//===-- BenchmarkRunner.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <array>
#include <string>
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"
namespace exegesis {
BenchmarkFailure::BenchmarkFailure(const llvm::Twine &S)
: llvm::StringError(S, llvm::inconvertibleErrorCode()) {}
BenchmarkRunner::BenchmarkRunner(const LLVMState &State,
InstructionBenchmark::ModeE Mode)
: State(State), RATC(State.getRegInfo(),
getFunctionReservedRegs(State.getTargetMachine())),
Mode(Mode) {}
BenchmarkRunner::~BenchmarkRunner() = default;
llvm::Expected<std::vector<InstructionBenchmark>>
BenchmarkRunner::run(unsigned Opcode, unsigned NumRepetitions) {
const llvm::MCInstrDesc &InstrDesc = State.getInstrInfo().get(Opcode);
// Ignore instructions that we cannot run.
if (InstrDesc.isPseudo())
return llvm::make_error<BenchmarkFailure>("Unsupported opcode: isPseudo");
if (InstrDesc.isBranch() || InstrDesc.isIndirectBranch())
return llvm::make_error<BenchmarkFailure>(
"Unsupported opcode: isBranch/isIndirectBranch");
if (InstrDesc.isCall() || InstrDesc.isReturn())
return llvm::make_error<BenchmarkFailure>(
"Unsupported opcode: isCall/isReturn");
llvm::Expected<std::vector<BenchmarkConfiguration>> ConfigurationOrError =
generateConfigurations(Opcode);
if (llvm::Error E = ConfigurationOrError.takeError())
return std::move(E);
std::vector<InstructionBenchmark> InstrBenchmarks;
for (const BenchmarkConfiguration &Conf : ConfigurationOrError.get())
InstrBenchmarks.push_back(runOne(Conf, Opcode, NumRepetitions));
return InstrBenchmarks;
}
InstructionBenchmark
BenchmarkRunner::runOne(const BenchmarkConfiguration &Configuration,
unsigned Opcode, unsigned NumRepetitions) const {
InstructionBenchmark InstrBenchmark;
InstrBenchmark.Mode = Mode;
InstrBenchmark.CpuName = State.getTargetMachine().getTargetCPU();
InstrBenchmark.LLVMTriple =
State.getTargetMachine().getTargetTriple().normalize();
InstrBenchmark.NumRepetitions = NumRepetitions;
InstrBenchmark.Info = Configuration.Info;
const std::vector<llvm::MCInst> &Snippet = Configuration.Snippet;
if (Snippet.empty()) {
InstrBenchmark.Error = "Empty snippet";
return InstrBenchmark;
}
InstrBenchmark.Key.Instructions = Snippet;
// Repeat the snippet until there are at least NumInstructions in the
// resulting code. The snippet is always repeated at least once.
const auto GenerateInstructions = [&Configuration](
const int MinInstructions) {
std::vector<llvm::MCInst> Code = Configuration.Snippet;
for (int I = 0; I < MinInstructions; ++I)
Code.push_back(Configuration.Snippet[I % Configuration.Snippet.size()]);
return Code;
};
// Assemble at least kMinInstructionsForSnippet instructions by repeating the
// snippet for debug/analysis. This is so that the user clearly understands
// that the inside instructions are repeated.
constexpr const int kMinInstructionsForSnippet = 16;
{
auto ObjectFilePath =
writeObjectFile(Configuration.SnippetSetup,
GenerateInstructions(kMinInstructionsForSnippet));
if (llvm::Error E = ObjectFilePath.takeError()) {
InstrBenchmark.Error = llvm::toString(std::move(E));
return InstrBenchmark;
}
const ExecutableFunction EF(State.createTargetMachine(),
getObjectFromFile(*ObjectFilePath));
const auto FnBytes = EF.getFunctionBytes();
InstrBenchmark.AssembledSnippet.assign(FnBytes.begin(), FnBytes.end());
}
// Assemble NumRepetitions instructions repetitions of the snippet for
// measurements.
auto ObjectFilePath =
writeObjectFile(Configuration.SnippetSetup,
GenerateInstructions(InstrBenchmark.NumRepetitions));
if (llvm::Error E = ObjectFilePath.takeError()) {
InstrBenchmark.Error = llvm::toString(std::move(E));
return InstrBenchmark;
}
llvm::outs() << "Check generated assembly with: /usr/bin/objdump -d "
<< *ObjectFilePath << "\n";
const ExecutableFunction EF(State.createTargetMachine(),
getObjectFromFile(*ObjectFilePath));
InstrBenchmark.Measurements = runMeasurements(EF, NumRepetitions);
return InstrBenchmark;
}
llvm::Expected<std::vector<BenchmarkConfiguration>>
BenchmarkRunner::generateConfigurations(unsigned Opcode) const {
if (auto E = generatePrototype(Opcode)) {
SnippetPrototype &Prototype = E.get();
// TODO: Generate as many configurations as needed here.
BenchmarkConfiguration Configuration;
Configuration.Info = Prototype.Explanation;
for (InstructionInstance &II : Prototype.Snippet) {
II.randomizeUnsetVariables();
Configuration.Snippet.push_back(II.build());
}
Configuration.SnippetSetup.RegsToDef = computeRegsToDef(Prototype.Snippet);
return std::vector<BenchmarkConfiguration>{Configuration};
} else
return E.takeError();
}
std::vector<unsigned> BenchmarkRunner::computeRegsToDef(
const std::vector<InstructionInstance> &Snippet) const {
// Collect all register uses and create an assignment for each of them.
// Loop invariant: DefinedRegs[i] is true iif it has been set at least once
// before the current instruction.
llvm::BitVector DefinedRegs = RATC.emptyRegisters();
std::vector<unsigned> RegsToDef;
for (const InstructionInstance &II : Snippet) {
// Returns the register that this Operand sets or uses, or 0 if this is not
// a register.
const auto GetOpReg = [&II](const Operand &Op) -> unsigned {
if (Op.ImplicitReg) {
return *Op.ImplicitReg;
} else if (Op.IsExplicit && II.getValueFor(Op).isReg()) {
return II.getValueFor(Op).getReg();
}
return 0;
};
// Collect used registers that have never been def'ed.
for (const Operand &Op : II.Instr.Operands) {
if (!Op.IsDef) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0 && !DefinedRegs.test(Reg)) {
RegsToDef.push_back(Reg);
DefinedRegs.set(Reg);
}
}
}
// Mark defs as having been def'ed.
for (const Operand &Op : II.Instr.Operands) {
if (Op.IsDef) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0) {
DefinedRegs.set(Reg);
}
}
}
}
return RegsToDef;
}
llvm::Expected<std::string>
BenchmarkRunner::writeObjectFile(const BenchmarkConfiguration::Setup &Setup,
llvm::ArrayRef<llvm::MCInst> Code) const {
int ResultFD = 0;
llvm::SmallString<256> ResultPath;
if (llvm::Error E = llvm::errorCodeToError(llvm::sys::fs::createTemporaryFile(
"snippet", "o", ResultFD, ResultPath)))
return std::move(E);
llvm::raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/);
assembleToStream(State.getExegesisTarget(), State.createTargetMachine(),
Setup.RegsToDef, Code, OFS);
return ResultPath.str();
}
llvm::Expected<SnippetPrototype>
BenchmarkRunner::generateSelfAliasingPrototype(const Instruction &Instr) const {
const AliasingConfigurations SelfAliasing(Instr, Instr);
if (SelfAliasing.empty()) {
return llvm::make_error<BenchmarkFailure>("empty self aliasing");
}
SnippetPrototype Prototype;
InstructionInstance II(Instr);
if (SelfAliasing.hasImplicitAliasing()) {
Prototype.Explanation = "implicit Self cycles, picking random values.";
} else {
Prototype.Explanation =
"explicit self cycles, selecting one aliasing Conf.";
// This is a self aliasing instruction so defs and uses are from the same
// instance, hence twice II in the following call.
setRandomAliasing(SelfAliasing, II, II);
}
Prototype.Snippet.push_back(std::move(II));
return std::move(Prototype);
}
llvm::Expected<SnippetPrototype>
BenchmarkRunner::generateUnconstrainedPrototype(const Instruction &Instr,
llvm::StringRef Msg) const {
SnippetPrototype Prototype;
Prototype.Explanation =
llvm::formatv("{0}, repeating an unconstrained assignment", Msg);
Prototype.Snippet.emplace_back(Instr);
return std::move(Prototype);
}
} // namespace exegesis