C++程序  |  355行  |  13.4 KB

/*
 ** Copyright 2011, The Android Open Source Project
 **
 ** Licensed under the Apache License, Version 2.0 (the "License");
 ** you may not use this file except in compliance with the License.
 ** You may obtain a copy of the License at
 **
 **     http://www.apache.org/licenses/LICENSE-2.0
 **
 ** Unless required by applicable law or agreed to in writing, software
 ** distributed under the License is distributed on an "AS IS" BASIS,
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ** See the License for the specific language governing permissions and
 ** limitations under the License.
 */

#ifndef ANDROID_BLOB_CACHE_H
#define ANDROID_BLOB_CACHE_H

#include <stddef.h>

#include <functional>
#include <memory>
#include <utility>
#include <vector>

namespace android {

// A BlobCache is an in-memory cache for binary key/value pairs.  A BlobCache
// does NOT provide any thread-safety guarantees.
//
// The cache contents can be serialized to an in-memory buffer or mmap'd file
// and then reloaded in a subsequent execution of the program.  This
// serialization is non-portable and the data should only be used by the device
// that generated it.
class BlobCache {
public:
    enum class Select {
        RANDOM,  // evict random entries
        LRU,     // evict least-recently-used entries

        DEFAULT = RANDOM,
    };

    enum class Capacity {
        // cut back to no more than half capacity; new/replacement
        // entry still might not fit
        HALVE,

        // cut back to whatever is necessary to fit new/replacement
        // entry
        FIT,

        // cut back to no more than half capacity and ensure that
        // there's enough space for new/replacement entry
        FIT_HALVE,

        DEFAULT = HALVE,
    };

    // When we're inserting or replacing an entry in the cache, and
    // there's not enough space, how do we clean the cache?
    typedef std::pair<Select, Capacity> Policy;

    static Policy defaultPolicy() { return Policy(Select::DEFAULT, Capacity::DEFAULT); }

    // Create an empty blob cache. The blob cache will cache key/value pairs
    // with key and value sizes less than or equal to maxKeySize and
    // maxValueSize, respectively. The total combined size of ALL cache entries
    // (key sizes plus value sizes) will not exceed maxTotalSize.
    BlobCache(size_t maxKeySize, size_t maxValueSize, size_t maxTotalSize,
              Policy policy = defaultPolicy());

    // set inserts a new binary value into the cache and associates it with the
    // given binary key.  If the key or value are too large for the cache then
    // the cache remains unchanged.  This includes the case where a different
    // value was previously associated with the given key - the old value will
    // remain in the cache.  If the given key and value are small enough to be
    // put in the cache (based on the maxKeySize, maxValueSize, and maxTotalSize
    // values specified to the BlobCache constructor), then the key/value pair
    // will be in the cache after set returns.  Note, however, that a subsequent
    // call to set may evict old key/value pairs from the cache.
    //
    // Preconditions:
    //   key != NULL
    //   0 < keySize
    //   value != NULL
    //   0 < valueSize
    void set(const void* key, size_t keySize, const void* value,
            size_t valueSize);

    // get retrieves from the cache the binary value associated with a given
    // binary key.  If the key is present in the cache then the length of the
    // binary value associated with that key is returned.  If the key
    // is not present in the cache then 0 is returned.
    //
    // There are two variants of get: one takes a buffer (value, valueSize)
    // and one takes an allocator (value, alloc).
    //
    // For the BUFFER variant, if the value argument is non-NULL and
    // the size of the cached value is less than valueSize bytes then
    // the cached value is copied into the buffer pointed to by the
    // value argument.  If the key is not present in the cache then
    // the buffer pointed to by the value argument is not modified.
    //
    //   Preconditions:
    //     key != NULL
    //     0 < keySize
    //     0 <= valueSize
    //
    // For the ALLOCATOR variant, if it is possible to allocate a
    // buffer for the cached value via a call to the allocator by
    //
    //   size_t cached_value_size = ...;
    //   void* buf = alloc(cached_value_size);
    //
    // then the cached value is copied into the newly-allocated buffer
    // and *value is set to the address of the newly-allocated buffer.
    // If the allocator returns NULL, or the key is not present in the
    // cache, then *value is set to NULL.
    //
    //   Preconditions:
    //     key != NULL
    //     0 < keySize
    //     value != NULL
    //
    // Note that when calling get multiple times with the same key, the later
    // calls may fail, returning 0, even if earlier calls succeeded.  The return
    // value must be checked for each call.
    size_t get(const void* key, size_t keySize, void* value, size_t valueSize);
    size_t get(const void* key, size_t keySize, void** value, std::function<void*(size_t)> alloc);
    template <typename T>
    size_t get(const void* key, size_t keySize, T** value, std::function<void*(size_t)> alloc) {
        void *valueVoid;
        const size_t size = get(key, keySize, &valueVoid, alloc);
        *value = static_cast<T*>(valueVoid);
        return size;
    }

    // getFlattenedSize returns the number of bytes needed to store the entire
    // serialized cache.
    size_t getFlattenedSize() const;

    // flatten serializes the current contents of the cache into the memory
    // pointed to by 'buffer'.  The serialized cache contents can later be
    // loaded into a BlobCache object using the unflatten method.  The contents
    // of the BlobCache object will not be modified.
    //
    // Preconditions:
    //   size >= this.getFlattenedSize()
    int flatten(void* buffer, size_t size) const;

    // unflatten replaces the contents of the cache with the serialized cache
    // contents in the memory pointed to by 'buffer'.  The previous contents of
    // the BlobCache will be evicted from the cache.  If an error occurs while
    // unflattening the serialized cache contents then the BlobCache will be
    // left in an empty state.
    //
    int unflatten(void const* buffer, size_t size);

private:
    // Copying is disallowed.
    BlobCache(const BlobCache&);
    void operator=(const BlobCache&);

    // A random function helper to get around MinGW not having nrand48()
    long int blob_random();

    // Use this in place of a cache entry index to indicate that no
    // entry is being designated.
    static const size_t NoEntry = ~size_t(0);

    // Is this Capacity value one of the *FIT* values?
    static bool isFit(Capacity capacity);

    // clean evicts a selected set of entries from the cache to make
    // room for a new entry or for replacing an entry with a larger
    // one.  mSelect determines how to pick entries to evict, and
    // mCapacity determines when to stop evicting entries.
    //
    // newEntrySize is the size of the entry we want to add to the
    // cache, or the new size of the entry we want to replace in the
    // cache.
    //
    // If we are replacing an entry in the cache, then onBehalfOf is
    // the index of that entry in the cache; otherwise, it is NoEntry.
    //
    // Returns true if at least one entry is evicted.
    bool clean(size_t newEntrySize, size_t onBehalfOf);

    // isCleanable returns true if the cache is full enough for the clean method
    // to have some effect, and false otherwise.
    bool isCleanable() const;

    // findVictim selects an entry to remove from the cache.  The
    // cache must not be empty.
    size_t findVictim();

    // findDownTo determines how far to clean the cache -- until it
    // results in a total size that does not exceed the return value
    // of findDownTo.  newEntrySize and onBehalfOf have the same
    // meanings they do for clean.
    size_t findDownTo(size_t newEntrySize, size_t onBehalfOf);

    // A Blob is an immutable sized unstructured data blob.
    class Blob {
    public:
        Blob(const void* data, size_t size, bool copyData);
        ~Blob();

        bool operator<(const Blob& rhs) const;

        const void* getData() const;
        size_t getSize() const;

    private:
        // Copying is not allowed.
        Blob(const Blob&);
        void operator=(const Blob&);

        // mData points to the buffer containing the blob data.
        const void* mData;

        // mSize is the size of the blob data in bytes.
        size_t mSize;

        // mOwnsData indicates whether or not this Blob object should free the
        // memory pointed to by mData when the Blob gets destructed.
        bool mOwnsData;
    };

    // A CacheEntry is a single key/value pair in the cache.
    class CacheEntry {
    public:
        CacheEntry();
        CacheEntry(const std::shared_ptr<Blob>& key, const std::shared_ptr<Blob>& value, uint32_t recency);
        CacheEntry(const CacheEntry& ce);

        bool operator<(const CacheEntry& rhs) const;
        const CacheEntry& operator=(const CacheEntry&);

        std::shared_ptr<Blob> getKey() const;
        std::shared_ptr<Blob> getValue() const;

        void setValue(const std::shared_ptr<Blob>& value);

        uint32_t getRecency() const;
        void setRecency(uint32_t recency);

    private:

        // mKey is the key that identifies the cache entry.
        std::shared_ptr<Blob> mKey;

        // mValue is the cached data associated with the key.
        std::shared_ptr<Blob> mValue;

        // mRecency is the last "time" (as indicated by
        // BlobCache::mAccessCount) that this entry was accessed.
        uint32_t mRecency;
    };

    // A Header is the header for the entire BlobCache serialization format. No
    // need to make this portable, so we simply write the struct out.
    struct Header {
        // mMagicNumber is the magic number that identifies the data as
        // serialized BlobCache contents.  It must always contain 'Blb$'.
        uint32_t mMagicNumber;

        // mBlobCacheVersion is the serialization format version.
        uint32_t mBlobCacheVersion;

        // mDeviceVersion is the device-specific version of the cache.  This can
        // be used to invalidate the cache.
        uint32_t mDeviceVersion;

        // mNumEntries is number of cache entries following the header in the
        // data.
        size_t mNumEntries;

        // mBuildId is the build id of the device when the cache was created.
        // When an update to the build happens (via an OTA or other update) this
        // is used to invalidate the cache.
        int mBuildIdLength;
        char mBuildId[];
    };

    // An EntryHeader is the header for a serialized cache entry.  No need to
    // make this portable, so we simply write the struct out.  Each EntryHeader
    // is followed imediately by the key data and then the value data.
    //
    // The beginning of each serialized EntryHeader is 4-byte aligned, so the
    // number of bytes that a serialized cache entry will occupy is:
    //
    //   ((sizeof(EntryHeader) + keySize + valueSize) + 3) & ~3
    //
    struct EntryHeader {
        // mKeySize is the size of the entry key in bytes.
        size_t mKeySize;

        // mValueSize is the size of the entry value in bytes.
        size_t mValueSize;

        // mData contains both the key and value data for the cache entry.  The
        // key comes first followed immediately by the value.
        uint8_t mData[];
    };

    // mMaxKeySize is the maximum key size that will be cached. Calls to
    // BlobCache::set with a keySize parameter larger than mMaxKeySize will
    // simply not add the key/value pair to the cache.
    const size_t mMaxKeySize;

    // mMaxValueSize is the maximum value size that will be cached. Calls to
    // BlobCache::set with a valueSize parameter larger than mMaxValueSize will
    // simply not add the key/value pair to the cache.
    const size_t mMaxValueSize;

    // mMaxTotalSize is the maximum size that all cache entries can occupy. This
    // includes space for both keys and values. When a call to BlobCache::set
    // would otherwise cause this limit to be exceeded, either the key/value
    // pair passed to BlobCache::set will not be cached or other cache entries
    // will be evicted from the cache to make room for the new entry.
    const size_t mMaxTotalSize;

    // mPolicySelect indicates how we pick entries to evict from the cache.
    const Select mPolicySelect;

    // mPolicyCapacity indicates how we decide when to stop evicting
    // entries from the cache.
    const Capacity mPolicyCapacity;

    // mTotalSize is the total combined size of all keys and values currently in
    // the cache.
    size_t mTotalSize;

    // mAccessCount is the number of times an entry has been
    // added/replaced by set(), or its content (not just its size)
    // retrieved by get().  It serves as a clock for recognizing how
    // recently an entry was accessed, for the Select::LRU policy.
    uint32_t mAccessCount;

    // mRandState is the pseudo-random number generator state. It is passed to
    // nrand48 to generate random numbers when needed.
    unsigned short mRandState[3];

    // mCacheEntries stores all the cache entries that are resident in memory.
    // Cache entries are added to it by the 'set' method.
    std::vector<CacheEntry> mCacheEntries;
};

}

#endif // ANDROID_BLOB_CACHE_H