//===-- CommandLine.cpp - Command line parser implementation --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements a command line argument processor that is useful when
// creating a tool. It provides a simple, minimalistic interface that is easily
// extensible and supports nonlocal (library) command line options.
//
// Note that rather than trying to figure out what this code does, you could try
// reading the library documentation located in docs/CommandLine.html
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/CommandLine.h"
#include "llvm-c/Support.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Config/config.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdlib>
#include <map>
using namespace llvm;
using namespace cl;
#define DEBUG_TYPE "commandline"
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
namespace llvm {
// If LLVM_ENABLE_ABI_BREAKING_CHECKS is set the flag -mllvm -reverse-iterate
// can be used to toggle forward/reverse iteration of unordered containers.
// This will help uncover differences in codegen caused due to undefined
// iteration order.
static cl::opt<bool, true> ReverseIteration("reverse-iterate",
cl::location(ReverseIterate<bool>::value));
}
#endif
//===----------------------------------------------------------------------===//
// Template instantiations and anchors.
//
namespace llvm {
namespace cl {
template class basic_parser<bool>;
template class basic_parser<boolOrDefault>;
template class basic_parser<int>;
template class basic_parser<unsigned>;
template class basic_parser<unsigned long long>;
template class basic_parser<double>;
template class basic_parser<float>;
template class basic_parser<std::string>;
template class basic_parser<char>;
template class opt<unsigned>;
template class opt<int>;
template class opt<std::string>;
template class opt<char>;
template class opt<bool>;
}
} // end namespace llvm::cl
// Pin the vtables to this file.
void GenericOptionValue::anchor() {}
void OptionValue<boolOrDefault>::anchor() {}
void OptionValue<std::string>::anchor() {}
void Option::anchor() {}
void basic_parser_impl::anchor() {}
void parser<bool>::anchor() {}
void parser<boolOrDefault>::anchor() {}
void parser<int>::anchor() {}
void parser<unsigned>::anchor() {}
void parser<unsigned long long>::anchor() {}
void parser<double>::anchor() {}
void parser<float>::anchor() {}
void parser<std::string>::anchor() {}
void parser<char>::anchor() {}
//===----------------------------------------------------------------------===//
namespace {
class CommandLineParser {
public:
// Globals for name and overview of program. Program name is not a string to
// avoid static ctor/dtor issues.
std::string ProgramName;
StringRef ProgramOverview;
// This collects additional help to be printed.
std::vector<StringRef> MoreHelp;
// This collects the different option categories that have been registered.
SmallPtrSet<OptionCategory *, 16> RegisteredOptionCategories;
// This collects the different subcommands that have been registered.
SmallPtrSet<SubCommand *, 4> RegisteredSubCommands;
CommandLineParser() : ActiveSubCommand(nullptr) {
registerSubCommand(&*TopLevelSubCommand);
registerSubCommand(&*AllSubCommands);
}
void ResetAllOptionOccurrences();
bool ParseCommandLineOptions(int argc, const char *const *argv,
StringRef Overview, bool IgnoreErrors);
void addLiteralOption(Option &Opt, SubCommand *SC, StringRef Name) {
if (Opt.hasArgStr())
return;
if (!SC->OptionsMap.insert(std::make_pair(Name, &Opt)).second) {
errs() << ProgramName << ": CommandLine Error: Option '" << Name
<< "' registered more than once!\n";
report_fatal_error("inconsistency in registered CommandLine options");
}
// If we're adding this to all sub-commands, add it to the ones that have
// already been registered.
if (SC == &*AllSubCommands) {
for (const auto &Sub : RegisteredSubCommands) {
if (SC == Sub)
continue;
addLiteralOption(Opt, Sub, Name);
}
}
}
void addLiteralOption(Option &Opt, StringRef Name) {
if (Opt.Subs.empty())
addLiteralOption(Opt, &*TopLevelSubCommand, Name);
else {
for (auto SC : Opt.Subs)
addLiteralOption(Opt, SC, Name);
}
}
void addOption(Option *O, SubCommand *SC) {
bool HadErrors = false;
if (O->hasArgStr()) {
// Add argument to the argument map!
if (!SC->OptionsMap.insert(std::make_pair(O->ArgStr, O)).second) {
errs() << ProgramName << ": CommandLine Error: Option '" << O->ArgStr
<< "' registered more than once!\n";
HadErrors = true;
}
}
// Remember information about positional options.
if (O->getFormattingFlag() == cl::Positional)
SC->PositionalOpts.push_back(O);
else if (O->getMiscFlags() & cl::Sink) // Remember sink options
SC->SinkOpts.push_back(O);
else if (O->getNumOccurrencesFlag() == cl::ConsumeAfter) {
if (SC->ConsumeAfterOpt) {
O->error("Cannot specify more than one option with cl::ConsumeAfter!");
HadErrors = true;
}
SC->ConsumeAfterOpt = O;
}
// Fail hard if there were errors. These are strictly unrecoverable and
// indicate serious issues such as conflicting option names or an
// incorrectly
// linked LLVM distribution.
if (HadErrors)
report_fatal_error("inconsistency in registered CommandLine options");
// If we're adding this to all sub-commands, add it to the ones that have
// already been registered.
if (SC == &*AllSubCommands) {
for (const auto &Sub : RegisteredSubCommands) {
if (SC == Sub)
continue;
addOption(O, Sub);
}
}
}
void addOption(Option *O) {
if (O->Subs.empty()) {
addOption(O, &*TopLevelSubCommand);
} else {
for (auto SC : O->Subs)
addOption(O, SC);
}
}
void removeOption(Option *O, SubCommand *SC) {
SmallVector<StringRef, 16> OptionNames;
O->getExtraOptionNames(OptionNames);
if (O->hasArgStr())
OptionNames.push_back(O->ArgStr);
SubCommand &Sub = *SC;
for (auto Name : OptionNames)
Sub.OptionsMap.erase(Name);
if (O->getFormattingFlag() == cl::Positional)
for (auto Opt = Sub.PositionalOpts.begin();
Opt != Sub.PositionalOpts.end(); ++Opt) {
if (*Opt == O) {
Sub.PositionalOpts.erase(Opt);
break;
}
}
else if (O->getMiscFlags() & cl::Sink)
for (auto Opt = Sub.SinkOpts.begin(); Opt != Sub.SinkOpts.end(); ++Opt) {
if (*Opt == O) {
Sub.SinkOpts.erase(Opt);
break;
}
}
else if (O == Sub.ConsumeAfterOpt)
Sub.ConsumeAfterOpt = nullptr;
}
void removeOption(Option *O) {
if (O->Subs.empty())
removeOption(O, &*TopLevelSubCommand);
else {
if (O->isInAllSubCommands()) {
for (auto SC : RegisteredSubCommands)
removeOption(O, SC);
} else {
for (auto SC : O->Subs)
removeOption(O, SC);
}
}
}
bool hasOptions(const SubCommand &Sub) const {
return (!Sub.OptionsMap.empty() || !Sub.PositionalOpts.empty() ||
nullptr != Sub.ConsumeAfterOpt);
}
bool hasOptions() const {
for (const auto &S : RegisteredSubCommands) {
if (hasOptions(*S))
return true;
}
return false;
}
SubCommand *getActiveSubCommand() { return ActiveSubCommand; }
void updateArgStr(Option *O, StringRef NewName, SubCommand *SC) {
SubCommand &Sub = *SC;
if (!Sub.OptionsMap.insert(std::make_pair(NewName, O)).second) {
errs() << ProgramName << ": CommandLine Error: Option '" << O->ArgStr
<< "' registered more than once!\n";
report_fatal_error("inconsistency in registered CommandLine options");
}
Sub.OptionsMap.erase(O->ArgStr);
}
void updateArgStr(Option *O, StringRef NewName) {
if (O->Subs.empty())
updateArgStr(O, NewName, &*TopLevelSubCommand);
else {
for (auto SC : O->Subs)
updateArgStr(O, NewName, SC);
}
}
void printOptionValues();
void registerCategory(OptionCategory *cat) {
assert(count_if(RegisteredOptionCategories,
[cat](const OptionCategory *Category) {
return cat->getName() == Category->getName();
}) == 0 &&
"Duplicate option categories");
RegisteredOptionCategories.insert(cat);
}
void registerSubCommand(SubCommand *sub) {
assert(count_if(RegisteredSubCommands,
[sub](const SubCommand *Sub) {
return (!sub->getName().empty()) &&
(Sub->getName() == sub->getName());
}) == 0 &&
"Duplicate subcommands");
RegisteredSubCommands.insert(sub);
// For all options that have been registered for all subcommands, add the
// option to this subcommand now.
if (sub != &*AllSubCommands) {
for (auto &E : AllSubCommands->OptionsMap) {
Option *O = E.second;
if ((O->isPositional() || O->isSink() || O->isConsumeAfter()) ||
O->hasArgStr())
addOption(O, sub);
else
addLiteralOption(*O, sub, E.first());
}
}
}
void unregisterSubCommand(SubCommand *sub) {
RegisteredSubCommands.erase(sub);
}
iterator_range<typename SmallPtrSet<SubCommand *, 4>::iterator>
getRegisteredSubcommands() {
return make_range(RegisteredSubCommands.begin(),
RegisteredSubCommands.end());
}
void reset() {
ActiveSubCommand = nullptr;
ProgramName.clear();
ProgramOverview = StringRef();
MoreHelp.clear();
RegisteredOptionCategories.clear();
ResetAllOptionOccurrences();
RegisteredSubCommands.clear();
TopLevelSubCommand->reset();
AllSubCommands->reset();
registerSubCommand(&*TopLevelSubCommand);
registerSubCommand(&*AllSubCommands);
}
private:
SubCommand *ActiveSubCommand;
Option *LookupOption(SubCommand &Sub, StringRef &Arg, StringRef &Value);
SubCommand *LookupSubCommand(StringRef Name);
};
} // namespace
static ManagedStatic<CommandLineParser> GlobalParser;
void cl::AddLiteralOption(Option &O, StringRef Name) {
GlobalParser->addLiteralOption(O, Name);
}
extrahelp::extrahelp(StringRef Help) : morehelp(Help) {
GlobalParser->MoreHelp.push_back(Help);
}
void Option::addArgument() {
GlobalParser->addOption(this);
FullyInitialized = true;
}
void Option::removeArgument() { GlobalParser->removeOption(this); }
void Option::setArgStr(StringRef S) {
if (FullyInitialized)
GlobalParser->updateArgStr(this, S);
ArgStr = S;
}
// Initialise the general option category.
OptionCategory llvm::cl::GeneralCategory("General options");
void OptionCategory::registerCategory() {
GlobalParser->registerCategory(this);
}
// A special subcommand representing no subcommand
ManagedStatic<SubCommand> llvm::cl::TopLevelSubCommand;
// A special subcommand that can be used to put an option into all subcommands.
ManagedStatic<SubCommand> llvm::cl::AllSubCommands;
void SubCommand::registerSubCommand() {
GlobalParser->registerSubCommand(this);
}
void SubCommand::unregisterSubCommand() {
GlobalParser->unregisterSubCommand(this);
}
void SubCommand::reset() {
PositionalOpts.clear();
SinkOpts.clear();
OptionsMap.clear();
ConsumeAfterOpt = nullptr;
}
SubCommand::operator bool() const {
return (GlobalParser->getActiveSubCommand() == this);
}
//===----------------------------------------------------------------------===//
// Basic, shared command line option processing machinery.
//
/// LookupOption - Lookup the option specified by the specified option on the
/// command line. If there is a value specified (after an equal sign) return
/// that as well. This assumes that leading dashes have already been stripped.
Option *CommandLineParser::LookupOption(SubCommand &Sub, StringRef &Arg,
StringRef &Value) {
// Reject all dashes.
if (Arg.empty())
return nullptr;
assert(&Sub != &*AllSubCommands);
size_t EqualPos = Arg.find('=');
// If we have an equals sign, remember the value.
if (EqualPos == StringRef::npos) {
// Look up the option.
auto I = Sub.OptionsMap.find(Arg);
if (I == Sub.OptionsMap.end())
return nullptr;
return I != Sub.OptionsMap.end() ? I->second : nullptr;
}
// If the argument before the = is a valid option name, we match. If not,
// return Arg unmolested.
auto I = Sub.OptionsMap.find(Arg.substr(0, EqualPos));
if (I == Sub.OptionsMap.end())
return nullptr;
Value = Arg.substr(EqualPos + 1);
Arg = Arg.substr(0, EqualPos);
return I->second;
}
SubCommand *CommandLineParser::LookupSubCommand(StringRef Name) {
if (Name.empty())
return &*TopLevelSubCommand;
for (auto S : RegisteredSubCommands) {
if (S == &*AllSubCommands)
continue;
if (S->getName().empty())
continue;
if (StringRef(S->getName()) == StringRef(Name))
return S;
}
return &*TopLevelSubCommand;
}
/// LookupNearestOption - Lookup the closest match to the option specified by
/// the specified option on the command line. If there is a value specified
/// (after an equal sign) return that as well. This assumes that leading dashes
/// have already been stripped.
static Option *LookupNearestOption(StringRef Arg,
const StringMap<Option *> &OptionsMap,
std::string &NearestString) {
// Reject all dashes.
if (Arg.empty())
return nullptr;
// Split on any equal sign.
std::pair<StringRef, StringRef> SplitArg = Arg.split('=');
StringRef &LHS = SplitArg.first; // LHS == Arg when no '=' is present.
StringRef &RHS = SplitArg.second;
// Find the closest match.
Option *Best = nullptr;
unsigned BestDistance = 0;
for (StringMap<Option *>::const_iterator it = OptionsMap.begin(),
ie = OptionsMap.end();
it != ie; ++it) {
Option *O = it->second;
SmallVector<StringRef, 16> OptionNames;
O->getExtraOptionNames(OptionNames);
if (O->hasArgStr())
OptionNames.push_back(O->ArgStr);
bool PermitValue = O->getValueExpectedFlag() != cl::ValueDisallowed;
StringRef Flag = PermitValue ? LHS : Arg;
for (auto Name : OptionNames) {
unsigned Distance = StringRef(Name).edit_distance(
Flag, /*AllowReplacements=*/true, /*MaxEditDistance=*/BestDistance);
if (!Best || Distance < BestDistance) {
Best = O;
BestDistance = Distance;
if (RHS.empty() || !PermitValue)
NearestString = Name;
else
NearestString = (Twine(Name) + "=" + RHS).str();
}
}
}
return Best;
}
/// CommaSeparateAndAddOccurrence - A wrapper around Handler->addOccurrence()
/// that does special handling of cl::CommaSeparated options.
static bool CommaSeparateAndAddOccurrence(Option *Handler, unsigned pos,
StringRef ArgName, StringRef Value,
bool MultiArg = false) {
// Check to see if this option accepts a comma separated list of values. If
// it does, we have to split up the value into multiple values.
if (Handler->getMiscFlags() & CommaSeparated) {
StringRef Val(Value);
StringRef::size_type Pos = Val.find(',');
while (Pos != StringRef::npos) {
// Process the portion before the comma.
if (Handler->addOccurrence(pos, ArgName, Val.substr(0, Pos), MultiArg))
return true;
// Erase the portion before the comma, AND the comma.
Val = Val.substr(Pos + 1);
// Check for another comma.
Pos = Val.find(',');
}
Value = Val;
}
return Handler->addOccurrence(pos, ArgName, Value, MultiArg);
}
/// ProvideOption - For Value, this differentiates between an empty value ("")
/// and a null value (StringRef()). The later is accepted for arguments that
/// don't allow a value (-foo) the former is rejected (-foo=).
static inline bool ProvideOption(Option *Handler, StringRef ArgName,
StringRef Value, int argc,
const char *const *argv, int &i) {
// Is this a multi-argument option?
unsigned NumAdditionalVals = Handler->getNumAdditionalVals();
// Enforce value requirements
switch (Handler->getValueExpectedFlag()) {
case ValueRequired:
if (!Value.data()) { // No value specified?
if (i + 1 >= argc)
return Handler->error("requires a value!");
// Steal the next argument, like for '-o filename'
assert(argv && "null check");
Value = StringRef(argv[++i]);
}
break;
case ValueDisallowed:
if (NumAdditionalVals > 0)
return Handler->error("multi-valued option specified"
" with ValueDisallowed modifier!");
if (Value.data())
return Handler->error("does not allow a value! '" + Twine(Value) +
"' specified.");
break;
case ValueOptional:
break;
}
// If this isn't a multi-arg option, just run the handler.
if (NumAdditionalVals == 0)
return CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value);
// If it is, run the handle several times.
bool MultiArg = false;
if (Value.data()) {
if (CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value, MultiArg))
return true;
--NumAdditionalVals;
MultiArg = true;
}
while (NumAdditionalVals > 0) {
if (i + 1 >= argc)
return Handler->error("not enough values!");
assert(argv && "null check");
Value = StringRef(argv[++i]);
if (CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value, MultiArg))
return true;
MultiArg = true;
--NumAdditionalVals;
}
return false;
}
static bool ProvidePositionalOption(Option *Handler, StringRef Arg, int i) {
int Dummy = i;
return ProvideOption(Handler, Handler->ArgStr, Arg, 0, nullptr, Dummy);
}
// Option predicates...
static inline bool isGrouping(const Option *O) {
return O->getFormattingFlag() == cl::Grouping;
}
static inline bool isPrefixedOrGrouping(const Option *O) {
return isGrouping(O) || O->getFormattingFlag() == cl::Prefix;
}
// getOptionPred - Check to see if there are any options that satisfy the
// specified predicate with names that are the prefixes in Name. This is
// checked by progressively stripping characters off of the name, checking to
// see if there options that satisfy the predicate. If we find one, return it,
// otherwise return null.
//
static Option *getOptionPred(StringRef Name, size_t &Length,
bool (*Pred)(const Option *),
const StringMap<Option *> &OptionsMap) {
StringMap<Option *>::const_iterator OMI = OptionsMap.find(Name);
// Loop while we haven't found an option and Name still has at least two
// characters in it (so that the next iteration will not be the empty
// string.
while (OMI == OptionsMap.end() && Name.size() > 1) {
Name = Name.substr(0, Name.size() - 1); // Chop off the last character.
OMI = OptionsMap.find(Name);
}
if (OMI != OptionsMap.end() && Pred(OMI->second)) {
Length = Name.size();
return OMI->second; // Found one!
}
return nullptr; // No option found!
}
/// HandlePrefixedOrGroupedOption - The specified argument string (which started
/// with at least one '-') does not fully match an available option. Check to
/// see if this is a prefix or grouped option. If so, split arg into output an
/// Arg/Value pair and return the Option to parse it with.
static Option *
HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value,
bool &ErrorParsing,
const StringMap<Option *> &OptionsMap) {
if (Arg.size() == 1)
return nullptr;
// Do the lookup!
size_t Length = 0;
Option *PGOpt = getOptionPred(Arg, Length, isPrefixedOrGrouping, OptionsMap);
if (!PGOpt)
return nullptr;
// If the option is a prefixed option, then the value is simply the
// rest of the name... so fall through to later processing, by
// setting up the argument name flags and value fields.
if (PGOpt->getFormattingFlag() == cl::Prefix) {
Value = Arg.substr(Length);
Arg = Arg.substr(0, Length);
assert(OptionsMap.count(Arg) && OptionsMap.find(Arg)->second == PGOpt);
return PGOpt;
}
// This must be a grouped option... handle them now. Grouping options can't
// have values.
assert(isGrouping(PGOpt) && "Broken getOptionPred!");
do {
// Move current arg name out of Arg into OneArgName.
StringRef OneArgName = Arg.substr(0, Length);
Arg = Arg.substr(Length);
// Because ValueRequired is an invalid flag for grouped arguments,
// we don't need to pass argc/argv in.
assert(PGOpt->getValueExpectedFlag() != cl::ValueRequired &&
"Option can not be cl::Grouping AND cl::ValueRequired!");
int Dummy = 0;
ErrorParsing |=
ProvideOption(PGOpt, OneArgName, StringRef(), 0, nullptr, Dummy);
// Get the next grouping option.
PGOpt = getOptionPred(Arg, Length, isGrouping, OptionsMap);
} while (PGOpt && Length != Arg.size());
// Return the last option with Arg cut down to just the last one.
return PGOpt;
}
static bool RequiresValue(const Option *O) {
return O->getNumOccurrencesFlag() == cl::Required ||
O->getNumOccurrencesFlag() == cl::OneOrMore;
}
static bool EatsUnboundedNumberOfValues(const Option *O) {
return O->getNumOccurrencesFlag() == cl::ZeroOrMore ||
O->getNumOccurrencesFlag() == cl::OneOrMore;
}
static bool isWhitespace(char C) { return strchr(" \t\n\r\f\v", C); }
static bool isQuote(char C) { return C == '\"' || C == '\''; }
void cl::TokenizeGNUCommandLine(StringRef Src, StringSaver &Saver,
SmallVectorImpl<const char *> &NewArgv,
bool MarkEOLs) {
SmallString<128> Token;
for (size_t I = 0, E = Src.size(); I != E; ++I) {
// Consume runs of whitespace.
if (Token.empty()) {
while (I != E && isWhitespace(Src[I])) {
// Mark the end of lines in response files
if (MarkEOLs && Src[I] == '\n')
NewArgv.push_back(nullptr);
++I;
}
if (I == E)
break;
}
// Backslash escapes the next character.
if (I + 1 < E && Src[I] == '\\') {
++I; // Skip the escape.
Token.push_back(Src[I]);
continue;
}
// Consume a quoted string.
if (isQuote(Src[I])) {
char Quote = Src[I++];
while (I != E && Src[I] != Quote) {
// Backslash escapes the next character.
if (Src[I] == '\\' && I + 1 != E)
++I;
Token.push_back(Src[I]);
++I;
}
if (I == E)
break;
continue;
}
// End the token if this is whitespace.
if (isWhitespace(Src[I])) {
if (!Token.empty())
NewArgv.push_back(Saver.save(StringRef(Token)).data());
Token.clear();
continue;
}
// This is a normal character. Append it.
Token.push_back(Src[I]);
}
// Append the last token after hitting EOF with no whitespace.
if (!Token.empty())
NewArgv.push_back(Saver.save(StringRef(Token)).data());
// Mark the end of response files
if (MarkEOLs)
NewArgv.push_back(nullptr);
}
/// Backslashes are interpreted in a rather complicated way in the Windows-style
/// command line, because backslashes are used both to separate path and to
/// escape double quote. This method consumes runs of backslashes as well as the
/// following double quote if it's escaped.
///
/// * If an even number of backslashes is followed by a double quote, one
/// backslash is output for every pair of backslashes, and the last double
/// quote remains unconsumed. The double quote will later be interpreted as
/// the start or end of a quoted string in the main loop outside of this
/// function.
///
/// * If an odd number of backslashes is followed by a double quote, one
/// backslash is output for every pair of backslashes, and a double quote is
/// output for the last pair of backslash-double quote. The double quote is
/// consumed in this case.
///
/// * Otherwise, backslashes are interpreted literally.
static size_t parseBackslash(StringRef Src, size_t I, SmallString<128> &Token) {
size_t E = Src.size();
int BackslashCount = 0;
// Skip the backslashes.
do {
++I;
++BackslashCount;
} while (I != E && Src[I] == '\\');
bool FollowedByDoubleQuote = (I != E && Src[I] == '"');
if (FollowedByDoubleQuote) {
Token.append(BackslashCount / 2, '\\');
if (BackslashCount % 2 == 0)
return I - 1;
Token.push_back('"');
return I;
}
Token.append(BackslashCount, '\\');
return I - 1;
}
void cl::TokenizeWindowsCommandLine(StringRef Src, StringSaver &Saver,
SmallVectorImpl<const char *> &NewArgv,
bool MarkEOLs) {
SmallString<128> Token;
// This is a small state machine to consume characters until it reaches the
// end of the source string.
enum { INIT, UNQUOTED, QUOTED } State = INIT;
for (size_t I = 0, E = Src.size(); I != E; ++I) {
// INIT state indicates that the current input index is at the start of
// the string or between tokens.
if (State == INIT) {
if (isWhitespace(Src[I])) {
// Mark the end of lines in response files
if (MarkEOLs && Src[I] == '\n')
NewArgv.push_back(nullptr);
continue;
}
if (Src[I] == '"') {
State = QUOTED;
continue;
}
if (Src[I] == '\\') {
I = parseBackslash(Src, I, Token);
State = UNQUOTED;
continue;
}
Token.push_back(Src[I]);
State = UNQUOTED;
continue;
}
// UNQUOTED state means that it's reading a token not quoted by double
// quotes.
if (State == UNQUOTED) {
// Whitespace means the end of the token.
if (isWhitespace(Src[I])) {
NewArgv.push_back(Saver.save(StringRef(Token)).data());
Token.clear();
State = INIT;
// Mark the end of lines in response files
if (MarkEOLs && Src[I] == '\n')
NewArgv.push_back(nullptr);
continue;
}
if (Src[I] == '"') {
State = QUOTED;
continue;
}
if (Src[I] == '\\') {
I = parseBackslash(Src, I, Token);
continue;
}
Token.push_back(Src[I]);
continue;
}
// QUOTED state means that it's reading a token quoted by double quotes.
if (State == QUOTED) {
if (Src[I] == '"') {
State = UNQUOTED;
continue;
}
if (Src[I] == '\\') {
I = parseBackslash(Src, I, Token);
continue;
}
Token.push_back(Src[I]);
}
}
// Append the last token after hitting EOF with no whitespace.
if (!Token.empty())
NewArgv.push_back(Saver.save(StringRef(Token)).data());
// Mark the end of response files
if (MarkEOLs)
NewArgv.push_back(nullptr);
}
// It is called byte order marker but the UTF-8 BOM is actually not affected
// by the host system's endianness.
static bool hasUTF8ByteOrderMark(ArrayRef<char> S) {
return (S.size() >= 3 && S[0] == '\xef' && S[1] == '\xbb' && S[2] == '\xbf');
}
static bool ExpandResponseFile(StringRef FName, StringSaver &Saver,
TokenizerCallback Tokenizer,
SmallVectorImpl<const char *> &NewArgv,
bool MarkEOLs, bool RelativeNames) {
ErrorOr<std::unique_ptr<MemoryBuffer>> MemBufOrErr =
MemoryBuffer::getFile(FName);
if (!MemBufOrErr)
return false;
MemoryBuffer &MemBuf = *MemBufOrErr.get();
StringRef Str(MemBuf.getBufferStart(), MemBuf.getBufferSize());
// If we have a UTF-16 byte order mark, convert to UTF-8 for parsing.
ArrayRef<char> BufRef(MemBuf.getBufferStart(), MemBuf.getBufferEnd());
std::string UTF8Buf;
if (hasUTF16ByteOrderMark(BufRef)) {
if (!convertUTF16ToUTF8String(BufRef, UTF8Buf))
return false;
Str = StringRef(UTF8Buf);
}
// If we see UTF-8 BOM sequence at the beginning of a file, we shall remove
// these bytes before parsing.
// Reference: http://en.wikipedia.org/wiki/UTF-8#Byte_order_mark
else if (hasUTF8ByteOrderMark(BufRef))
Str = StringRef(BufRef.data() + 3, BufRef.size() - 3);
// Tokenize the contents into NewArgv.
Tokenizer(Str, Saver, NewArgv, MarkEOLs);
// If names of nested response files should be resolved relative to including
// file, replace the included response file names with their full paths
// obtained by required resolution.
if (RelativeNames)
for (unsigned I = 0; I < NewArgv.size(); ++I)
if (NewArgv[I]) {
StringRef Arg = NewArgv[I];
if (Arg.front() == '@') {
StringRef FileName = Arg.drop_front();
if (llvm::sys::path::is_relative(FileName)) {
SmallString<128> ResponseFile;
ResponseFile.append(1, '@');
if (llvm::sys::path::is_relative(FName)) {
SmallString<128> curr_dir;
llvm::sys::fs::current_path(curr_dir);
ResponseFile.append(curr_dir.str());
}
llvm::sys::path::append(
ResponseFile, llvm::sys::path::parent_path(FName), FileName);
NewArgv[I] = Saver.save(ResponseFile.c_str()).data();
}
}
}
return true;
}
/// \brief Expand response files on a command line recursively using the given
/// StringSaver and tokenization strategy.
bool cl::ExpandResponseFiles(StringSaver &Saver, TokenizerCallback Tokenizer,
SmallVectorImpl<const char *> &Argv,
bool MarkEOLs, bool RelativeNames) {
unsigned RspFiles = 0;
bool AllExpanded = true;
// Don't cache Argv.size() because it can change.
for (unsigned I = 0; I != Argv.size();) {
const char *Arg = Argv[I];
// Check if it is an EOL marker
if (Arg == nullptr) {
++I;
continue;
}
if (Arg[0] != '@') {
++I;
continue;
}
// If we have too many response files, leave some unexpanded. This avoids
// crashing on self-referential response files.
if (RspFiles++ > 20)
return false;
// Replace this response file argument with the tokenization of its
// contents. Nested response files are expanded in subsequent iterations.
SmallVector<const char *, 0> ExpandedArgv;
if (!ExpandResponseFile(Arg + 1, Saver, Tokenizer, ExpandedArgv,
MarkEOLs, RelativeNames)) {
// We couldn't read this file, so we leave it in the argument stream and
// move on.
AllExpanded = false;
++I;
continue;
}
Argv.erase(Argv.begin() + I);
Argv.insert(Argv.begin() + I, ExpandedArgv.begin(), ExpandedArgv.end());
}
return AllExpanded;
}
/// ParseEnvironmentOptions - An alternative entry point to the
/// CommandLine library, which allows you to read the program's name
/// from the caller (as PROGNAME) and its command-line arguments from
/// an environment variable (whose name is given in ENVVAR).
///
void cl::ParseEnvironmentOptions(const char *progName, const char *envVar,
const char *Overview) {
// Check args.
assert(progName && "Program name not specified");
assert(envVar && "Environment variable name missing");
// Get the environment variable they want us to parse options out of.
llvm::Optional<std::string> envValue = sys::Process::GetEnv(StringRef(envVar));
if (!envValue)
return;
// Get program's "name", which we wouldn't know without the caller
// telling us.
SmallVector<const char *, 20> newArgv;
BumpPtrAllocator A;
StringSaver Saver(A);
newArgv.push_back(Saver.save(progName).data());
// Parse the value of the environment variable into a "command line"
// and hand it off to ParseCommandLineOptions().
TokenizeGNUCommandLine(*envValue, Saver, newArgv);
int newArgc = static_cast<int>(newArgv.size());
ParseCommandLineOptions(newArgc, &newArgv[0], StringRef(Overview));
}
bool cl::ParseCommandLineOptions(int argc, const char *const *argv,
StringRef Overview, bool IgnoreErrors) {
return GlobalParser->ParseCommandLineOptions(argc, argv, Overview,
IgnoreErrors);
}
void CommandLineParser::ResetAllOptionOccurrences() {
// So that we can parse different command lines multiple times in succession
// we reset all option values to look like they have never been seen before.
for (auto SC : RegisteredSubCommands) {
for (auto &O : SC->OptionsMap)
O.second->reset();
}
}
bool CommandLineParser::ParseCommandLineOptions(int argc,
const char *const *argv,
StringRef Overview,
bool IgnoreErrors) {
assert(hasOptions() && "No options specified!");
// Expand response files.
SmallVector<const char *, 20> newArgv(argv, argv + argc);
BumpPtrAllocator A;
StringSaver Saver(A);
ExpandResponseFiles(Saver, TokenizeGNUCommandLine, newArgv);
argv = &newArgv[0];
argc = static_cast<int>(newArgv.size());
// Copy the program name into ProgName, making sure not to overflow it.
ProgramName = sys::path::filename(StringRef(argv[0]));
ProgramOverview = Overview;
bool ErrorParsing = false;
// Check out the positional arguments to collect information about them.
unsigned NumPositionalRequired = 0;
// Determine whether or not there are an unlimited number of positionals
bool HasUnlimitedPositionals = false;
int FirstArg = 1;
SubCommand *ChosenSubCommand = &*TopLevelSubCommand;
if (argc >= 2 && argv[FirstArg][0] != '-') {
// If the first argument specifies a valid subcommand, start processing
// options from the second argument.
ChosenSubCommand = LookupSubCommand(StringRef(argv[FirstArg]));
if (ChosenSubCommand != &*TopLevelSubCommand)
FirstArg = 2;
}
GlobalParser->ActiveSubCommand = ChosenSubCommand;
assert(ChosenSubCommand);
auto &ConsumeAfterOpt = ChosenSubCommand->ConsumeAfterOpt;
auto &PositionalOpts = ChosenSubCommand->PositionalOpts;
auto &SinkOpts = ChosenSubCommand->SinkOpts;
auto &OptionsMap = ChosenSubCommand->OptionsMap;
if (ConsumeAfterOpt) {
assert(PositionalOpts.size() > 0 &&
"Cannot specify cl::ConsumeAfter without a positional argument!");
}
if (!PositionalOpts.empty()) {
// Calculate how many positional values are _required_.
bool UnboundedFound = false;
for (size_t i = 0, e = PositionalOpts.size(); i != e; ++i) {
Option *Opt = PositionalOpts[i];
if (RequiresValue(Opt))
++NumPositionalRequired;
else if (ConsumeAfterOpt) {
// ConsumeAfter cannot be combined with "optional" positional options
// unless there is only one positional argument...
if (PositionalOpts.size() > 1) {
if (!IgnoreErrors)
Opt->error("error - this positional option will never be matched, "
"because it does not Require a value, and a "
"cl::ConsumeAfter option is active!");
ErrorParsing = true;
}
} else if (UnboundedFound && !Opt->hasArgStr()) {
// This option does not "require" a value... Make sure this option is
// not specified after an option that eats all extra arguments, or this
// one will never get any!
//
if (!IgnoreErrors) {
Opt->error("error - option can never match, because "
"another positional argument will match an "
"unbounded number of values, and this option"
" does not require a value!");
errs() << ProgramName << ": CommandLine Error: Option '"
<< Opt->ArgStr << "' is all messed up!\n";
errs() << PositionalOpts.size();
}
ErrorParsing = true;
}
UnboundedFound |= EatsUnboundedNumberOfValues(Opt);
}
HasUnlimitedPositionals = UnboundedFound || ConsumeAfterOpt;
}
// PositionalVals - A vector of "positional" arguments we accumulate into
// the process at the end.
//
SmallVector<std::pair<StringRef, unsigned>, 4> PositionalVals;
// If the program has named positional arguments, and the name has been run
// across, keep track of which positional argument was named. Otherwise put
// the positional args into the PositionalVals list...
Option *ActivePositionalArg = nullptr;
// Loop over all of the arguments... processing them.
bool DashDashFound = false; // Have we read '--'?
for (int i = FirstArg; i < argc; ++i) {
Option *Handler = nullptr;
Option *NearestHandler = nullptr;
std::string NearestHandlerString;
StringRef Value;
StringRef ArgName = "";
// Check to see if this is a positional argument. This argument is
// considered to be positional if it doesn't start with '-', if it is "-"
// itself, or if we have seen "--" already.
//
if (argv[i][0] != '-' || argv[i][1] == 0 || DashDashFound) {
// Positional argument!
if (ActivePositionalArg) {
ProvidePositionalOption(ActivePositionalArg, StringRef(argv[i]), i);
continue; // We are done!
}
if (!PositionalOpts.empty()) {
PositionalVals.push_back(std::make_pair(StringRef(argv[i]), i));
// All of the positional arguments have been fulfulled, give the rest to
// the consume after option... if it's specified...
//
if (PositionalVals.size() >= NumPositionalRequired && ConsumeAfterOpt) {
for (++i; i < argc; ++i)
PositionalVals.push_back(std::make_pair(StringRef(argv[i]), i));
break; // Handle outside of the argument processing loop...
}
// Delay processing positional arguments until the end...
continue;
}
} else if (argv[i][0] == '-' && argv[i][1] == '-' && argv[i][2] == 0 &&
!DashDashFound) {
DashDashFound = true; // This is the mythical "--"?
continue; // Don't try to process it as an argument itself.
} else if (ActivePositionalArg &&
(ActivePositionalArg->getMiscFlags() & PositionalEatsArgs)) {
// If there is a positional argument eating options, check to see if this
// option is another positional argument. If so, treat it as an argument,
// otherwise feed it to the eating positional.
ArgName = StringRef(argv[i] + 1);
// Eat leading dashes.
while (!ArgName.empty() && ArgName[0] == '-')
ArgName = ArgName.substr(1);
Handler = LookupOption(*ChosenSubCommand, ArgName, Value);
if (!Handler || Handler->getFormattingFlag() != cl::Positional) {
ProvidePositionalOption(ActivePositionalArg, StringRef(argv[i]), i);
continue; // We are done!
}
} else { // We start with a '-', must be an argument.
ArgName = StringRef(argv[i] + 1);
// Eat leading dashes.
while (!ArgName.empty() && ArgName[0] == '-')
ArgName = ArgName.substr(1);
Handler = LookupOption(*ChosenSubCommand, ArgName, Value);
// Check to see if this "option" is really a prefixed or grouped argument.
if (!Handler)
Handler = HandlePrefixedOrGroupedOption(ArgName, Value, ErrorParsing,
OptionsMap);
// Otherwise, look for the closest available option to report to the user
// in the upcoming error.
if (!Handler && SinkOpts.empty())
NearestHandler =
LookupNearestOption(ArgName, OptionsMap, NearestHandlerString);
}
if (!Handler) {
if (SinkOpts.empty()) {
if (!IgnoreErrors) {
errs() << ProgramName << ": Unknown command line argument '"
<< argv[i] << "'. Try: '" << argv[0] << " -help'\n";
if (NearestHandler) {
// If we know a near match, report it as well.
errs() << ProgramName << ": Did you mean '-" << NearestHandlerString
<< "'?\n";
}
}
ErrorParsing = true;
} else {
for (SmallVectorImpl<Option *>::iterator I = SinkOpts.begin(),
E = SinkOpts.end();
I != E; ++I)
(*I)->addOccurrence(i, "", StringRef(argv[i]));
}
continue;
}
// If this is a named positional argument, just remember that it is the
// active one...
if (Handler->getFormattingFlag() == cl::Positional)
ActivePositionalArg = Handler;
else
ErrorParsing |= ProvideOption(Handler, ArgName, Value, argc, argv, i);
}
// Check and handle positional arguments now...
if (NumPositionalRequired > PositionalVals.size()) {
if (!IgnoreErrors) {
errs() << ProgramName
<< ": Not enough positional command line arguments specified!\n"
<< "Must specify at least " << NumPositionalRequired
<< " positional argument" << (NumPositionalRequired > 1 ? "s" : "")
<< ": See: " << argv[0] << " - help\n";
}
ErrorParsing = true;
} else if (!HasUnlimitedPositionals &&
PositionalVals.size() > PositionalOpts.size()) {
if (!IgnoreErrors) {
errs() << ProgramName << ": Too many positional arguments specified!\n"
<< "Can specify at most " << PositionalOpts.size()
<< " positional arguments: See: " << argv[0] << " -help\n";
}
ErrorParsing = true;
} else if (!ConsumeAfterOpt) {
// Positional args have already been handled if ConsumeAfter is specified.
unsigned ValNo = 0, NumVals = static_cast<unsigned>(PositionalVals.size());
for (size_t i = 0, e = PositionalOpts.size(); i != e; ++i) {
if (RequiresValue(PositionalOpts[i])) {
ProvidePositionalOption(PositionalOpts[i], PositionalVals[ValNo].first,
PositionalVals[ValNo].second);
ValNo++;
--NumPositionalRequired; // We fulfilled our duty...
}
// If we _can_ give this option more arguments, do so now, as long as we
// do not give it values that others need. 'Done' controls whether the
// option even _WANTS_ any more.
//
bool Done = PositionalOpts[i]->getNumOccurrencesFlag() == cl::Required;
while (NumVals - ValNo > NumPositionalRequired && !Done) {
switch (PositionalOpts[i]->getNumOccurrencesFlag()) {
case cl::Optional:
Done = true; // Optional arguments want _at most_ one value
LLVM_FALLTHROUGH;
case cl::ZeroOrMore: // Zero or more will take all they can get...
case cl::OneOrMore: // One or more will take all they can get...
ProvidePositionalOption(PositionalOpts[i],
PositionalVals[ValNo].first,
PositionalVals[ValNo].second);
ValNo++;
break;
default:
llvm_unreachable("Internal error, unexpected NumOccurrences flag in "
"positional argument processing!");
}
}
}
} else {
assert(ConsumeAfterOpt && NumPositionalRequired <= PositionalVals.size());
unsigned ValNo = 0;
for (size_t j = 1, e = PositionalOpts.size(); j != e; ++j)
if (RequiresValue(PositionalOpts[j])) {
ErrorParsing |= ProvidePositionalOption(PositionalOpts[j],
PositionalVals[ValNo].first,
PositionalVals[ValNo].second);
ValNo++;
}
// Handle the case where there is just one positional option, and it's
// optional. In this case, we want to give JUST THE FIRST option to the
// positional option and keep the rest for the consume after. The above
// loop would have assigned no values to positional options in this case.
//
if (PositionalOpts.size() == 1 && ValNo == 0 && !PositionalVals.empty()) {
ErrorParsing |= ProvidePositionalOption(PositionalOpts[0],
PositionalVals[ValNo].first,
PositionalVals[ValNo].second);
ValNo++;
}
// Handle over all of the rest of the arguments to the
// cl::ConsumeAfter command line option...
for (; ValNo != PositionalVals.size(); ++ValNo)
ErrorParsing |=
ProvidePositionalOption(ConsumeAfterOpt, PositionalVals[ValNo].first,
PositionalVals[ValNo].second);
}
// Loop over args and make sure all required args are specified!
for (const auto &Opt : OptionsMap) {
switch (Opt.second->getNumOccurrencesFlag()) {
case Required:
case OneOrMore:
if (Opt.second->getNumOccurrences() == 0) {
Opt.second->error("must be specified at least once!");
ErrorParsing = true;
}
LLVM_FALLTHROUGH;
default:
break;
}
}
// Now that we know if -debug is specified, we can use it.
// Note that if ReadResponseFiles == true, this must be done before the
// memory allocated for the expanded command line is free()d below.
DEBUG(dbgs() << "Args: ";
for (int i = 0; i < argc; ++i) dbgs() << argv[i] << ' ';
dbgs() << '\n';);
// Free all of the memory allocated to the map. Command line options may only
// be processed once!
MoreHelp.clear();
// If we had an error processing our arguments, don't let the program execute
if (ErrorParsing) {
if (!IgnoreErrors)
exit(1);
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Option Base class implementation
//
bool Option::error(const Twine &Message, StringRef ArgName) {
if (!ArgName.data())
ArgName = ArgStr;
if (ArgName.empty())
errs() << HelpStr; // Be nice for positional arguments
else
errs() << GlobalParser->ProgramName << ": for the -" << ArgName;
errs() << " option: " << Message << "\n";
return true;
}
bool Option::addOccurrence(unsigned pos, StringRef ArgName, StringRef Value,
bool MultiArg) {
if (!MultiArg)
NumOccurrences++; // Increment the number of times we have been seen
switch (getNumOccurrencesFlag()) {
case Optional:
if (NumOccurrences > 1)
return error("may only occur zero or one times!", ArgName);
break;
case Required:
if (NumOccurrences > 1)
return error("must occur exactly one time!", ArgName);
LLVM_FALLTHROUGH;
case OneOrMore:
case ZeroOrMore:
case ConsumeAfter:
break;
}
return handleOccurrence(pos, ArgName, Value);
}
// getValueStr - Get the value description string, using "DefaultMsg" if nothing
// has been specified yet.
//
static StringRef getValueStr(const Option &O, StringRef DefaultMsg) {
if (O.ValueStr.empty())
return DefaultMsg;
return O.ValueStr;
}
//===----------------------------------------------------------------------===//
// cl::alias class implementation
//
// Return the width of the option tag for printing...
size_t alias::getOptionWidth() const { return ArgStr.size() + 6; }
static void printHelpStr(StringRef HelpStr, size_t Indent,
size_t FirstLineIndentedBy) {
std::pair<StringRef, StringRef> Split = HelpStr.split('\n');
outs().indent(Indent - FirstLineIndentedBy) << " - " << Split.first << "\n";
while (!Split.second.empty()) {
Split = Split.second.split('\n');
outs().indent(Indent) << Split.first << "\n";
}
}
// Print out the option for the alias.
void alias::printOptionInfo(size_t GlobalWidth) const {
outs() << " -" << ArgStr;
printHelpStr(HelpStr, GlobalWidth, ArgStr.size() + 6);
}
//===----------------------------------------------------------------------===//
// Parser Implementation code...
//
// basic_parser implementation
//
// Return the width of the option tag for printing...
size_t basic_parser_impl::getOptionWidth(const Option &O) const {
size_t Len = O.ArgStr.size();
auto ValName = getValueName();
if (!ValName.empty())
Len += getValueStr(O, ValName).size() + 3;
return Len + 6;
}
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
void basic_parser_impl::printOptionInfo(const Option &O,
size_t GlobalWidth) const {
outs() << " -" << O.ArgStr;
auto ValName = getValueName();
if (!ValName.empty())
outs() << "=<" << getValueStr(O, ValName) << '>';
printHelpStr(O.HelpStr, GlobalWidth, getOptionWidth(O));
}
void basic_parser_impl::printOptionName(const Option &O,
size_t GlobalWidth) const {
outs() << " -" << O.ArgStr;
outs().indent(GlobalWidth - O.ArgStr.size());
}
// parser<bool> implementation
//
bool parser<bool>::parse(Option &O, StringRef ArgName, StringRef Arg,
bool &Value) {
if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
Arg == "1") {
Value = true;
return false;
}
if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") {
Value = false;
return false;
}
return O.error("'" + Arg +
"' is invalid value for boolean argument! Try 0 or 1");
}
// parser<boolOrDefault> implementation
//
bool parser<boolOrDefault>::parse(Option &O, StringRef ArgName, StringRef Arg,
boolOrDefault &Value) {
if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
Arg == "1") {
Value = BOU_TRUE;
return false;
}
if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") {
Value = BOU_FALSE;
return false;
}
return O.error("'" + Arg +
"' is invalid value for boolean argument! Try 0 or 1");
}
// parser<int> implementation
//
bool parser<int>::parse(Option &O, StringRef ArgName, StringRef Arg,
int &Value) {
if (Arg.getAsInteger(0, Value))
return O.error("'" + Arg + "' value invalid for integer argument!");
return false;
}
// parser<unsigned> implementation
//
bool parser<unsigned>::parse(Option &O, StringRef ArgName, StringRef Arg,
unsigned &Value) {
if (Arg.getAsInteger(0, Value))
return O.error("'" + Arg + "' value invalid for uint argument!");
return false;
}
// parser<unsigned long long> implementation
//
bool parser<unsigned long long>::parse(Option &O, StringRef ArgName,
StringRef Arg,
unsigned long long &Value) {
if (Arg.getAsInteger(0, Value))
return O.error("'" + Arg + "' value invalid for uint argument!");
return false;
}
// parser<double>/parser<float> implementation
//
static bool parseDouble(Option &O, StringRef Arg, double &Value) {
SmallString<32> TmpStr(Arg.begin(), Arg.end());
const char *ArgStart = TmpStr.c_str();
char *End;
Value = strtod(ArgStart, &End);
if (*End != 0)
return O.error("'" + Arg + "' value invalid for floating point argument!");
return false;
}
bool parser<double>::parse(Option &O, StringRef ArgName, StringRef Arg,
double &Val) {
return parseDouble(O, Arg, Val);
}
bool parser<float>::parse(Option &O, StringRef ArgName, StringRef Arg,
float &Val) {
double dVal;
if (parseDouble(O, Arg, dVal))
return true;
Val = (float)dVal;
return false;
}
// generic_parser_base implementation
//
// findOption - Return the option number corresponding to the specified
// argument string. If the option is not found, getNumOptions() is returned.
//
unsigned generic_parser_base::findOption(StringRef Name) {
unsigned e = getNumOptions();
for (unsigned i = 0; i != e; ++i) {
if (getOption(i) == Name)
return i;
}
return e;
}
// Return the width of the option tag for printing...
size_t generic_parser_base::getOptionWidth(const Option &O) const {
if (O.hasArgStr()) {
size_t Size = O.ArgStr.size() + 6;
for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
Size = std::max(Size, getOption(i).size() + 8);
return Size;
} else {
size_t BaseSize = 0;
for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
BaseSize = std::max(BaseSize, getOption(i).size() + 8);
return BaseSize;
}
}
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
void generic_parser_base::printOptionInfo(const Option &O,
size_t GlobalWidth) const {
if (O.hasArgStr()) {
outs() << " -" << O.ArgStr;
printHelpStr(O.HelpStr, GlobalWidth, O.ArgStr.size() + 6);
for (unsigned i = 0, e = getNumOptions(); i != e; ++i) {
size_t NumSpaces = GlobalWidth - getOption(i).size() - 8;
outs() << " =" << getOption(i);
outs().indent(NumSpaces) << " - " << getDescription(i) << '\n';
}
} else {
if (!O.HelpStr.empty())
outs() << " " << O.HelpStr << '\n';
for (unsigned i = 0, e = getNumOptions(); i != e; ++i) {
auto Option = getOption(i);
outs() << " -" << Option;
printHelpStr(getDescription(i), GlobalWidth, Option.size() + 8);
}
}
}
static const size_t MaxOptWidth = 8; // arbitrary spacing for printOptionDiff
// printGenericOptionDiff - Print the value of this option and it's default.
//
// "Generic" options have each value mapped to a name.
void generic_parser_base::printGenericOptionDiff(
const Option &O, const GenericOptionValue &Value,
const GenericOptionValue &Default, size_t GlobalWidth) const {
outs() << " -" << O.ArgStr;
outs().indent(GlobalWidth - O.ArgStr.size());
unsigned NumOpts = getNumOptions();
for (unsigned i = 0; i != NumOpts; ++i) {
if (Value.compare(getOptionValue(i)))
continue;
outs() << "= " << getOption(i);
size_t L = getOption(i).size();
size_t NumSpaces = MaxOptWidth > L ? MaxOptWidth - L : 0;
outs().indent(NumSpaces) << " (default: ";
for (unsigned j = 0; j != NumOpts; ++j) {
if (Default.compare(getOptionValue(j)))
continue;
outs() << getOption(j);
break;
}
outs() << ")\n";
return;
}
outs() << "= *unknown option value*\n";
}
// printOptionDiff - Specializations for printing basic value types.
//
#define PRINT_OPT_DIFF(T) \
void parser<T>::printOptionDiff(const Option &O, T V, OptionValue<T> D, \
size_t GlobalWidth) const { \
printOptionName(O, GlobalWidth); \
std::string Str; \
{ \
raw_string_ostream SS(Str); \
SS << V; \
} \
outs() << "= " << Str; \
size_t NumSpaces = \
MaxOptWidth > Str.size() ? MaxOptWidth - Str.size() : 0; \
outs().indent(NumSpaces) << " (default: "; \
if (D.hasValue()) \
outs() << D.getValue(); \
else \
outs() << "*no default*"; \
outs() << ")\n"; \
}
PRINT_OPT_DIFF(bool)
PRINT_OPT_DIFF(boolOrDefault)
PRINT_OPT_DIFF(int)
PRINT_OPT_DIFF(unsigned)
PRINT_OPT_DIFF(unsigned long long)
PRINT_OPT_DIFF(double)
PRINT_OPT_DIFF(float)
PRINT_OPT_DIFF(char)
void parser<std::string>::printOptionDiff(const Option &O, StringRef V,
const OptionValue<std::string> &D,
size_t GlobalWidth) const {
printOptionName(O, GlobalWidth);
outs() << "= " << V;
size_t NumSpaces = MaxOptWidth > V.size() ? MaxOptWidth - V.size() : 0;
outs().indent(NumSpaces) << " (default: ";
if (D.hasValue())
outs() << D.getValue();
else
outs() << "*no default*";
outs() << ")\n";
}
// Print a placeholder for options that don't yet support printOptionDiff().
void basic_parser_impl::printOptionNoValue(const Option &O,
size_t GlobalWidth) const {
printOptionName(O, GlobalWidth);
outs() << "= *cannot print option value*\n";
}
//===----------------------------------------------------------------------===//
// -help and -help-hidden option implementation
//
static int OptNameCompare(const std::pair<const char *, Option *> *LHS,
const std::pair<const char *, Option *> *RHS) {
return strcmp(LHS->first, RHS->first);
}
static int SubNameCompare(const std::pair<const char *, SubCommand *> *LHS,
const std::pair<const char *, SubCommand *> *RHS) {
return strcmp(LHS->first, RHS->first);
}
// Copy Options into a vector so we can sort them as we like.
static void sortOpts(StringMap<Option *> &OptMap,
SmallVectorImpl<std::pair<const char *, Option *>> &Opts,
bool ShowHidden) {
SmallPtrSet<Option *, 32> OptionSet; // Duplicate option detection.
for (StringMap<Option *>::iterator I = OptMap.begin(), E = OptMap.end();
I != E; ++I) {
// Ignore really-hidden options.
if (I->second->getOptionHiddenFlag() == ReallyHidden)
continue;
// Unless showhidden is set, ignore hidden flags.
if (I->second->getOptionHiddenFlag() == Hidden && !ShowHidden)
continue;
// If we've already seen this option, don't add it to the list again.
if (!OptionSet.insert(I->second).second)
continue;
Opts.push_back(
std::pair<const char *, Option *>(I->getKey().data(), I->second));
}
// Sort the options list alphabetically.
array_pod_sort(Opts.begin(), Opts.end(), OptNameCompare);
}
static void
sortSubCommands(const SmallPtrSetImpl<SubCommand *> &SubMap,
SmallVectorImpl<std::pair<const char *, SubCommand *>> &Subs) {
for (const auto &S : SubMap) {
if (S->getName().empty())
continue;
Subs.push_back(std::make_pair(S->getName().data(), S));
}
array_pod_sort(Subs.begin(), Subs.end(), SubNameCompare);
}
namespace {
class HelpPrinter {
protected:
const bool ShowHidden;
typedef SmallVector<std::pair<const char *, Option *>, 128>
StrOptionPairVector;
typedef SmallVector<std::pair<const char *, SubCommand *>, 128>
StrSubCommandPairVector;
// Print the options. Opts is assumed to be alphabetically sorted.
virtual void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) {
for (size_t i = 0, e = Opts.size(); i != e; ++i)
Opts[i].second->printOptionInfo(MaxArgLen);
}
void printSubCommands(StrSubCommandPairVector &Subs, size_t MaxSubLen) {
for (const auto &S : Subs) {
outs() << " " << S.first;
if (!S.second->getDescription().empty()) {
outs().indent(MaxSubLen - strlen(S.first));
outs() << " - " << S.second->getDescription();
}
outs() << "\n";
}
}
public:
explicit HelpPrinter(bool showHidden) : ShowHidden(showHidden) {}
virtual ~HelpPrinter() {}
// Invoke the printer.
void operator=(bool Value) {
if (!Value)
return;
SubCommand *Sub = GlobalParser->getActiveSubCommand();
auto &OptionsMap = Sub->OptionsMap;
auto &PositionalOpts = Sub->PositionalOpts;
auto &ConsumeAfterOpt = Sub->ConsumeAfterOpt;
StrOptionPairVector Opts;
sortOpts(OptionsMap, Opts, ShowHidden);
StrSubCommandPairVector Subs;
sortSubCommands(GlobalParser->RegisteredSubCommands, Subs);
if (!GlobalParser->ProgramOverview.empty())
outs() << "OVERVIEW: " << GlobalParser->ProgramOverview << "\n";
if (Sub == &*TopLevelSubCommand) {
outs() << "USAGE: " << GlobalParser->ProgramName;
if (Subs.size() > 2)
outs() << " [subcommand]";
outs() << " [options]";
} else {
if (!Sub->getDescription().empty()) {
outs() << "SUBCOMMAND '" << Sub->getName()
<< "': " << Sub->getDescription() << "\n\n";
}
outs() << "USAGE: " << GlobalParser->ProgramName << " " << Sub->getName()
<< " [options]";
}
for (auto Opt : PositionalOpts) {
if (Opt->hasArgStr())
outs() << " --" << Opt->ArgStr;
outs() << " " << Opt->HelpStr;
}
// Print the consume after option info if it exists...
if (ConsumeAfterOpt)
outs() << " " << ConsumeAfterOpt->HelpStr;
if (Sub == &*TopLevelSubCommand && !Subs.empty()) {
// Compute the maximum subcommand length...
size_t MaxSubLen = 0;
for (size_t i = 0, e = Subs.size(); i != e; ++i)
MaxSubLen = std::max(MaxSubLen, strlen(Subs[i].first));
outs() << "\n\n";
outs() << "SUBCOMMANDS:\n\n";
printSubCommands(Subs, MaxSubLen);
outs() << "\n";
outs() << " Type \"" << GlobalParser->ProgramName
<< " <subcommand> -help\" to get more help on a specific "
"subcommand";
}
outs() << "\n\n";
// Compute the maximum argument length...
size_t MaxArgLen = 0;
for (size_t i = 0, e = Opts.size(); i != e; ++i)
MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth());
outs() << "OPTIONS:\n";
printOptions(Opts, MaxArgLen);
// Print any extra help the user has declared.
for (auto I : GlobalParser->MoreHelp)
outs() << I;
GlobalParser->MoreHelp.clear();
// Halt the program since help information was printed
exit(0);
}
};
class CategorizedHelpPrinter : public HelpPrinter {
public:
explicit CategorizedHelpPrinter(bool showHidden) : HelpPrinter(showHidden) {}
// Helper function for printOptions().
// It shall return a negative value if A's name should be lexicographically
// ordered before B's name. It returns a value greater equal zero otherwise.
static int OptionCategoryCompare(OptionCategory *const *A,
OptionCategory *const *B) {
return (*A)->getName() == (*B)->getName();
}
// Make sure we inherit our base class's operator=()
using HelpPrinter::operator=;
protected:
void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) override {
std::vector<OptionCategory *> SortedCategories;
std::map<OptionCategory *, std::vector<Option *>> CategorizedOptions;
// Collect registered option categories into vector in preparation for
// sorting.
for (auto I = GlobalParser->RegisteredOptionCategories.begin(),
E = GlobalParser->RegisteredOptionCategories.end();
I != E; ++I) {
SortedCategories.push_back(*I);
}
// Sort the different option categories alphabetically.
assert(SortedCategories.size() > 0 && "No option categories registered!");
array_pod_sort(SortedCategories.begin(), SortedCategories.end(),
OptionCategoryCompare);
// Create map to empty vectors.
for (std::vector<OptionCategory *>::const_iterator
I = SortedCategories.begin(),
E = SortedCategories.end();
I != E; ++I)
CategorizedOptions[*I] = std::vector<Option *>();
// Walk through pre-sorted options and assign into categories.
// Because the options are already alphabetically sorted the
// options within categories will also be alphabetically sorted.
for (size_t I = 0, E = Opts.size(); I != E; ++I) {
Option *Opt = Opts[I].second;
assert(CategorizedOptions.count(Opt->Category) > 0 &&
"Option has an unregistered category");
CategorizedOptions[Opt->Category].push_back(Opt);
}
// Now do printing.
for (std::vector<OptionCategory *>::const_iterator
Category = SortedCategories.begin(),
E = SortedCategories.end();
Category != E; ++Category) {
// Hide empty categories for -help, but show for -help-hidden.
const auto &CategoryOptions = CategorizedOptions[*Category];
bool IsEmptyCategory = CategoryOptions.empty();
if (!ShowHidden && IsEmptyCategory)
continue;
// Print category information.
outs() << "\n";
outs() << (*Category)->getName() << ":\n";
// Check if description is set.
if (!(*Category)->getDescription().empty())
outs() << (*Category)->getDescription() << "\n\n";
else
outs() << "\n";
// When using -help-hidden explicitly state if the category has no
// options associated with it.
if (IsEmptyCategory) {
outs() << " This option category has no options.\n";
continue;
}
// Loop over the options in the category and print.
for (const Option *Opt : CategoryOptions)
Opt->printOptionInfo(MaxArgLen);
}
}
};
// This wraps the Uncategorizing and Categorizing printers and decides
// at run time which should be invoked.
class HelpPrinterWrapper {
private:
HelpPrinter &UncategorizedPrinter;
CategorizedHelpPrinter &CategorizedPrinter;
public:
explicit HelpPrinterWrapper(HelpPrinter &UncategorizedPrinter,
CategorizedHelpPrinter &CategorizedPrinter)
: UncategorizedPrinter(UncategorizedPrinter),
CategorizedPrinter(CategorizedPrinter) {}
// Invoke the printer.
void operator=(bool Value);
};
} // End anonymous namespace
// Declare the four HelpPrinter instances that are used to print out help, or
// help-hidden as an uncategorized list or in categories.
static HelpPrinter UncategorizedNormalPrinter(false);
static HelpPrinter UncategorizedHiddenPrinter(true);
static CategorizedHelpPrinter CategorizedNormalPrinter(false);
static CategorizedHelpPrinter CategorizedHiddenPrinter(true);
// Declare HelpPrinter wrappers that will decide whether or not to invoke
// a categorizing help printer
static HelpPrinterWrapper WrappedNormalPrinter(UncategorizedNormalPrinter,
CategorizedNormalPrinter);
static HelpPrinterWrapper WrappedHiddenPrinter(UncategorizedHiddenPrinter,
CategorizedHiddenPrinter);
// Define a category for generic options that all tools should have.
static cl::OptionCategory GenericCategory("Generic Options");
// Define uncategorized help printers.
// -help-list is hidden by default because if Option categories are being used
// then -help behaves the same as -help-list.
static cl::opt<HelpPrinter, true, parser<bool>> HLOp(
"help-list",
cl::desc("Display list of available options (-help-list-hidden for more)"),
cl::location(UncategorizedNormalPrinter), cl::Hidden, cl::ValueDisallowed,
cl::cat(GenericCategory), cl::sub(*AllSubCommands));
static cl::opt<HelpPrinter, true, parser<bool>>
HLHOp("help-list-hidden", cl::desc("Display list of all available options"),
cl::location(UncategorizedHiddenPrinter), cl::Hidden,
cl::ValueDisallowed, cl::cat(GenericCategory),
cl::sub(*AllSubCommands));
// Define uncategorized/categorized help printers. These printers change their
// behaviour at runtime depending on whether one or more Option categories have
// been declared.
static cl::opt<HelpPrinterWrapper, true, parser<bool>>
HOp("help", cl::desc("Display available options (-help-hidden for more)"),
cl::location(WrappedNormalPrinter), cl::ValueDisallowed,
cl::cat(GenericCategory), cl::sub(*AllSubCommands));
static cl::opt<HelpPrinterWrapper, true, parser<bool>>
HHOp("help-hidden", cl::desc("Display all available options"),
cl::location(WrappedHiddenPrinter), cl::Hidden, cl::ValueDisallowed,
cl::cat(GenericCategory), cl::sub(*AllSubCommands));
static cl::opt<bool> PrintOptions(
"print-options",
cl::desc("Print non-default options after command line parsing"),
cl::Hidden, cl::init(false), cl::cat(GenericCategory),
cl::sub(*AllSubCommands));
static cl::opt<bool> PrintAllOptions(
"print-all-options",
cl::desc("Print all option values after command line parsing"), cl::Hidden,
cl::init(false), cl::cat(GenericCategory), cl::sub(*AllSubCommands));
void HelpPrinterWrapper::operator=(bool Value) {
if (!Value)
return;
// Decide which printer to invoke. If more than one option category is
// registered then it is useful to show the categorized help instead of
// uncategorized help.
if (GlobalParser->RegisteredOptionCategories.size() > 1) {
// unhide -help-list option so user can have uncategorized output if they
// want it.
HLOp.setHiddenFlag(NotHidden);
CategorizedPrinter = true; // Invoke categorized printer
} else
UncategorizedPrinter = true; // Invoke uncategorized printer
}
// Print the value of each option.
void cl::PrintOptionValues() { GlobalParser->printOptionValues(); }
void CommandLineParser::printOptionValues() {
if (!PrintOptions && !PrintAllOptions)
return;
SmallVector<std::pair<const char *, Option *>, 128> Opts;
sortOpts(ActiveSubCommand->OptionsMap, Opts, /*ShowHidden*/ true);
// Compute the maximum argument length...
size_t MaxArgLen = 0;
for (size_t i = 0, e = Opts.size(); i != e; ++i)
MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth());
for (size_t i = 0, e = Opts.size(); i != e; ++i)
Opts[i].second->printOptionValue(MaxArgLen, PrintAllOptions);
}
static void (*OverrideVersionPrinter)() = nullptr;
static std::vector<void (*)()> *ExtraVersionPrinters = nullptr;
namespace {
class VersionPrinter {
public:
void print() {
raw_ostream &OS = outs();
#ifdef PACKAGE_VENDOR
OS << PACKAGE_VENDOR << " ";
#else
OS << "LLVM (http://llvm.org/):\n ";
#endif
OS << PACKAGE_NAME << " version " << PACKAGE_VERSION;
#ifdef LLVM_VERSION_INFO
OS << " " << LLVM_VERSION_INFO;
#endif
OS << "\n ";
#ifndef __OPTIMIZE__
OS << "DEBUG build";
#else
OS << "Optimized build";
#endif
#ifndef NDEBUG
OS << " with assertions";
#endif
std::string CPU = sys::getHostCPUName();
if (CPU == "generic")
CPU = "(unknown)";
OS << ".\n"
<< " Default target: " << sys::getDefaultTargetTriple() << '\n'
<< " Host CPU: " << CPU << '\n';
}
void operator=(bool OptionWasSpecified) {
if (!OptionWasSpecified)
return;
if (OverrideVersionPrinter != nullptr) {
(*OverrideVersionPrinter)();
exit(0);
}
print();
// Iterate over any registered extra printers and call them to add further
// information.
if (ExtraVersionPrinters != nullptr) {
outs() << '\n';
for (std::vector<void (*)()>::iterator I = ExtraVersionPrinters->begin(),
E = ExtraVersionPrinters->end();
I != E; ++I)
(*I)();
}
exit(0);
}
};
} // End anonymous namespace
// Define the --version option that prints out the LLVM version for the tool
static VersionPrinter VersionPrinterInstance;
static cl::opt<VersionPrinter, true, parser<bool>>
VersOp("version", cl::desc("Display the version of this program"),
cl::location(VersionPrinterInstance), cl::ValueDisallowed,
cl::cat(GenericCategory));
// Utility function for printing the help message.
void cl::PrintHelpMessage(bool Hidden, bool Categorized) {
// This looks weird, but it actually prints the help message. The Printers are
// types of HelpPrinter and the help gets printed when its operator= is
// invoked. That's because the "normal" usages of the help printer is to be
// assigned true/false depending on whether -help or -help-hidden was given or
// not. Since we're circumventing that we have to make it look like -help or
// -help-hidden were given, so we assign true.
if (!Hidden && !Categorized)
UncategorizedNormalPrinter = true;
else if (!Hidden && Categorized)
CategorizedNormalPrinter = true;
else if (Hidden && !Categorized)
UncategorizedHiddenPrinter = true;
else
CategorizedHiddenPrinter = true;
}
/// Utility function for printing version number.
void cl::PrintVersionMessage() { VersionPrinterInstance.print(); }
void cl::SetVersionPrinter(void (*func)()) { OverrideVersionPrinter = func; }
void cl::AddExtraVersionPrinter(void (*func)()) {
if (!ExtraVersionPrinters)
ExtraVersionPrinters = new std::vector<void (*)()>;
ExtraVersionPrinters->push_back(func);
}
StringMap<Option *> &cl::getRegisteredOptions(SubCommand &Sub) {
auto &Subs = GlobalParser->RegisteredSubCommands;
(void)Subs;
assert(is_contained(Subs, &Sub));
return Sub.OptionsMap;
}
iterator_range<typename SmallPtrSet<SubCommand *, 4>::iterator>
cl::getRegisteredSubcommands() {
return GlobalParser->getRegisteredSubcommands();
}
void cl::HideUnrelatedOptions(cl::OptionCategory &Category, SubCommand &Sub) {
for (auto &I : Sub.OptionsMap) {
if (I.second->Category != &Category &&
I.second->Category != &GenericCategory)
I.second->setHiddenFlag(cl::ReallyHidden);
}
}
void cl::HideUnrelatedOptions(ArrayRef<const cl::OptionCategory *> Categories,
SubCommand &Sub) {
auto CategoriesBegin = Categories.begin();
auto CategoriesEnd = Categories.end();
for (auto &I : Sub.OptionsMap) {
if (std::find(CategoriesBegin, CategoriesEnd, I.second->Category) ==
CategoriesEnd &&
I.second->Category != &GenericCategory)
I.second->setHiddenFlag(cl::ReallyHidden);
}
}
void cl::ResetCommandLineParser() { GlobalParser->reset(); }
void cl::ResetAllOptionOccurrences() {
GlobalParser->ResetAllOptionOccurrences();
}
void LLVMParseCommandLineOptions(int argc, const char *const *argv,
const char *Overview) {
llvm::cl::ParseCommandLineOptions(argc, argv, StringRef(Overview), true);
}