//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions. This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "phielim"
#include "PHIEliminationUtils.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Function.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;
static cl::opt<bool>
DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
cl::Hidden, cl::desc("Disable critical edge splitting "
"during PHI elimination"));
namespace {
class PHIElimination : public MachineFunctionPass {
MachineRegisterInfo *MRI; // Machine register information
public:
static char ID; // Pass identification, replacement for typeid
PHIElimination() : MachineFunctionPass(ID) {
initializePHIEliminationPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
private:
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
///
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
void LowerAtomicPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt);
/// analyzePHINodes - Gather information about the PHI nodes in
/// here. In particular, we want to map the number of uses of a virtual
/// register which is used in a PHI node. We map that to the BB the
/// vreg is coming from. This is used later to determine when the vreg
/// is killed in the BB.
///
void analyzePHINodes(const MachineFunction& Fn);
/// Split critical edges where necessary for good coalescer performance.
bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
LiveVariables &LV, MachineLoopInfo *MLI);
typedef std::pair<unsigned, unsigned> BBVRegPair;
typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
VRegPHIUse VRegPHIUseCount;
// Defs of PHI sources which are implicit_def.
SmallPtrSet<MachineInstr*, 4> ImpDefs;
// Map reusable lowered PHI node -> incoming join register.
typedef DenseMap<MachineInstr*, unsigned,
MachineInstrExpressionTrait> LoweredPHIMap;
LoweredPHIMap LoweredPHIs;
};
}
STATISTIC(NumAtomic, "Number of atomic phis lowered");
STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
STATISTIC(NumReused, "Number of reused lowered phis");
char PHIElimination::ID = 0;
INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
"Eliminate PHI nodes for register allocation", false, false)
char& llvm::PHIEliminationID = PHIElimination::ID;
void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
MRI = &MF.getRegInfo();
bool Changed = false;
// This pass takes the function out of SSA form.
MRI->leaveSSA();
// Split critical edges to help the coalescer
if (!DisableEdgeSplitting) {
if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
}
}
// Populate VRegPHIUseCount
analyzePHINodes(MF);
// Eliminate PHI instructions by inserting copies into predecessor blocks.
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Changed |= EliminatePHINodes(MF, *I);
// Remove dead IMPLICIT_DEF instructions.
for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
E = ImpDefs.end(); I != E; ++I) {
MachineInstr *DefMI = *I;
unsigned DefReg = DefMI->getOperand(0).getReg();
if (MRI->use_nodbg_empty(DefReg))
DefMI->eraseFromParent();
}
// Clean up the lowered PHI instructions.
for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
I != E; ++I)
MF.DeleteMachineInstr(I->first);
LoweredPHIs.clear();
ImpDefs.clear();
VRegPHIUseCount.clear();
return Changed;
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
MachineBasicBlock &MBB) {
if (MBB.empty() || !MBB.front().isPHI())
return false; // Quick exit for basic blocks without PHIs.
// Get an iterator to the first instruction after the last PHI node (this may
// also be the end of the basic block).
MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
while (MBB.front().isPHI())
LowerAtomicPHINode(MBB, AfterPHIsIt);
return true;
}
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
/// are implicit_def's.
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
const MachineRegisterInfo *MRI) {
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
unsigned SrcReg = MPhi->getOperand(i).getReg();
const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (!DefMI || !DefMI->isImplicitDef())
return false;
}
return true;
}
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs. This lowering method is always correct all of the
/// time.
///
void PHIElimination::LowerAtomicPHINode(
MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt) {
++NumAtomic;
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
unsigned DestReg = MPhi->getOperand(0).getReg();
assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
bool isDead = MPhi->getOperand(0).isDead();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
unsigned IncomingReg = 0;
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
if (isSourceDefinedByImplicitDef(MPhi, MRI))
// If all sources of a PHI node are implicit_def, just emit an
// implicit_def instead of a copy.
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
else {
// Can we reuse an earlier PHI node? This only happens for critical edges,
// typically those created by tail duplication.
unsigned &entry = LoweredPHIs[MPhi];
if (entry) {
// An identical PHI node was already lowered. Reuse the incoming register.
IncomingReg = entry;
reusedIncoming = true;
++NumReused;
DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
} else {
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
}
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::COPY), DestReg)
.addReg(IncomingReg);
}
// Update live variable information if there is any.
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
if (LV) {
MachineInstr *PHICopy = prior(AfterPHIsIt);
if (IncomingReg) {
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
// Increment use count of the newly created virtual register.
VI.NumUses++;
LV->setPHIJoin(IncomingReg);
// When we are reusing the incoming register, it may already have been
// killed in this block. The old kill will also have been inserted at
// AfterPHIsIt, so it appears before the current PHICopy.
if (reusedIncoming)
if (MachineInstr *OldKill = VI.findKill(&MBB)) {
DEBUG(dbgs() << "Remove old kill from " << *OldKill);
LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
DEBUG(MBB.dump());
}
// Add information to LiveVariables to know that the incoming value is
// killed. Note that because the value is defined in several places (once
// each for each incoming block), the "def" block and instruction fields
// for the VarInfo is not filled in.
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
}
// Since we are going to be deleting the PHI node, if it is the last use of
// any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
LV->removeVirtualRegistersKilled(MPhi);
// If the result is dead, update LV.
if (isDead) {
LV->addVirtualRegisterDead(DestReg, PHICopy);
LV->removeVirtualRegisterDead(DestReg, MPhi);
}
}
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
MPhi->getOperand(i).getReg())];
// Now loop over all of the incoming arguments, changing them to copy into the
// IncomingReg register in the corresponding predecessor basic block.
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
for (int i = NumSrcs - 1; i >= 0; --i) {
unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
"Machine PHI Operands must all be virtual registers!");
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
// path the PHI.
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
// If source is defined by an implicit def, there is no need to insert a
// copy.
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->isImplicitDef()) {
ImpDefs.insert(DefMI);
continue;
}
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the same
// basic block.
if (!MBBsInsertedInto.insert(&opBlock))
continue; // If the copy has already been emitted, we're done.
// Find a safe location to insert the copy, this may be the first terminator
// in the block (or end()).
MachineBasicBlock::iterator InsertPos =
findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
// Insert the copy.
if (!reusedIncoming && IncomingReg)
BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
// Now update live variable information if we have it. Otherwise we're done
if (!LV) continue;
// We want to be able to insert a kill of the register if this PHI (aka, the
// copy we just inserted) is the last use of the source value. Live
// variable analysis conservatively handles this by saying that the value is
// live until the end of the block the PHI entry lives in. If the value
// really is dead at the PHI copy, there will be no successor blocks which
// have the value live-in.
// Also check to see if this register is in use by another PHI node which
// has not yet been eliminated. If so, it will be killed at an appropriate
// point later.
// Is it used by any PHI instructions in this block?
bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
// Okay, if we now know that the value is not live out of the block, we can
// add a kill marker in this block saying that it kills the incoming value!
if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
// In our final twist, we have to decide which instruction kills the
// register. In most cases this is the copy, however, the first
// terminator instruction at the end of the block may also use the value.
// In this case, we should mark *it* as being the killing block, not the
// copy.
MachineBasicBlock::iterator KillInst;
MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
KillInst = Term;
// Check that no other terminators use values.
#ifndef NDEBUG
for (MachineBasicBlock::iterator TI = llvm::next(Term);
TI != opBlock.end(); ++TI) {
if (TI->isDebugValue())
continue;
assert(!TI->readsRegister(SrcReg) &&
"Terminator instructions cannot use virtual registers unless"
"they are the first terminator in a block!");
}
#endif
} else if (reusedIncoming || !IncomingReg) {
// We may have to rewind a bit if we didn't insert a copy this time.
KillInst = Term;
while (KillInst != opBlock.begin()) {
--KillInst;
if (KillInst->isDebugValue())
continue;
if (KillInst->readsRegister(SrcReg))
break;
}
} else {
// We just inserted this copy.
KillInst = prior(InsertPos);
}
assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
// Finally, mark it killed.
LV->addVirtualRegisterKilled(SrcReg, KillInst);
// This vreg no longer lives all of the way through opBlock.
unsigned opBlockNum = opBlock.getNumber();
LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
}
}
// Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
if (reusedIncoming || !IncomingReg)
MF.DeleteMachineInstr(MPhi);
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I)
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
BBI != BBE && BBI->isPHI(); ++BBI)
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
BBI->getOperand(i).getReg())];
}
bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
MachineBasicBlock &MBB,
LiveVariables &LV,
MachineLoopInfo *MLI) {
if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
return false; // Quick exit for basic blocks without PHIs.
bool Changed = false;
for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
BBI != BBE && BBI->isPHI(); ++BBI) {
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
unsigned Reg = BBI->getOperand(i).getReg();
MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
// We break edges when registers are live out from the predecessor block
// (not considering PHI nodes). If the register is live in to this block
// anyway, we would gain nothing from splitting.
// Avoid splitting backedges of loops. It would introduce small
// out-of-line blocks into the loop which is very bad for code placement.
if (PreMBB != &MBB &&
!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
if (!MLI ||
!(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
MLI->isLoopHeader(&MBB))) {
if (PreMBB->SplitCriticalEdge(&MBB, this)) {
Changed = true;
++NumCriticalEdgesSplit;
}
}
}
}
}
return Changed;
}