// SPDX-License-Identifier: GPL-2.0+
/*
* Atheros AR71xx / AR9xxx GMAC driver
*
* Copyright (C) 2016 Marek Vasut <marex@denx.de>
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <miiphy.h>
#include <malloc.h>
#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/mii.h>
#include <wait_bit.h>
#include <asm/io.h>
#include <mach/ath79.h>
DECLARE_GLOBAL_DATA_PTR;
enum ag7xxx_model {
AG7XXX_MODEL_AG933X,
AG7XXX_MODEL_AG934X,
};
/* MAC Configuration 1 */
#define AG7XXX_ETH_CFG1 0x00
#define AG7XXX_ETH_CFG1_SOFT_RST BIT(31)
#define AG7XXX_ETH_CFG1_RX_RST BIT(19)
#define AG7XXX_ETH_CFG1_TX_RST BIT(18)
#define AG7XXX_ETH_CFG1_LOOPBACK BIT(8)
#define AG7XXX_ETH_CFG1_RX_EN BIT(2)
#define AG7XXX_ETH_CFG1_TX_EN BIT(0)
/* MAC Configuration 2 */
#define AG7XXX_ETH_CFG2 0x04
#define AG7XXX_ETH_CFG2_IF_1000 BIT(9)
#define AG7XXX_ETH_CFG2_IF_10_100 BIT(8)
#define AG7XXX_ETH_CFG2_IF_SPEED_MASK (3 << 8)
#define AG7XXX_ETH_CFG2_HUGE_FRAME_EN BIT(5)
#define AG7XXX_ETH_CFG2_LEN_CHECK BIT(4)
#define AG7XXX_ETH_CFG2_PAD_CRC_EN BIT(2)
#define AG7XXX_ETH_CFG2_FDX BIT(0)
/* MII Configuration */
#define AG7XXX_ETH_MII_MGMT_CFG 0x20
#define AG7XXX_ETH_MII_MGMT_CFG_RESET BIT(31)
/* MII Command */
#define AG7XXX_ETH_MII_MGMT_CMD 0x24
#define AG7XXX_ETH_MII_MGMT_CMD_READ 0x1
/* MII Address */
#define AG7XXX_ETH_MII_MGMT_ADDRESS 0x28
#define AG7XXX_ETH_MII_MGMT_ADDRESS_SHIFT 8
/* MII Control */
#define AG7XXX_ETH_MII_MGMT_CTRL 0x2c
/* MII Status */
#define AG7XXX_ETH_MII_MGMT_STATUS 0x30
/* MII Indicators */
#define AG7XXX_ETH_MII_MGMT_IND 0x34
#define AG7XXX_ETH_MII_MGMT_IND_INVALID BIT(2)
#define AG7XXX_ETH_MII_MGMT_IND_BUSY BIT(0)
/* STA Address 1 & 2 */
#define AG7XXX_ETH_ADDR1 0x40
#define AG7XXX_ETH_ADDR2 0x44
/* ETH Configuration 0 - 5 */
#define AG7XXX_ETH_FIFO_CFG_0 0x48
#define AG7XXX_ETH_FIFO_CFG_1 0x4c
#define AG7XXX_ETH_FIFO_CFG_2 0x50
#define AG7XXX_ETH_FIFO_CFG_3 0x54
#define AG7XXX_ETH_FIFO_CFG_4 0x58
#define AG7XXX_ETH_FIFO_CFG_5 0x5c
/* DMA Transfer Control for Queue 0 */
#define AG7XXX_ETH_DMA_TX_CTRL 0x180
#define AG7XXX_ETH_DMA_TX_CTRL_TXE BIT(0)
/* Descriptor Address for Queue 0 Tx */
#define AG7XXX_ETH_DMA_TX_DESC 0x184
/* DMA Tx Status */
#define AG7XXX_ETH_DMA_TX_STATUS 0x188
/* Rx Control */
#define AG7XXX_ETH_DMA_RX_CTRL 0x18c
#define AG7XXX_ETH_DMA_RX_CTRL_RXE BIT(0)
/* Pointer to Rx Descriptor */
#define AG7XXX_ETH_DMA_RX_DESC 0x190
/* Rx Status */
#define AG7XXX_ETH_DMA_RX_STATUS 0x194
/* Custom register at 0x18070000 */
#define AG7XXX_GMAC_ETH_CFG 0x00
#define AG7XXX_ETH_CFG_SW_PHY_ADDR_SWAP BIT(8)
#define AG7XXX_ETH_CFG_SW_PHY_SWAP BIT(7)
#define AG7XXX_ETH_CFG_SW_ONLY_MODE BIT(6)
#define AG7XXX_ETH_CFG_GE0_ERR_EN BIT(5)
#define AG7XXX_ETH_CFG_MII_GE0_SLAVE BIT(4)
#define AG7XXX_ETH_CFG_MII_GE0_MASTER BIT(3)
#define AG7XXX_ETH_CFG_GMII_GE0 BIT(2)
#define AG7XXX_ETH_CFG_MII_GE0 BIT(1)
#define AG7XXX_ETH_CFG_RGMII_GE0 BIT(0)
#define CONFIG_TX_DESCR_NUM 8
#define CONFIG_RX_DESCR_NUM 8
#define CONFIG_ETH_BUFSIZE 2048
#define TX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM)
#define RX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM)
/* DMA descriptor. */
struct ag7xxx_dma_desc {
u32 data_addr;
#define AG7XXX_DMADESC_IS_EMPTY BIT(31)
#define AG7XXX_DMADESC_FTPP_OVERRIDE_OFFSET 16
#define AG7XXX_DMADESC_PKT_SIZE_OFFSET 0
#define AG7XXX_DMADESC_PKT_SIZE_MASK 0xfff
u32 config;
u32 next_desc;
u32 _pad[5];
};
struct ar7xxx_eth_priv {
struct ag7xxx_dma_desc tx_mac_descrtable[CONFIG_TX_DESCR_NUM];
struct ag7xxx_dma_desc rx_mac_descrtable[CONFIG_RX_DESCR_NUM];
char txbuffs[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
char rxbuffs[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
void __iomem *regs;
void __iomem *phyregs;
struct eth_device *dev;
struct phy_device *phydev;
struct mii_dev *bus;
u32 interface;
u32 tx_currdescnum;
u32 rx_currdescnum;
enum ag7xxx_model model;
};
/*
* Switch and MDIO access
*/
static int ag7xxx_switch_read(struct mii_dev *bus, int addr, int reg, u16 *val)
{
struct ar7xxx_eth_priv *priv = bus->priv;
void __iomem *regs = priv->phyregs;
int ret;
writel(0x0, regs + AG7XXX_ETH_MII_MGMT_CMD);
writel((addr << AG7XXX_ETH_MII_MGMT_ADDRESS_SHIFT) | reg,
regs + AG7XXX_ETH_MII_MGMT_ADDRESS);
writel(AG7XXX_ETH_MII_MGMT_CMD_READ,
regs + AG7XXX_ETH_MII_MGMT_CMD);
ret = wait_for_bit_le32(regs + AG7XXX_ETH_MII_MGMT_IND,
AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0);
if (ret)
return ret;
*val = readl(regs + AG7XXX_ETH_MII_MGMT_STATUS) & 0xffff;
writel(0x0, regs + AG7XXX_ETH_MII_MGMT_CMD);
return 0;
}
static int ag7xxx_switch_write(struct mii_dev *bus, int addr, int reg, u16 val)
{
struct ar7xxx_eth_priv *priv = bus->priv;
void __iomem *regs = priv->phyregs;
int ret;
writel((addr << AG7XXX_ETH_MII_MGMT_ADDRESS_SHIFT) | reg,
regs + AG7XXX_ETH_MII_MGMT_ADDRESS);
writel(val, regs + AG7XXX_ETH_MII_MGMT_CTRL);
ret = wait_for_bit_le32(regs + AG7XXX_ETH_MII_MGMT_IND,
AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0);
return ret;
}
static int ag7xxx_switch_reg_read(struct mii_dev *bus, int reg, u32 *val)
{
struct ar7xxx_eth_priv *priv = bus->priv;
u32 phy_addr;
u32 reg_addr;
u32 phy_temp;
u32 reg_temp;
u16 rv = 0;
int ret;
if (priv->model == AG7XXX_MODEL_AG933X) {
phy_addr = 0x1f;
reg_addr = 0x10;
} else if (priv->model == AG7XXX_MODEL_AG934X) {
phy_addr = 0x18;
reg_addr = 0x00;
} else
return -EINVAL;
ret = ag7xxx_switch_write(bus, phy_addr, reg_addr, reg >> 9);
if (ret)
return ret;
phy_temp = ((reg >> 6) & 0x7) | 0x10;
reg_temp = (reg >> 1) & 0x1e;
*val = 0;
ret = ag7xxx_switch_read(bus, phy_temp, reg_temp | 0, &rv);
if (ret < 0)
return ret;
*val |= rv;
ret = ag7xxx_switch_read(bus, phy_temp, reg_temp | 1, &rv);
if (ret < 0)
return ret;
*val |= (rv << 16);
return 0;
}
static int ag7xxx_switch_reg_write(struct mii_dev *bus, int reg, u32 val)
{
struct ar7xxx_eth_priv *priv = bus->priv;
u32 phy_addr;
u32 reg_addr;
u32 phy_temp;
u32 reg_temp;
int ret;
if (priv->model == AG7XXX_MODEL_AG933X) {
phy_addr = 0x1f;
reg_addr = 0x10;
} else if (priv->model == AG7XXX_MODEL_AG934X) {
phy_addr = 0x18;
reg_addr = 0x00;
} else
return -EINVAL;
ret = ag7xxx_switch_write(bus, phy_addr, reg_addr, reg >> 9);
if (ret)
return ret;
phy_temp = ((reg >> 6) & 0x7) | 0x10;
reg_temp = (reg >> 1) & 0x1e;
/*
* The switch on AR933x has some special register behavior, which
* expects particular write order of their nibbles:
* 0x40 ..... MSB first, LSB second
* 0x50 ..... MSB first, LSB second
* 0x98 ..... LSB first, MSB second
* others ... don't care
*/
if ((priv->model == AG7XXX_MODEL_AG933X) && (reg == 0x98)) {
ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 0, val & 0xffff);
if (ret < 0)
return ret;
ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 1, val >> 16);
if (ret < 0)
return ret;
} else {
ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 1, val >> 16);
if (ret < 0)
return ret;
ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 0, val & 0xffff);
if (ret < 0)
return ret;
}
return 0;
}
static int ag7xxx_mdio_rw(struct mii_dev *bus, int addr, int reg, u32 val)
{
u32 data;
unsigned long start;
int ret;
/* No idea if this is long enough or too long */
int timeout_ms = 1000;
/* Dummy read followed by PHY read/write command. */
ret = ag7xxx_switch_reg_read(bus, 0x98, &data);
if (ret < 0)
return ret;
data = val | (reg << 16) | (addr << 21) | BIT(30) | BIT(31);
ret = ag7xxx_switch_reg_write(bus, 0x98, data);
if (ret < 0)
return ret;
start = get_timer(0);
/* Wait for operation to finish */
do {
ret = ag7xxx_switch_reg_read(bus, 0x98, &data);
if (ret < 0)
return ret;
if (get_timer(start) > timeout_ms)
return -ETIMEDOUT;
} while (data & BIT(31));
return data & 0xffff;
}
static int ag7xxx_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
return ag7xxx_mdio_rw(bus, addr, reg, BIT(27));
}
static int ag7xxx_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
int ret;
ret = ag7xxx_mdio_rw(bus, addr, reg, val);
if (ret < 0)
return ret;
return 0;
}
/*
* DMA ring handlers
*/
static void ag7xxx_dma_clean_tx(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
struct ag7xxx_dma_desc *curr, *next;
u32 start, end;
int i;
for (i = 0; i < CONFIG_TX_DESCR_NUM; i++) {
curr = &priv->tx_mac_descrtable[i];
next = &priv->tx_mac_descrtable[(i + 1) % CONFIG_TX_DESCR_NUM];
curr->data_addr = virt_to_phys(&priv->txbuffs[i * CONFIG_ETH_BUFSIZE]);
curr->config = AG7XXX_DMADESC_IS_EMPTY;
curr->next_desc = virt_to_phys(next);
}
priv->tx_currdescnum = 0;
/* Cache: Flush descriptors, don't care about buffers. */
start = (u32)(&priv->tx_mac_descrtable[0]);
end = start + sizeof(priv->tx_mac_descrtable);
flush_dcache_range(start, end);
}
static void ag7xxx_dma_clean_rx(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
struct ag7xxx_dma_desc *curr, *next;
u32 start, end;
int i;
for (i = 0; i < CONFIG_RX_DESCR_NUM; i++) {
curr = &priv->rx_mac_descrtable[i];
next = &priv->rx_mac_descrtable[(i + 1) % CONFIG_RX_DESCR_NUM];
curr->data_addr = virt_to_phys(&priv->rxbuffs[i * CONFIG_ETH_BUFSIZE]);
curr->config = AG7XXX_DMADESC_IS_EMPTY;
curr->next_desc = virt_to_phys(next);
}
priv->rx_currdescnum = 0;
/* Cache: Flush+Invalidate descriptors, Invalidate buffers. */
start = (u32)(&priv->rx_mac_descrtable[0]);
end = start + sizeof(priv->rx_mac_descrtable);
flush_dcache_range(start, end);
invalidate_dcache_range(start, end);
start = (u32)&priv->rxbuffs;
end = start + sizeof(priv->rxbuffs);
invalidate_dcache_range(start, end);
}
/*
* Ethernet I/O
*/
static int ag7xxx_eth_send(struct udevice *dev, void *packet, int length)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
struct ag7xxx_dma_desc *curr;
u32 start, end;
curr = &priv->tx_mac_descrtable[priv->tx_currdescnum];
/* Cache: Invalidate descriptor. */
start = (u32)curr;
end = start + sizeof(*curr);
invalidate_dcache_range(start, end);
if (!(curr->config & AG7XXX_DMADESC_IS_EMPTY)) {
printf("ag7xxx: Out of TX DMA descriptors!\n");
return -EPERM;
}
/* Copy the packet into the data buffer. */
memcpy(phys_to_virt(curr->data_addr), packet, length);
curr->config = length & AG7XXX_DMADESC_PKT_SIZE_MASK;
/* Cache: Flush descriptor, Flush buffer. */
start = (u32)curr;
end = start + sizeof(*curr);
flush_dcache_range(start, end);
start = (u32)phys_to_virt(curr->data_addr);
end = start + length;
flush_dcache_range(start, end);
/* Load the DMA descriptor and start TX DMA. */
writel(AG7XXX_ETH_DMA_TX_CTRL_TXE,
priv->regs + AG7XXX_ETH_DMA_TX_CTRL);
/* Switch to next TX descriptor. */
priv->tx_currdescnum = (priv->tx_currdescnum + 1) % CONFIG_TX_DESCR_NUM;
return 0;
}
static int ag7xxx_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
struct ag7xxx_dma_desc *curr;
u32 start, end, length;
curr = &priv->rx_mac_descrtable[priv->rx_currdescnum];
/* Cache: Invalidate descriptor. */
start = (u32)curr;
end = start + sizeof(*curr);
invalidate_dcache_range(start, end);
/* No packets received. */
if (curr->config & AG7XXX_DMADESC_IS_EMPTY)
return -EAGAIN;
length = curr->config & AG7XXX_DMADESC_PKT_SIZE_MASK;
/* Cache: Invalidate buffer. */
start = (u32)phys_to_virt(curr->data_addr);
end = start + length;
invalidate_dcache_range(start, end);
/* Receive one packet and return length. */
*packetp = phys_to_virt(curr->data_addr);
return length;
}
static int ag7xxx_eth_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
struct ag7xxx_dma_desc *curr;
u32 start, end;
curr = &priv->rx_mac_descrtable[priv->rx_currdescnum];
curr->config = AG7XXX_DMADESC_IS_EMPTY;
/* Cache: Flush descriptor. */
start = (u32)curr;
end = start + sizeof(*curr);
flush_dcache_range(start, end);
/* Switch to next RX descriptor. */
priv->rx_currdescnum = (priv->rx_currdescnum + 1) % CONFIG_RX_DESCR_NUM;
return 0;
}
static int ag7xxx_eth_start(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
/* FIXME: Check if link up */
/* Clear the DMA rings. */
ag7xxx_dma_clean_tx(dev);
ag7xxx_dma_clean_rx(dev);
/* Load DMA descriptors and start the RX DMA. */
writel(virt_to_phys(&priv->tx_mac_descrtable[priv->tx_currdescnum]),
priv->regs + AG7XXX_ETH_DMA_TX_DESC);
writel(virt_to_phys(&priv->rx_mac_descrtable[priv->rx_currdescnum]),
priv->regs + AG7XXX_ETH_DMA_RX_DESC);
writel(AG7XXX_ETH_DMA_RX_CTRL_RXE,
priv->regs + AG7XXX_ETH_DMA_RX_CTRL);
return 0;
}
static void ag7xxx_eth_stop(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
/* Stop the TX DMA. */
writel(0, priv->regs + AG7XXX_ETH_DMA_TX_CTRL);
wait_for_bit_le32(priv->regs + AG7XXX_ETH_DMA_TX_CTRL, ~0, 0,
1000, 0);
/* Stop the RX DMA. */
writel(0, priv->regs + AG7XXX_ETH_DMA_RX_CTRL);
wait_for_bit_le32(priv->regs + AG7XXX_ETH_DMA_RX_CTRL, ~0, 0,
1000, 0);
}
/*
* Hardware setup
*/
static int ag7xxx_eth_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
unsigned char *mac = pdata->enetaddr;
u32 macid_lo, macid_hi;
macid_hi = mac[3] | (mac[2] << 8) | (mac[1] << 16) | (mac[0] << 24);
macid_lo = (mac[5] << 16) | (mac[4] << 24);
writel(macid_lo, priv->regs + AG7XXX_ETH_ADDR1);
writel(macid_hi, priv->regs + AG7XXX_ETH_ADDR2);
return 0;
}
static void ag7xxx_hw_setup(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
u32 speed;
setbits_be32(priv->regs + AG7XXX_ETH_CFG1,
AG7XXX_ETH_CFG1_RX_RST | AG7XXX_ETH_CFG1_TX_RST |
AG7XXX_ETH_CFG1_SOFT_RST);
mdelay(10);
writel(AG7XXX_ETH_CFG1_RX_EN | AG7XXX_ETH_CFG1_TX_EN,
priv->regs + AG7XXX_ETH_CFG1);
if (priv->interface == PHY_INTERFACE_MODE_RMII)
speed = AG7XXX_ETH_CFG2_IF_10_100;
else
speed = AG7XXX_ETH_CFG2_IF_1000;
clrsetbits_be32(priv->regs + AG7XXX_ETH_CFG2,
AG7XXX_ETH_CFG2_IF_SPEED_MASK,
speed | AG7XXX_ETH_CFG2_PAD_CRC_EN |
AG7XXX_ETH_CFG2_LEN_CHECK);
writel(0xfff0000, priv->regs + AG7XXX_ETH_FIFO_CFG_1);
writel(0x1fff, priv->regs + AG7XXX_ETH_FIFO_CFG_2);
writel(0x1f00, priv->regs + AG7XXX_ETH_FIFO_CFG_0);
setbits_be32(priv->regs + AG7XXX_ETH_FIFO_CFG_4, 0x3ffff);
writel(0x10ffff, priv->regs + AG7XXX_ETH_FIFO_CFG_1);
writel(0xaaa0555, priv->regs + AG7XXX_ETH_FIFO_CFG_2);
writel(0x7eccf, priv->regs + AG7XXX_ETH_FIFO_CFG_5);
writel(0x1f00140, priv->regs + AG7XXX_ETH_FIFO_CFG_3);
}
static int ag7xxx_mii_get_div(void)
{
ulong freq = get_bus_freq(0);
switch (freq / 1000000) {
case 150: return 0x7;
case 175: return 0x5;
case 200: return 0x4;
case 210: return 0x9;
case 220: return 0x9;
default: return 0x7;
}
}
static int ag7xxx_mii_setup(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
int i, ret, div = ag7xxx_mii_get_div();
u32 reg;
if (priv->model == AG7XXX_MODEL_AG933X) {
/* Unit 0 is PHY-less on AR9331, see datasheet Figure 2-3 */
if (priv->interface == PHY_INTERFACE_MODE_RMII)
return 0;
}
if (priv->model == AG7XXX_MODEL_AG934X) {
writel(AG7XXX_ETH_MII_MGMT_CFG_RESET | 0x4,
priv->regs + AG7XXX_ETH_MII_MGMT_CFG);
writel(0x4, priv->regs + AG7XXX_ETH_MII_MGMT_CFG);
return 0;
}
for (i = 0; i < 10; i++) {
writel(AG7XXX_ETH_MII_MGMT_CFG_RESET | div,
priv->regs + AG7XXX_ETH_MII_MGMT_CFG);
writel(div, priv->regs + AG7XXX_ETH_MII_MGMT_CFG);
/* Check the switch */
ret = ag7xxx_switch_reg_read(priv->bus, 0x10c, ®);
if (ret)
continue;
if (reg != 0x18007fff)
continue;
return 0;
}
return -EINVAL;
}
static int ag933x_phy_setup_wan(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
/* Configure switch port 4 (GMAC0) */
return ag7xxx_mdio_write(priv->bus, 4, 0, MII_BMCR, 0x9000);
}
static int ag933x_phy_setup_lan(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
int i, ret;
u32 reg;
/* Reset the switch */
ret = ag7xxx_switch_reg_read(priv->bus, 0, ®);
if (ret)
return ret;
reg |= BIT(31);
ret = ag7xxx_switch_reg_write(priv->bus, 0, reg);
if (ret)
return ret;
do {
ret = ag7xxx_switch_reg_read(priv->bus, 0, ®);
if (ret)
return ret;
} while (reg & BIT(31));
/* Configure switch ports 0...3 (GMAC1) */
for (i = 0; i < 4; i++) {
ret = ag7xxx_mdio_write(priv->bus, 0x4, 0, MII_BMCR, 0x9000);
if (ret)
return ret;
}
/* Enable CPU port */
ret = ag7xxx_switch_reg_write(priv->bus, 0x78, BIT(8));
if (ret)
return ret;
for (i = 0; i < 4; i++) {
ret = ag7xxx_switch_reg_write(priv->bus, i * 0x100, BIT(9));
if (ret)
return ret;
}
/* QM Control */
ret = ag7xxx_switch_reg_write(priv->bus, 0x38, 0xc000050e);
if (ret)
return ret;
/* Disable Atheros header */
ret = ag7xxx_switch_reg_write(priv->bus, 0x104, 0x4004);
if (ret)
return ret;
/* Tag priority mapping */
ret = ag7xxx_switch_reg_write(priv->bus, 0x70, 0xfa50);
if (ret)
return ret;
/* Enable ARP packets to the CPU */
ret = ag7xxx_switch_reg_read(priv->bus, 0x5c, ®);
if (ret)
return ret;
reg |= 0x100000;
ret = ag7xxx_switch_reg_write(priv->bus, 0x5c, reg);
if (ret)
return ret;
return 0;
}
static int ag933x_phy_setup_reset_set(struct udevice *dev, int port)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
int ret;
ret = ag7xxx_mdio_write(priv->bus, port, 0, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
if (ret)
return ret;
if (priv->model == AG7XXX_MODEL_AG934X) {
ret = ag7xxx_mdio_write(priv->bus, port, 0, MII_CTRL1000,
ADVERTISE_1000FULL);
if (ret)
return ret;
}
return ag7xxx_mdio_write(priv->bus, port, 0, MII_BMCR,
BMCR_ANENABLE | BMCR_RESET);
}
static int ag933x_phy_setup_reset_fin(struct udevice *dev, int port)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
int ret;
do {
ret = ag7xxx_mdio_read(priv->bus, port, 0, MII_BMCR);
if (ret < 0)
return ret;
mdelay(10);
} while (ret & BMCR_RESET);
return 0;
}
static int ag933x_phy_setup_common(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
int i, ret, phymax;
if (priv->model == AG7XXX_MODEL_AG933X)
phymax = 4;
else if (priv->model == AG7XXX_MODEL_AG934X)
phymax = 5;
else
return -EINVAL;
if (priv->interface == PHY_INTERFACE_MODE_RMII) {
ret = ag933x_phy_setup_reset_set(dev, phymax);
if (ret)
return ret;
ret = ag933x_phy_setup_reset_fin(dev, phymax);
if (ret)
return ret;
/* Read out link status */
ret = ag7xxx_mdio_read(priv->bus, phymax, 0, MII_MIPSCR);
if (ret < 0)
return ret;
return 0;
}
/* Switch ports */
for (i = 0; i < phymax; i++) {
ret = ag933x_phy_setup_reset_set(dev, i);
if (ret)
return ret;
}
for (i = 0; i < phymax; i++) {
ret = ag933x_phy_setup_reset_fin(dev, i);
if (ret)
return ret;
}
for (i = 0; i < phymax; i++) {
/* Read out link status */
ret = ag7xxx_mdio_read(priv->bus, i, 0, MII_MIPSCR);
if (ret < 0)
return ret;
}
return 0;
}
static int ag934x_phy_setup(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
int i, ret;
u32 reg;
ret = ag7xxx_switch_reg_write(priv->bus, 0x624, 0x7f7f7f7f);
if (ret)
return ret;
ret = ag7xxx_switch_reg_write(priv->bus, 0x10, 0x40000000);
if (ret)
return ret;
ret = ag7xxx_switch_reg_write(priv->bus, 0x4, 0x07600000);
if (ret)
return ret;
ret = ag7xxx_switch_reg_write(priv->bus, 0xc, 0x01000000);
if (ret)
return ret;
ret = ag7xxx_switch_reg_write(priv->bus, 0x7c, 0x0000007e);
if (ret)
return ret;
/* AR8327/AR8328 v1.0 fixup */
ret = ag7xxx_switch_reg_read(priv->bus, 0, ®);
if (ret)
return ret;
if ((reg & 0xffff) == 0x1201) {
for (i = 0; i < 5; i++) {
ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1d, 0x0);
if (ret)
return ret;
ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1e, 0x02ea);
if (ret)
return ret;
ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1d, 0x3d);
if (ret)
return ret;
ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1e, 0x68a0);
if (ret)
return ret;
}
}
ret = ag7xxx_switch_reg_read(priv->bus, 0x66c, ®);
if (ret)
return ret;
reg &= ~0x70000;
ret = ag7xxx_switch_reg_write(priv->bus, 0x66c, reg);
if (ret)
return ret;
return 0;
}
static int ag7xxx_mac_probe(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
int ret;
ag7xxx_hw_setup(dev);
ret = ag7xxx_mii_setup(dev);
if (ret)
return ret;
ag7xxx_eth_write_hwaddr(dev);
if (priv->model == AG7XXX_MODEL_AG933X) {
if (priv->interface == PHY_INTERFACE_MODE_RMII)
ret = ag933x_phy_setup_wan(dev);
else
ret = ag933x_phy_setup_lan(dev);
} else if (priv->model == AG7XXX_MODEL_AG934X) {
ret = ag934x_phy_setup(dev);
} else {
return -EINVAL;
}
if (ret)
return ret;
return ag933x_phy_setup_common(dev);
}
static int ag7xxx_mdio_probe(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
struct mii_dev *bus = mdio_alloc();
if (!bus)
return -ENOMEM;
bus->read = ag7xxx_mdio_read;
bus->write = ag7xxx_mdio_write;
snprintf(bus->name, sizeof(bus->name), dev->name);
bus->priv = (void *)priv;
return mdio_register(bus);
}
static int ag7xxx_get_phy_iface_offset(struct udevice *dev)
{
int offset;
offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev), "phy");
if (offset <= 0) {
debug("%s: PHY OF node not found (ret=%i)\n", __func__, offset);
return -EINVAL;
}
offset = fdt_parent_offset(gd->fdt_blob, offset);
if (offset <= 0) {
debug("%s: PHY OF node parent MDIO bus not found (ret=%i)\n",
__func__, offset);
return -EINVAL;
}
offset = fdt_parent_offset(gd->fdt_blob, offset);
if (offset <= 0) {
debug("%s: PHY MDIO OF node parent MAC not found (ret=%i)\n",
__func__, offset);
return -EINVAL;
}
return offset;
}
static int ag7xxx_eth_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
void __iomem *iobase, *phyiobase;
int ret, phyreg;
/* Decoding of convoluted PHY wiring on Atheros MIPS. */
ret = ag7xxx_get_phy_iface_offset(dev);
if (ret <= 0)
return ret;
phyreg = fdtdec_get_int(gd->fdt_blob, ret, "reg", -1);
iobase = map_physmem(pdata->iobase, 0x200, MAP_NOCACHE);
phyiobase = map_physmem(phyreg, 0x200, MAP_NOCACHE);
debug("%s, iobase=%p, phyiobase=%p, priv=%p\n",
__func__, iobase, phyiobase, priv);
priv->regs = iobase;
priv->phyregs = phyiobase;
priv->interface = pdata->phy_interface;
priv->model = dev_get_driver_data(dev);
ret = ag7xxx_mdio_probe(dev);
if (ret)
return ret;
priv->bus = miiphy_get_dev_by_name(dev->name);
ret = ag7xxx_mac_probe(dev);
debug("%s, ret=%d\n", __func__, ret);
return ret;
}
static int ag7xxx_eth_remove(struct udevice *dev)
{
struct ar7xxx_eth_priv *priv = dev_get_priv(dev);
free(priv->phydev);
mdio_unregister(priv->bus);
mdio_free(priv->bus);
return 0;
}
static const struct eth_ops ag7xxx_eth_ops = {
.start = ag7xxx_eth_start,
.send = ag7xxx_eth_send,
.recv = ag7xxx_eth_recv,
.free_pkt = ag7xxx_eth_free_pkt,
.stop = ag7xxx_eth_stop,
.write_hwaddr = ag7xxx_eth_write_hwaddr,
};
static int ag7xxx_eth_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
const char *phy_mode;
int ret;
pdata->iobase = devfdt_get_addr(dev);
pdata->phy_interface = -1;
/* Decoding of convoluted PHY wiring on Atheros MIPS. */
ret = ag7xxx_get_phy_iface_offset(dev);
if (ret <= 0)
return ret;
phy_mode = fdt_getprop(gd->fdt_blob, ret, "phy-mode", NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
return 0;
}
static const struct udevice_id ag7xxx_eth_ids[] = {
{ .compatible = "qca,ag933x-mac", .data = AG7XXX_MODEL_AG933X },
{ .compatible = "qca,ag934x-mac", .data = AG7XXX_MODEL_AG934X },
{ }
};
U_BOOT_DRIVER(eth_ag7xxx) = {
.name = "eth_ag7xxx",
.id = UCLASS_ETH,
.of_match = ag7xxx_eth_ids,
.ofdata_to_platdata = ag7xxx_eth_ofdata_to_platdata,
.probe = ag7xxx_eth_probe,
.remove = ag7xxx_eth_remove,
.ops = &ag7xxx_eth_ops,
.priv_auto_alloc_size = sizeof(struct ar7xxx_eth_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};