header */, false /* eot */);
brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
brw_inst_set_urb_complete(devinfo, send, 1);
brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ?
BRW_URB_SWIZZLE_NONE :
BRW_URB_SWIZZLE_INTERLEAVE);
}
static void
generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
{
struct brw_reg header = brw_message_reg(inst->base_mrf);
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, header, brw_imm_ud(0));
brw_MOV(p, get_element_ud(header, 5), brw_imm_ud(WRITEMASK_X << 8));
brw_MOV(p, get_element_ud(header, 0),
retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_imm_ud(0u));
brw_pop_insn_state(p);
brw_urb_WRITE(p,
brw_null_reg(), /* dest */
inst->base_mrf, /* starting mrf reg nr */
header,
BRW_URB_WRITE_EOT | BRW_URB_WRITE_OWORD |
BRW_URB_WRITE_USE_CHANNEL_MASKS,
inst->mlen,
0, /* response len */
0, /* urb destination offset */
0);
}
static void
generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
{
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D));
brw_pop_insn_state(p);
}
static void
generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
{
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
brw_pop_insn_state(p);
}
static void
generate_tcs_create_barrier_header(struct brw_codegen *p,
struct brw_vue_prog_data *prog_data,
struct brw_reg dst)
{
const struct gen_device_info *devinfo = p->devinfo;
const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
struct brw_reg m0_2 = get_element_ud(dst, 2);
unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances;
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
/* Zero the message header */
brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
/* Copy "Barrier ID" from r0.2, bits 16:13 (Gen7.5+) or 15:12 (Gen7) */
brw_AND(p, m0_2,
retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13)));
/* Shift it up to bits 27:24. */
brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11));
/* Set the Barrier Count and the enable bit */
brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15)));
brw_pop_insn_state(p);
}
static void
generate_oword_dual_block_offsets(struct brw_codegen *p,
struct brw_reg m1,
struct brw_reg index)
{
int second_vertex_offset;
if (p->devinfo->gen >= 6)
second_vertex_offset = 1;
else
second_vertex_offset = 16;
m1 = retype(m1, BRW_REGISTER_TYPE_D);
/* Set up M1 (message payload). Only the block offsets in M1.0 and
* M1.4 are used, and the rest are ignored.
*/
struct brw_reg m1_0 = suboffset(vec1(m1), 0);
struct brw_reg m1_4 = suboffset(vec1(m1), 4);
struct brw_reg index_0 = suboffset(vec1(index), 0);
struct brw_reg index_4 = suboffset(vec1(index), 4);
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, m1_0, index_0);
if (index.file == BRW_IMMEDIATE_VALUE) {
index_4.ud += second_vertex_offset;
brw_MOV(p, m1_4, index_4);
} else {
brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset));
}
brw_pop_insn_state(p);
}
static void
generate_unpack_flags(struct brw_codegen *p,
struct brw_reg dst)
{
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_access_mode(p, BRW_ALIGN_1);
struct brw_reg flags = brw_flag_reg(0, 0);
struct brw_reg dst_0 = suboffset(vec1(dst), 0);
struct brw_reg dst_4 = suboffset(vec1(dst), 4);
brw_AND(p, dst_0, flags, brw_imm_ud(0x0f));
brw_AND(p, dst_4, flags, brw_imm_ud(0xf0));
brw_SHR(p, dst_4, dst_4, brw_imm_ud(4));
brw_pop_insn_state(p);
}
static void
generate_scratch_read(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg index)
{
const struct gen_device_info *devinfo = p->devinfo;
struct brw_reg header = brw_vec8_grf(0, 0);
gen6_resolve_implied_move(p, &header, inst->base_mrf);
generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
index);
uint32_t msg_type;
if (devinfo->gen >= 6)
msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
else if (devinfo->gen == 5 || devinfo->is_g4x)
msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
else
msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
const unsigned target_cache =
devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
/* Each of the 8 channel enables is considered for whether each
* dword is written.
*/
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, dst);
brw_set_src0(p, send, header);
if (devinfo->gen < 6)
brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf);
brw_set_dp_read_message(p, send,
brw_scratch_surface_idx(p),
BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
msg_type, target_cache,
2, /* mlen */
true, /* header_present */
1 /* rlen */);
}
static void
generate_scratch_write(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src,
struct brw_reg index)
{
const struct gen_device_info *devinfo = p->devinfo;
const unsigned target_cache =
(devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
BRW_DATAPORT_READ_TARGET_RENDER_CACHE);
struct brw_reg header = brw_vec8_grf(0, 0);
bool write_commit;
/* If the instruction is predicated, we'll predicate the send, not
* the header setup.
*/
brw_set_default_predicate_control(p, false);
gen6_resolve_implied_move(p, &header, inst->base_mrf);
generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
index);
brw_MOV(p,
retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D),
retype(src, BRW_REGISTER_TYPE_D));
uint32_t msg_type;
if (devinfo->gen >= 7)
msg_type = GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE;
else if (devinfo->gen == 6)
msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
else
msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
brw_set_default_predicate_control(p, inst->predicate);
/* Pre-gen6, we have to specify write commits to ensure ordering
* between reads and writes within a thread. Afterwards, that's
* guaranteed and write commits only matter for inter-thread
* synchronization.
*/
if (devinfo->gen >= 6) {
write_commit = false;
} else {
/* The visitor set up our destination register to be g0. This
* means that when the next read comes along, we will end up
* reading from g0 and causing a block on the write commit. For
* write-after-read, we are relying on the value of the previous
* read being used (and thus blocking on completion) before our
* write is executed. This means we have to be careful in
* instruction scheduling to not violate this assumption.
*/
write_commit = true;
}
/* Each of the 8 channel enables is considered for whether each
* dword is written.
*/
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, dst);
brw_set_src0(p, send, header);
if (devinfo->gen < 6)
brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
brw_set_dp_write_message(p, send,
brw_scratch_surface_idx(p),
BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
msg_type,
target_cache,
3, /* mlen */
true, /* header present */
false, /* not a render target write */
write_commit, /* rlen */
false, /* eot */
write_commit);
}
static void
generate_pull_constant_load(struct brw_codegen *p,
struct brw_vue_prog_data *prog_data,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg index,
struct brw_reg offset)
{
const struct gen_device_info *devinfo = p->devinfo;
const unsigned target_cache =
(devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_SAMPLER_CACHE :
BRW_DATAPORT_READ_TARGET_DATA_CACHE);
assert(index.file == BRW_IMMEDIATE_VALUE &&
index.type == BRW_REGISTER_TYPE_UD);
uint32_t surf_index = index.ud;
struct brw_reg header = brw_vec8_grf(0, 0);
gen6_resolve_implied_move(p, &header, inst->base_mrf);
if (devinfo->gen >= 6) {
if (offset.file == BRW_IMMEDIATE_VALUE) {
brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
BRW_REGISTER_TYPE_D),
brw_imm_d(offset.ud >> 4));
} else {
brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1),
BRW_REGISTER_TYPE_D),
offset, brw_imm_d(4));
}
} else {
brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
BRW_REGISTER_TYPE_D),
offset);
}
uint32_t msg_type;
if (devinfo->gen >= 6)
msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
else if (devinfo->gen == 5 || devinfo->is_g4x)
msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
else
msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
/* Each of the 8 channel enables is considered for whether each
* dword is written.
*/
brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, dst);
brw_set_src0(p, send, header);
if (devinfo->gen < 6)
brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
brw_set_dp_read_message(p, send,
surf_index,
BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
msg_type,
target_cache,
2, /* mlen */
true, /* header_present */
1 /* rlen */);
}
static void
generate_get_buffer_size(struct brw_codegen *p,
struct brw_vue_prog_data *prog_data,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg src,
struct brw_reg surf_index)
{
assert(p->devinfo->gen >= 7);
assert(surf_index.type == BRW_REGISTER_TYPE_UD &&
surf_index.file == BRW_IMMEDIATE_VALUE);
brw_SAMPLE(p,
dst,
inst->base_mrf,
src,
surf_index.ud,
0,
GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1, /* response length */
inst->mlen,
inst->header_size > 0,
BRW_SAMPLER_SIMD_MODE_SIMD4X2,
BRW_SAMPLER_RETURN_FORMAT_SINT32);
brw_mark_surface_used(&prog_data->base, surf_index.ud);
}
static void
generate_pull_constant_load_gen7(struct brw_codegen *p,
struct brw_vue_prog_data *prog_data,
vec4_instruction *inst,
struct brw_reg dst,
struct brw_reg surf_index,
struct brw_reg offset)
{
assert(surf_index.type == BRW_REGISTER_TYPE_UD);
if (surf_index.file == BRW_IMMEDIATE_VALUE) {
brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, insn, dst);
brw_set_src0(p, insn, offset);
brw_set_sampler_message(p, insn,
surf_index.ud,
0, /* LD message ignores sampler unit */
GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1, /* rlen */
inst->mlen,
inst->header_size != 0,
BRW_SAMPLER_SIMD_MODE_SIMD4X2,
0);
brw_mark_surface_used(&prog_data->base, surf_index.ud);
} else {
struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_access_mode(p, BRW_ALIGN_1);
/* a0.0 = surf_index & 0xff */
brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
brw_set_dest(p, insn_and, addr);
brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD)));
brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
brw_pop_insn_state(p);
/* dst = send(offset, a0.0 | <descriptor>) */
brw_inst *insn = brw_send_indirect_message(
p, BRW_SFID_SAMPLER, dst, offset, addr);
brw_set_sampler_message(p, insn,
0 /* surface */,
0 /* sampler */,
GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1 /* rlen */,
inst->mlen,
inst->header_size != 0,
BRW_SAMPLER_SIMD_MODE_SIMD4X2,
0);
}
}
static void
generate_set_simd4x2_header_gen9(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst)
{
brw_push_insn_state(p);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
brw_set_default_exec_size(p, BRW_EXECUTE_8);
brw_MOV(p, vec8(dst), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, get_element_ud(dst, 2),
brw_imm_ud(GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2));
brw_pop_insn_state(p);
}
static void
generate_mov_indirect(struct brw_codegen *p,
vec4_instruction *inst,
struct brw_reg dst, struct brw_reg reg,
struct brw_reg indirect, struct brw_reg length)
{
assert(indirect.type == BRW_REGISTER_TYPE_UD);
assert(p->devinfo->gen >= 6);
unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr * (REG_SIZE / 2);
/* This instruction acts in align1 mode */
assert(dst.writemask == WRITEMASK_XYZW);
if (indirect.file == BRW_IMMEDIATE_VALUE) {
imm_byte_offset += indirect.ud;
reg.nr = imm_byte_offset / REG_SIZE;
reg.subnr = (imm_byte_offset / (REG_SIZE / 2)) % 2;
unsigned shift = (imm_byte_offset / 4) % 4;
reg.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
brw_MOV(p, dst, reg);
} else {
brw_push_insn_state(p);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_set_default_mask_control(p, BRW_MASK_DISABLE);
struct brw_reg addr = vec8(brw_address_reg(0));
/* We need to move the indirect value into the address register. In
* order to make things make some sense, we want to respect at least the
* X component of the swizzle. In order to do that, we need to convert
* the subnr (probably 0) to an align1 subnr and add in the swizzle.
*/
assert(brw_is_single_value_swizzle(indirect.swizzle));
indirect.subnr = (indirect.subnr * 4 + BRW_GET_SWZ(indirect.swizzle, 0));
/* We then use a region of <8,4,0>:uw to pick off the first 2 bytes of
* the indirect and splat it out to all four channels of the given half
* of a0.
*/
indirect.subnr *= 2;
indirect = stride(retype(indirect, BRW_REGISTER_TYPE_UW), 8, 4, 0);
brw_ADD(p, addr, indirect, brw_imm_uw(imm_byte_offset));
/* Now we need to incorporate the swizzle from the source register */
if (reg.swizzle != BRW_SWIZZLE_XXXX) {
uint32_t uv_swiz = BRW_GET_SWZ(reg.swizzle, 0) << 2 |
BRW_GET_SWZ(reg.swizzle, 1) << 6 |
BRW_GET_SWZ(reg.swizzle, 2) << 10 |
BRW_GET_SWZ(reg.swizzle, 3) << 14;
uv_swiz |= uv_swiz << 16;
brw_ADD(p, addr, addr, brw_imm_uv(uv_swiz));
}
brw_MOV(p, dst, retype(brw_VxH_indirect(0, 0), reg.type));
brw_pop_insn_state(p);
}
}
static void
generate_code(struct brw_codegen *p,
const struct brw_compiler *compiler,
void *log_data,
const nir_shader *nir,
struct brw_vue_prog_data *prog_data,
const struct cfg_t *cfg)
{
const struct gen_device_info *devinfo = p->devinfo;
const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->info.stage);
bool debug_flag = INTEL_DEBUG &
intel_debug_flag_for_shader_stage(nir->info.stage);
struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
int spill_count = 0, fill_count = 0;
int loop_count = 0;
foreach_block_and_inst (block, vec4_instruction, inst, cfg) {
struct brw_reg src[3], dst;
if (unlikely(debug_flag))
disasm_annotate(disasm_info, inst, p->next_insn_offset);
for (unsigned int i = 0; i < 3; i++) {
src[i] = inst->src[i].as_brw_reg();
}
dst = inst->dst.as_brw_reg();
brw_set_default_predicate_control(p, inst->predicate);
brw_set_default_predicate_inverse(p, inst->predicate_inverse);
brw_set_default_flag_reg(p, 0, inst->flag_subreg);
brw_set_default_saturate(p, inst->saturate);
brw_set_default_mask_control(p, inst->force_writemask_all);
brw_set_default_acc_write_control(p, inst->writes_accumulator);
assert(inst->group % inst->exec_size == 0);
assert(inst->group % 4 == 0);
/* There are some instructions where the destination is 64-bit
* but we retype it to a smaller type. In that case, we cannot
* double the exec_size.
*/
const bool is_df = (get_exec_type_size(inst) == 8 ||
inst->dst.type == BRW_REGISTER_TYPE_DF) &&
inst->opcode != VEC4_OPCODE_PICK_LOW_32BIT &&
inst->opcode != VEC4_OPCODE_PICK_HIGH_32BIT &&
inst->opcode != VEC4_OPCODE_SET_LOW_32BIT &&
inst->opcode != VEC4_OPCODE_SET_HIGH_32BIT;
unsigned exec_size = inst->exec_size;
if (devinfo->gen == 7 && !devinfo->is_haswell && is_df)
exec_size *= 2;
brw_set_default_exec_size(p, cvt(exec_size) - 1);
if (!inst->force_writemask_all)
brw_set_default_group(p, inst->group);
assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
unsigned pre_emit_nr_insn = p->nr_insn;
switch (inst->opcode) {
case VEC4_OPCODE_UNPACK_UNIFORM:
case BRW_OPCODE_MOV:
brw_MOV(p, dst, src[0]);
break;
case BRW_OPCODE_ADD:
brw_ADD(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MUL:
brw_MUL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MACH:
brw_MACH(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MAD:
assert(devinfo->gen >= 6);
brw_MAD(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_FRC:
brw_FRC(p, dst, src[0]);
break;
case BRW_OPCODE_RNDD:
brw_RNDD(p, dst, src[0]);
break;
case BRW_OPCODE_RNDE:
brw_RNDE(p, dst, src[0]);
break;
case BRW_OPCODE_RNDZ:
brw_RNDZ(p, dst, src[0]);
break;
case BRW_OPCODE_AND:
brw_AND(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_OR:
brw_OR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_XOR:
brw_XOR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_NOT:
brw_NOT(p, dst, src[0]);
break;
case BRW_OPCODE_ASR:
brw_ASR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SHR:
brw_SHR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SHL:
brw_SHL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_CMP:
brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
break;
case BRW_OPCODE_SEL:
brw_SEL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_DPH:
brw_DPH(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_DP4:
brw_DP4(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_DP3:
brw_DP3(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_DP2:
brw_DP2(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_F32TO16:
assert(devinfo->gen >= 7);
brw_F32TO16(p, dst, src[0]);
break;
case BRW_OPCODE_F16TO32:
assert(devinfo->gen >= 7);
brw_F16TO32(p, dst, src[0]);
break;
case BRW_OPCODE_LRP:
assert(devinfo->gen >= 6);
brw_LRP(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_BFREV:
assert(devinfo->gen >= 7);
brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
retype(src[0], BRW_REGISTER_TYPE_UD));
break;
case BRW_OPCODE_FBH:
assert(devinfo->gen >= 7);
brw_FBH(p, retype(dst, src[0].type), src[0]);
break;
case BRW_OPCODE_FBL:
assert(devinfo->gen >= 7);
brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
retype(src[0], BRW_REGISTER_TYPE_UD));
break;
case BRW_OPCODE_LZD:
brw_LZD(p, dst, src[0]);
break;
case BRW_OPCODE_CBIT:
assert(devinfo->gen >= 7);
brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
retype(src[0], BRW_REGISTER_TYPE_UD));
break;
case BRW_OPCODE_ADDC:
assert(devinfo->gen >= 7);
brw_ADDC(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SUBB:
assert(devinfo->gen >= 7);
brw_SUBB(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MAC:
brw_MAC(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_BFE:
assert(devinfo->gen >= 7);
brw_BFE(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_BFI1:
assert(devinfo->gen >= 7);
brw_BFI1(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_BFI2:
assert(devinfo->gen >= 7);
brw_BFI2(p, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_IF:
if (!inst->src[0].is_null()) {
/* The instruction has an embedded compare (only allowed on gen6) */
assert(devinfo->gen == 6);
gen6_IF(p, inst->conditional_mod, src[0], src[1]);
} else {
brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8);
brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate);
}
break;
case BRW_OPCODE_ELSE:
brw_ELSE(p);
break;
case BRW_OPCODE_ENDIF:
brw_ENDIF(p);
break;
case BRW_OPCODE_DO:
brw_DO(p, BRW_EXECUTE_8);
break;
case BRW_OPCODE_BREAK:
brw_BREAK(p);
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_CONTINUE:
brw_CONT(p);
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_WHILE:
brw_WHILE(p);
loop_count++;
break;
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
if (devinfo->gen >= 7) {
gen6_math(p, dst, brw_math_function(inst->opcode), src[0],
brw_null_reg());
} else if (devinfo->gen == 6) {
generate_math_gen6(p, inst, dst, src[0], brw_null_reg());
} else {
generate_math1_gen4(p, inst, dst, src[0]);
}
break;
case SHADER_OPCODE_POW:
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
if (devinfo->gen >= 7) {
gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
} else if (devinfo->gen == 6) {
generate_math_gen6(p, inst, dst, src[0], src[1]);
} else {
generate_math2_gen4(p, inst, dst, src[0], src[1]);
}
break;
case SHADER_OPCODE_TEX:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_CMS:
case SHADER_OPCODE_TXF_CMS_W:
case SHADER_OPCODE_TXF_MCS:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXS:
case SHADER_OPCODE_TG4:
case SHADER_OPCODE_TG4_OFFSET:
case SHADER_OPCODE_SAMPLEINFO:
generate_tex(p, prog_data, nir->info.stage,
inst, dst, src[0], src[1], src[2]);
break;
case SHADER_OPCODE_GET_BUFFER_SIZE:
generate_get_buffer_size(p, prog_data, inst, dst, src[0], src[1]);
break;
case VS_OPCODE_URB_WRITE:
generate_vs_urb_write(p, inst);
break;
case SHADER_OPCODE_GEN4_SCRATCH_READ:
generate_scratch_read(p, inst, dst, src[0]);
fill_count++;
break;
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
generate_scratch_write(p, inst, dst, src[0], src[1]);
spill_count++;
break;
case VS_OPCODE_PULL_CONSTANT_LOAD:
generate_pull_constant_load(p, prog_data, inst, dst, src[0], src[1]);
break;
case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
generate_pull_constant_load_gen7(p, prog_data, inst, dst, src[0], src[1]);
break;
case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
generate_set_simd4x2_header_gen9(p, inst, dst);
break;
case GS_OPCODE_URB_WRITE:
generate_gs_urb_write(p, inst);
break;
case GS_OPCODE_URB_WRITE_ALLOCATE:
generate_gs_urb_write_allocate(p, inst);
break;
case GS_OPCODE_SVB_WRITE:
generate_gs_svb_write(p, prog_data, inst, dst, src[0], src[1]);
break;
case GS_OPCODE_SVB_SET_DST_INDEX:
generate_gs_svb_set_destination_index(p, inst, dst, src[0]);
break;
case GS_OPCODE_THREAD_END:
generate_gs_thread_end(p, inst);
break;
case GS_OPCODE_SET_WRITE_OFFSET:
generate_gs_set_write_offset(p, dst, src[0], src[1]);
break;
case GS_OPCODE_SET_VERTEX_COUNT:
generate_gs_set_vertex_count(p, dst, src[0]);
break;
case GS_OPCODE_FF_SYNC:
generate_gs_ff_sync(p, inst, dst, src[0], src[1]);
break;
case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]);
break;
case GS_OPCODE_SET_PRIMITIVE_ID:
generate_gs_set_primitive_id(p, dst);
break;
case GS_OPCODE_SET_DWORD_2:
generate_gs_set_dword_2(p, dst, src[0]);
break;
case GS_OPCODE_PREPARE_CHANNEL_MASKS:
generate_gs_prepare_channel_masks(p, dst);
break;
case GS_OPCODE_SET_CHANNEL_MASKS:
generate_gs_set_channel_masks(p, dst, src[0]);
break;
case GS_OPCODE_GET_INSTANCE_ID:
generate_gs_get_instance_id(p, dst);
break;
case SHADER_OPCODE_SHADER_TIME_ADD:
brw_shader_time_add(p, src[0],
prog_data->base.binding_table.shader_time_start);
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.shader_time_start);
break;
case SHADER_OPCODE_UNTYPED_ATOMIC:
assert(src[2].file == BRW_IMMEDIATE_VALUE);
brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
!inst->dst.is_null());
break;
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
assert(src[2].file == BRW_IMMEDIATE_VALUE);
brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen,
src[2].ud);
break;
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
assert(src[2].file == BRW_IMMEDIATE_VALUE);
brw_untyped_surface_write(p, src[0], src[1], inst->mlen,
src[2].ud);
break;
case SHADER_OPCODE_TYPED_ATOMIC:
assert(src[2].file == BRW_IMMEDIATE_VALUE);
brw_typed_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
!inst->dst.is_null());
break;
case SHADER_OPCODE_TYPED_SURFACE_READ:
assert(src[2].file == BRW_IMMEDIATE_VALUE);
brw_typed_surface_read(p, dst, src[0], src[1], inst->mlen,
src[2].ud);
break;
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
assert(src[2].file == BRW_IMMEDIATE_VALUE);
brw_typed_surface_write(p, src[0], src[1], inst->mlen,
src[2].ud);
break;
case SHADER_OPCODE_MEMORY_FENCE:
brw_memory_fence(p, dst);
break;
case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
const struct brw_reg mask =
brw_stage_has_packed_dispatch(devinfo, nir->info.stage,
&prog_data->base) ? brw_imm_ud(~0u) :
brw_dmask_reg();
brw_find_live_channel(p, dst, mask);
break;
}
case SHADER_OPCODE_BROADCAST:
assert(inst->force_writemask_all);
brw_broadcast(p, dst, src[0], src[1]);
break;
case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
generate_unpack_flags(p, dst);
break;
case VEC4_OPCODE_MOV_BYTES: {
/* Moves the low byte from each channel, using an Align1 access mode
* and a <4,1,0> source region.
*/
assert(src[0].type == BRW_REGISTER_TYPE_UB ||
src[0].type == BRW_REGISTER_TYPE_B);
brw_set_default_access_mode(p, BRW_ALIGN_1);
src[0].vstride = BRW_VERTICAL_STRIDE_4;
src[0].width = BRW_WIDTH_1;
src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
brw_MOV(p, dst, src[0]);
brw_set_default_access_mode(p, BRW_ALIGN_16);
break;
}
case VEC4_OPCODE_DOUBLE_TO_F32:
case VEC4_OPCODE_DOUBLE_TO_D32:
case VEC4_OPCODE_DOUBLE_TO_U32: {
assert(type_sz(src[0].type) == 8);
assert(type_sz(dst.type) == 8);
brw_reg_type dst_type;
switch (inst->opcode) {
case VEC4_OPCODE_DOUBLE_TO_F32:
dst_type = BRW_REGISTER_TYPE_F;
break;
case VEC4_OPCODE_DOUBLE_TO_D32:
dst_type = BRW_REGISTER_TYPE_D;
break;
case VEC4_OPCODE_DOUBLE_TO_U32:
dst_type = BRW_REGISTER_TYPE_UD;
break;
default:
unreachable("Not supported conversion");
}
dst = retype(dst, dst_type);
brw_set_default_access_mode(p, BRW_ALIGN_1);
/* When converting from DF->F, we set destination's stride as 2 as an
* aligment requirement. But in IVB/BYT, each DF implicitly writes
* two floats, being the first one the converted value. So we don't
* need to explicitly set stride 2, but 1.
*/
struct brw_reg spread_dst;
if (devinfo->gen == 7 && !devinfo->is_haswell)
spread_dst = stride(dst, 8, 4, 1);
else
spread_dst = stride(dst, 8, 4, 2);
brw_MOV(p, spread_dst, src[0]);
brw_set_default_access_mode(p, BRW_ALIGN_16);
break;
}
case VEC4_OPCODE_TO_DOUBLE: {
assert(type_sz(src[0].type) == 4);
assert(type_sz(dst.type) == 8);
brw_set_default_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, dst, src[0]);
brw_set_default_access_mode(p, BRW_ALIGN_16);
break;
}
case VEC4_OPCODE_PICK_LOW_32BIT:
case VEC4_OPCODE_PICK_HIGH_32BIT: {
/* Stores the low/high 32-bit of each 64-bit element in src[0] into
* dst using ALIGN1 mode and a <8,4,2>:UD region on the source.
*/
assert(type_sz(src[0].type) == 8);
assert(type_sz(dst.type) == 4);
brw_set_default_access_mode(p, BRW_ALIGN_1);
dst = retype(dst, BRW_REGISTER_TYPE_UD);
dst.hstride = BRW_HORIZONTAL_STRIDE_1;
src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
if (inst->opcode == VEC4_OPCODE_PICK_HIGH_32BIT)
src[0] = suboffset(src[0], 1);
src[0] = spread(src[0], 2);
brw_MOV(p, dst, src[0]);
brw_set_default_access_mode(p, BRW_ALIGN_16);
break;
}
case VEC4_OPCODE_SET_LOW_32BIT:
case VEC4_OPCODE_SET_HIGH_32BIT: {
/* Reads consecutive 32-bit elements from src[0] and writes
* them to the low/high 32-bit of each 64-bit element in dst.
*/
assert(type_sz(src[0].type) == 4);
assert(type_sz(dst.type) == 8);
brw_set_default_access_mode(p, BRW_ALIGN_1);
dst = retype(dst, BRW_REGISTER_TYPE_UD);
if (inst->opcode == VEC4_OPCODE_SET_HIGH_32BIT)
dst = suboffset(dst, 1);
dst.hstride = BRW_HORIZONTAL_STRIDE_2;
src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
brw_MOV(p, dst, src[0]);
brw_set_default_access_mode(p, BRW_ALIGN_16);
break;
}
case VEC4_OPCODE_PACK_BYTES: {
/* Is effectively:
*
* mov(8) dst<16,4,1>:UB src<4,1,0>:UB
*
* but destinations' only regioning is horizontal stride, so instead we
* have to use two instructions:
*
* mov(4) dst<1>:UB src<4,1,0>:UB
* mov(4) dst.16<1>:UB src.16<4,1,0>:UB
*
* where they pack the four bytes from the low and high four DW.
*/
assert(_mesa_is_pow_two(dst.writemask) &&
dst.writemask != 0);
unsigned offset = __builtin_ctz(dst.writemask);
dst.type = BRW_REGISTER_TYPE_UB;
brw_set_default_access_mode(p, BRW_ALIGN_1);
src[0].type = BRW_REGISTER_TYPE_UB;
src[0].vstride = BRW_VERTICAL_STRIDE_4;
src[0].width = BRW_WIDTH_1;
src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
dst.subnr = offset * 4;
struct brw_inst *insn = brw_MOV(p, dst, src[0]);
brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
brw_inst_set_no_dd_clear(p->devinfo, insn, true);
brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check);
src[0].subnr = 16;
dst.subnr = 16 + offset * 4;
insn = brw_MOV(p, dst, src[0]);
brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear);
brw_inst_set_no_dd_check(p->devinfo, insn, true);
brw_set_default_access_mode(p, BRW_ALIGN_16);
break;
}
case TCS_OPCODE_URB_WRITE:
generate_tcs_urb_write(p, inst, src[0]);
break;
case VEC4_OPCODE_URB_READ:
generate_vec4_urb_read(p, inst, dst, src[0]);
break;
case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
generate_tcs_input_urb_offsets(p, dst, src[0], src[1]);
break;
case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
generate_tcs_output_urb_offsets(p, dst, src[0], src[1]);
break;
case TCS_OPCODE_GET_INSTANCE_ID:
generate_tcs_get_instance_id(p, dst);
break;
case TCS_OPCODE_GET_PRIMITIVE_ID:
generate_tcs_get_primitive_id(p, dst);
break;
case TCS_OPCODE_CREATE_BARRIER_HEADER:
generate_tcs_create_barrier_header(p, prog_data, dst);
break;
case TES_OPCODE_CREATE_INPUT_READ_HEADER:
generate_tes_create_input_read_header(p, dst);
break;
case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]);
break;
case TES_OPCODE_GET_PRIMITIVE_ID:
generate_tes_get_primitive_id(p, dst);
break;
case TCS_OPCODE_SRC0_010_IS_ZERO:
/* If src_reg had stride like fs_reg, we wouldn't need this. */
brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0));
break;
case TCS_OPCODE_RELEASE_INPUT:
generate_tcs_release_input(p, dst, src[0], src[1]);
break;
case TCS_OPCODE_THREAD_END:
generate_tcs_thread_end(p, inst);
break;
case SHADER_OPCODE_BARRIER:
brw_barrier(p, src[0]);
brw_WAIT(p);
break;
case SHADER_OPCODE_MOV_INDIRECT:
generate_mov_indirect(p, inst, dst, src[0], src[1], src[2]);
break;
case BRW_OPCODE_DIM:
assert(devinfo->is_haswell);
assert(src[0].type == BRW_REGISTER_TYPE_DF);
assert(dst.type == BRW_REGISTER_TYPE_DF);
brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
break;
default:
unreachable("Unsupported opcode");
}
if (inst->opcode == VEC4_OPCODE_PACK_BYTES) {
/* Handled dependency hints in the generator. */
assert(!inst->conditional_mod);
} else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
assert(p->nr_insn == pre_emit_nr_insn + 1 ||
!"conditional_mod, no_dd_check, or no_dd_clear set for IR "
"emitting more than 1 instruction");
brw_inst *last = &p->store[pre_emit_nr_insn];
if (inst->conditional_mod)
brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
}
}
brw_set_uip_jip(p, 0);
/* end of program sentinel */
disasm_new_inst_group(disasm_info, p->next_insn_offset);
#ifndef NDEBUG
bool validated =
#else
if (unlikely(debug_flag))
#endif
brw_validate_instructions(devinfo, p->store,
0, p->next_insn_offset,
disasm_info);
int before_size = p->next_insn_offset;
brw_compact_instructions(p, 0, disasm_info);
int after_size = p->next_insn_offset;
if (unlikely(debug_flag)) {
fprintf(stderr, "Native code for %s %s shader %s:\n",
nir->info.label ? nir->info.label : "unnamed",
_mesa_shader_stage_to_string(nir->info.stage), nir->info.name);
fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles. %d:%d "
"spills:fills. Compacted %d to %d bytes (%.0f%%)\n",
stage_abbrev, before_size / 16, loop_count, cfg->cycle_count,
spill_count, fill_count, before_size, after_size,
100.0f * (before_size - after_size) / before_size);
dump_assembly(p->store, disasm_info);
}
ralloc_free(disasm_info);
assert(validated);
compiler->shader_debug_log(log_data,
"%s vec4 shader: %d inst, %d loops, %u cycles, "
"%d:%d spills:fills, compacted %d to %d bytes.",
stage_abbrev, before_size / 16,
loop_count, cfg->cycle_count, spill_count,
fill_count, before_size, after_size);
}
extern "C" const unsigned *
brw_vec4_generate_assembly(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const nir_shader *nir,
struct brw_vue_prog_data *prog_data,
const struct cfg_t *cfg,
unsigned *out_assembly_size)
{
struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen);
brw_init_codegen(compiler->devinfo, p, mem_ctx);
brw_set_default_access_mode(p, BRW_ALIGN_16);
generate_code(p, compiler, log_data, nir, prog_data, cfg);
return brw_get_program(p, out_assembly_size);
}