//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MachineRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
#include <vector>
namespace llvm {
/// MachineRegisterInfo - Keep track of information for virtual and physical
/// registers, including vreg register classes, use/def chains for registers,
/// etc.
class MachineRegisterInfo {
const TargetRegisterInfo *const TRI;
/// IsSSA - True when the machine function is in SSA form and virtual
/// registers have a single def.
bool IsSSA;
/// VRegInfo - Information we keep for each virtual register.
///
/// Each element in this list contains the register class of the vreg and the
/// start of the use/def list for the register.
IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
VirtReg2IndexFunctor> VRegInfo;
/// RegAllocHints - This vector records register allocation hints for virtual
/// registers. For each virtual register, it keeps a register and hint type
/// pair making up the allocation hint. Hint type is target specific except
/// for the value 0 which means the second value of the pair is the preferred
/// register for allocation. For example, if the hint is <0, 1024>, it means
/// the allocator should prefer the physical register allocated to the virtual
/// register of the hint.
IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
/// PhysRegUseDefLists - This is an array of the head of the use/def list for
/// physical registers.
MachineOperand **PhysRegUseDefLists;
/// UsedPhysRegs - This is a bit vector that is computed and set by the
/// register allocator, and must be kept up to date by passes that run after
/// register allocation (though most don't modify this). This is used
/// so that the code generator knows which callee save registers to save and
/// for other target specific uses.
BitVector UsedPhysRegs;
/// LiveIns/LiveOuts - Keep track of the physical registers that are
/// livein/liveout of the function. Live in values are typically arguments in
/// registers, live out values are typically return values in registers.
/// LiveIn values are allowed to have virtual registers associated with them,
/// stored in the second element.
std::vector<std::pair<unsigned, unsigned> > LiveIns;
std::vector<unsigned> LiveOuts;
MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
void operator=(const MachineRegisterInfo&); // DO NOT IMPLEMENT
public:
explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
~MachineRegisterInfo();
//===--------------------------------------------------------------------===//
// Function State
//===--------------------------------------------------------------------===//
// isSSA - Returns true when the machine function is in SSA form. Early
// passes require the machine function to be in SSA form where every virtual
// register has a single defining instruction.
//
// The TwoAddressInstructionPass and PHIElimination passes take the machine
// function out of SSA form when they introduce multiple defs per virtual
// register.
bool isSSA() const { return IsSSA; }
// leaveSSA - Indicates that the machine function is no longer in SSA form.
void leaveSSA() { IsSSA = false; }
//===--------------------------------------------------------------------===//
// Register Info
//===--------------------------------------------------------------------===//
/// reg_begin/reg_end - Provide iteration support to walk over all definitions
/// and uses of a register within the MachineFunction that corresponds to this
/// MachineRegisterInfo object.
template<bool Uses, bool Defs, bool SkipDebug>
class defusechain_iterator;
/// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
/// register.
typedef defusechain_iterator<true,true,false> reg_iterator;
reg_iterator reg_begin(unsigned RegNo) const {
return reg_iterator(getRegUseDefListHead(RegNo));
}
static reg_iterator reg_end() { return reg_iterator(0); }
/// reg_empty - Return true if there are no instructions using or defining the
/// specified register (it may be live-in).
bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
/// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
/// of the specified register, skipping those marked as Debug.
typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
/// reg_nodbg_empty - Return true if the only instructions using or defining
/// Reg are Debug instructions.
bool reg_nodbg_empty(unsigned RegNo) const {
return reg_nodbg_begin(RegNo) == reg_nodbg_end();
}
/// def_iterator/def_begin/def_end - Walk all defs of the specified register.
typedef defusechain_iterator<false,true,false> def_iterator;
def_iterator def_begin(unsigned RegNo) const {
return def_iterator(getRegUseDefListHead(RegNo));
}
static def_iterator def_end() { return def_iterator(0); }
/// def_empty - Return true if there are no instructions defining the
/// specified register (it may be live-in).
bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
/// use_iterator/use_begin/use_end - Walk all uses of the specified register.
typedef defusechain_iterator<true,false,false> use_iterator;
use_iterator use_begin(unsigned RegNo) const {
return use_iterator(getRegUseDefListHead(RegNo));
}
static use_iterator use_end() { return use_iterator(0); }
/// use_empty - Return true if there are no instructions using the specified
/// register.
bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
/// hasOneUse - Return true if there is exactly one instruction using the
/// specified register.
bool hasOneUse(unsigned RegNo) const;
/// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
/// specified register, skipping those marked as Debug.
typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
return use_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
/// use_nodbg_empty - Return true if there are no non-Debug instructions
/// using the specified register.
bool use_nodbg_empty(unsigned RegNo) const {
return use_nodbg_begin(RegNo) == use_nodbg_end();
}
/// hasOneNonDBGUse - Return true if there is exactly one non-Debug
/// instruction using the specified register.
bool hasOneNonDBGUse(unsigned RegNo) const;
/// replaceRegWith - Replace all instances of FromReg with ToReg in the
/// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
/// except that it also changes any definitions of the register as well.
void replaceRegWith(unsigned FromReg, unsigned ToReg);
/// getRegUseDefListHead - Return the head pointer for the register use/def
/// list for the specified virtual or physical register.
MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
if (TargetRegisterInfo::isVirtualRegister(RegNo))
return VRegInfo[RegNo].second;
return PhysRegUseDefLists[RegNo];
}
MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
if (TargetRegisterInfo::isVirtualRegister(RegNo))
return VRegInfo[RegNo].second;
return PhysRegUseDefLists[RegNo];
}
/// getVRegDef - Return the machine instr that defines the specified virtual
/// register or null if none is found. This assumes that the code is in SSA
/// form, so there should only be one definition.
MachineInstr *getVRegDef(unsigned Reg) const;
/// clearKillFlags - Iterate over all the uses of the given register and
/// clear the kill flag from the MachineOperand. This function is used by
/// optimization passes which extend register lifetimes and need only
/// preserve conservative kill flag information.
void clearKillFlags(unsigned Reg) const;
#ifndef NDEBUG
void dumpUses(unsigned RegNo) const;
#endif
//===--------------------------------------------------------------------===//
// Virtual Register Info
//===--------------------------------------------------------------------===//
/// getRegClass - Return the register class of the specified virtual register.
///
const TargetRegisterClass *getRegClass(unsigned Reg) const {
return VRegInfo[Reg].first;
}
/// setRegClass - Set the register class of the specified virtual register.
///
void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
/// constrainRegClass - Constrain the register class of the specified virtual
/// register to be a common subclass of RC and the current register class,
/// but only if the new class has at least MinNumRegs registers. Return the
/// new register class, or NULL if no such class exists.
/// This should only be used when the constraint is known to be trivial, like
/// GR32 -> GR32_NOSP. Beware of increasing register pressure.
///
const TargetRegisterClass *constrainRegClass(unsigned Reg,
const TargetRegisterClass *RC,
unsigned MinNumRegs = 0);
/// recomputeRegClass - Try to find a legal super-class of Reg's register
/// class that still satisfies the constraints from the instructions using
/// Reg. Returns true if Reg was upgraded.
///
/// This method can be used after constraints have been removed from a
/// virtual register, for example after removing instructions or splitting
/// the live range.
///
bool recomputeRegClass(unsigned Reg, const TargetMachine&);
/// createVirtualRegister - Create and return a new virtual register in the
/// function with the specified register class.
///
unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
/// getNumVirtRegs - Return the number of virtual registers created.
///
unsigned getNumVirtRegs() const { return VRegInfo.size(); }
/// setRegAllocationHint - Specify a register allocation hint for the
/// specified virtual register.
void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
RegAllocHints[Reg].first = Type;
RegAllocHints[Reg].second = PrefReg;
}
/// getRegAllocationHint - Return the register allocation hint for the
/// specified virtual register.
std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned Reg) const {
return RegAllocHints[Reg];
}
/// getSimpleHint - Return the preferred register allocation hint, or 0 if a
/// standard simple hint (Type == 0) is not set.
unsigned getSimpleHint(unsigned Reg) const {
std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
return Hint.first ? 0 : Hint.second;
}
//===--------------------------------------------------------------------===//
// Physical Register Use Info
//===--------------------------------------------------------------------===//
/// isPhysRegUsed - Return true if the specified register is used in this
/// function. This only works after register allocation.
bool isPhysRegUsed(unsigned Reg) const { return UsedPhysRegs[Reg]; }
/// setPhysRegUsed - Mark the specified register used in this function.
/// This should only be called during and after register allocation.
void setPhysRegUsed(unsigned Reg) { UsedPhysRegs[Reg] = true; }
/// addPhysRegsUsed - Mark the specified registers used in this function.
/// This should only be called during and after register allocation.
void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
/// setPhysRegUnused - Mark the specified register unused in this function.
/// This should only be called during and after register allocation.
void setPhysRegUnused(unsigned Reg) { UsedPhysRegs[Reg] = false; }
/// closePhysRegsUsed - Expand UsedPhysRegs to its transitive closure over
/// subregisters. That means that if R is used, so are all subregisters.
void closePhysRegsUsed(const TargetRegisterInfo&);
//===--------------------------------------------------------------------===//
// LiveIn/LiveOut Management
//===--------------------------------------------------------------------===//
/// addLiveIn/Out - Add the specified register as a live in/out. Note that it
/// is an error to add the same register to the same set more than once.
void addLiveIn(unsigned Reg, unsigned vreg = 0) {
LiveIns.push_back(std::make_pair(Reg, vreg));
}
void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
// Iteration support for live in/out sets. These sets are kept in sorted
// order by their register number.
typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
livein_iterator;
typedef std::vector<unsigned>::const_iterator liveout_iterator;
livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_iterator livein_end() const { return LiveIns.end(); }
bool livein_empty() const { return LiveIns.empty(); }
liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
liveout_iterator liveout_end() const { return LiveOuts.end(); }
bool liveout_empty() const { return LiveOuts.empty(); }
bool isLiveIn(unsigned Reg) const;
bool isLiveOut(unsigned Reg) const;
/// getLiveInPhysReg - If VReg is a live-in virtual register, return the
/// corresponding live-in physical register.
unsigned getLiveInPhysReg(unsigned VReg) const;
/// getLiveInVirtReg - If PReg is a live-in physical register, return the
/// corresponding live-in physical register.
unsigned getLiveInVirtReg(unsigned PReg) const;
/// EmitLiveInCopies - Emit copies to initialize livein virtual registers
/// into the given entry block.
void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
const TargetRegisterInfo &TRI,
const TargetInstrInfo &TII);
private:
void HandleVRegListReallocation();
public:
/// defusechain_iterator - This class provides iterator support for machine
/// operands in the function that use or define a specific register. If
/// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
/// returns defs. If neither are true then you are silly and it always
/// returns end(). If SkipDebug is true it skips uses marked Debug
/// when incrementing.
template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
class defusechain_iterator
: public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
MachineOperand *Op;
explicit defusechain_iterator(MachineOperand *op) : Op(op) {
// If the first node isn't one we're interested in, advance to one that
// we are interested in.
if (op) {
if ((!ReturnUses && op->isUse()) ||
(!ReturnDefs && op->isDef()) ||
(SkipDebug && op->isDebug()))
++*this;
}
}
friend class MachineRegisterInfo;
public:
typedef std::iterator<std::forward_iterator_tag,
MachineInstr, ptrdiff_t>::reference reference;
typedef std::iterator<std::forward_iterator_tag,
MachineInstr, ptrdiff_t>::pointer pointer;
defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
defusechain_iterator() : Op(0) {}
bool operator==(const defusechain_iterator &x) const {
return Op == x.Op;
}
bool operator!=(const defusechain_iterator &x) const {
return !operator==(x);
}
/// atEnd - return true if this iterator is equal to reg_end() on the value.
bool atEnd() const { return Op == 0; }
// Iterator traversal: forward iteration only
defusechain_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!");
Op = Op->getNextOperandForReg();
// If this is an operand we don't care about, skip it.
while (Op && ((!ReturnUses && Op->isUse()) ||
(!ReturnDefs && Op->isDef()) ||
(SkipDebug && Op->isDebug())))
Op = Op->getNextOperandForReg();
return *this;
}
defusechain_iterator operator++(int) { // Postincrement
defusechain_iterator tmp = *this; ++*this; return tmp;
}
/// skipInstruction - move forward until reaching a different instruction.
/// Return the skipped instruction that is no longer pointed to, or NULL if
/// already pointing to end().
MachineInstr *skipInstruction() {
if (!Op) return 0;
MachineInstr *MI = Op->getParent();
do ++*this;
while (Op && Op->getParent() == MI);
return MI;
}
MachineOperand &getOperand() const {
assert(Op && "Cannot dereference end iterator!");
return *Op;
}
/// getOperandNo - Return the operand # of this MachineOperand in its
/// MachineInstr.
unsigned getOperandNo() const {
assert(Op && "Cannot dereference end iterator!");
return Op - &Op->getParent()->getOperand(0);
}
// Retrieve a reference to the current operand.
MachineInstr &operator*() const {
assert(Op && "Cannot dereference end iterator!");
return *Op->getParent();
}
MachineInstr *operator->() const {
assert(Op && "Cannot dereference end iterator!");
return Op->getParent();
}
};
};
} // End llvm namespace
#endif