/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CpuOperationUtils.h"
#include "Operations.h"
#include <algorithm>
#include <cmath>
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "Tracing.h"
namespace android {
namespace nn {
inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
int32_t radius, float bias, float alpha, float beta,
int32_t axis, float* outputData,
const Shape& outputShape) {
NNTRACE_TRANS("localResponseNormFloat32");
const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
const uint32_t innerSize =
getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
for (uint32_t outer = 0; outer < outerSize; ++outer) {
const float* inputBase = inputData + outer * axisSize * innerSize;
float* outputBase = outputData + outer * axisSize * innerSize;
for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
for (int32_t i = 0; i < axisSize; i++) {
const int32_t dBegin = std::max(0, i - radius);
// Add 1 on dEnd to comply with optimized_ops in TFLite
const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
float sum = 0.0f;
for (int32_t d = dBegin; d < dEnd; d++) {
float val = inputBase[d * innerSize];
sum += val * val;
}
float multiplier = std::pow(bias + alpha * sum, -beta);
outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
}
}
}
return true;
}
bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius,
float bias, float alpha, float beta, int32_t axis,
_Float16* outputData, const Shape& outputShape) {
NNTRACE_TRANS("localResponseNormFloat16");
std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
convertFloat16ToFloat32(inputData, &inputDataFloat32);
std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
localResponseNormFloat32(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
outputDataFloat32.data(), outputShape);
convertFloat32ToFloat16(outputDataFloat32, outputData);
return true;
}
bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius,
float bias, float alpha, float beta, int32_t axis, float* outputData,
const Shape& outputShape) {
int32_t ndim = getNumberOfDimensions(inputShape);
NN_CHECK(handleNegativeAxis(inputShape, &axis));
// TFLite optimized implementation only supports computation along the last axis
if (axis == ndim - 1) {
NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
tflite::LocalResponseNormalizationParams param = {
.range = radius, .bias = bias, .alpha = alpha, .beta = beta};
tflite::optimized_ops::LocalResponseNormalization(
param, convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
} else {
return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
outputData, outputShape);
}
}
} // namespace nn
} // namespace android