//===- RegisterPressure.h - Dynamic Register Pressure -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RegisterPressure class which can be used to track
// MachineInstr level register pressure.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_REGISTERPRESSURE_H
#define LLVM_CODEGEN_REGISTERPRESSURE_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <vector>
namespace llvm {
class LiveIntervals;
class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class RegisterClassInfo;
struct RegisterMaskPair {
unsigned RegUnit; ///< Virtual register or register unit.
LaneBitmask LaneMask;
RegisterMaskPair(unsigned RegUnit, LaneBitmask LaneMask)
: RegUnit(RegUnit), LaneMask(LaneMask) {}
};
/// Base class for register pressure results.
struct RegisterPressure {
/// Map of max reg pressure indexed by pressure set ID, not class ID.
std::vector<unsigned> MaxSetPressure;
/// List of live in virtual registers or physical register units.
SmallVector<RegisterMaskPair,8> LiveInRegs;
SmallVector<RegisterMaskPair,8> LiveOutRegs;
void dump(const TargetRegisterInfo *TRI) const;
};
/// RegisterPressure computed within a region of instructions delimited by
/// TopIdx and BottomIdx. During pressure computation, the maximum pressure per
/// register pressure set is increased. Once pressure within a region is fully
/// computed, the live-in and live-out sets are recorded.
///
/// This is preferable to RegionPressure when LiveIntervals are available,
/// because delimiting regions by SlotIndex is more robust and convenient than
/// holding block iterators. The block contents can change without invalidating
/// the pressure result.
struct IntervalPressure : RegisterPressure {
/// Record the boundary of the region being tracked.
SlotIndex TopIdx;
SlotIndex BottomIdx;
void reset();
void openTop(SlotIndex NextTop);
void openBottom(SlotIndex PrevBottom);
};
/// RegisterPressure computed within a region of instructions delimited by
/// TopPos and BottomPos. This is a less precise version of IntervalPressure for
/// use when LiveIntervals are unavailable.
struct RegionPressure : RegisterPressure {
/// Record the boundary of the region being tracked.
MachineBasicBlock::const_iterator TopPos;
MachineBasicBlock::const_iterator BottomPos;
void reset();
void openTop(MachineBasicBlock::const_iterator PrevTop);
void openBottom(MachineBasicBlock::const_iterator PrevBottom);
};
/// Capture a change in pressure for a single pressure set. UnitInc may be
/// expressed in terms of upward or downward pressure depending on the client
/// and will be dynamically adjusted for current liveness.
///
/// Pressure increments are tiny, typically 1-2 units, and this is only for
/// heuristics, so we don't check UnitInc overflow. Instead, we may have a
/// higher level assert that pressure is consistent within a region. We also
/// effectively ignore dead defs which don't affect heuristics much.
class PressureChange {
uint16_t PSetID = 0; // ID+1. 0=Invalid.
int16_t UnitInc = 0;
public:
PressureChange() = default;
PressureChange(unsigned id): PSetID(id + 1) {
assert(id < std::numeric_limits<uint16_t>::max() && "PSetID overflow.");
}
bool isValid() const { return PSetID > 0; }
unsigned getPSet() const {
assert(isValid() && "invalid PressureChange");
return PSetID - 1;
}
// If PSetID is invalid, return UINT16_MAX to give it lowest priority.
unsigned getPSetOrMax() const {
return (PSetID - 1) & std::numeric_limits<uint16_t>::max();
}
int getUnitInc() const { return UnitInc; }
void setUnitInc(int Inc) { UnitInc = Inc; }
bool operator==(const PressureChange &RHS) const {
return PSetID == RHS.PSetID && UnitInc == RHS.UnitInc;
}
};
template <> struct isPodLike<PressureChange> {
static const bool value = true;
};
/// List of PressureChanges in order of increasing, unique PSetID.
///
/// Use a small fixed number, because we can fit more PressureChanges in an
/// empty SmallVector than ever need to be tracked per register class. If more
/// PSets are affected, then we only track the most constrained.
class PressureDiff {
// The initial design was for MaxPSets=4, but that requires PSet partitions,
// which are not yet implemented. (PSet partitions are equivalent PSets given
// the register classes actually in use within the scheduling region.)
enum { MaxPSets = 16 };
PressureChange PressureChanges[MaxPSets];
using iterator = PressureChange *;
iterator nonconst_begin() { return &PressureChanges[0]; }
iterator nonconst_end() { return &PressureChanges[MaxPSets]; }
public:
using const_iterator = const PressureChange *;
const_iterator begin() const { return &PressureChanges[0]; }
const_iterator end() const { return &PressureChanges[MaxPSets]; }
void addPressureChange(unsigned RegUnit, bool IsDec,
const MachineRegisterInfo *MRI);
void dump(const TargetRegisterInfo &TRI) const;
};
/// List of registers defined and used by a machine instruction.
class RegisterOperands {
public:
/// List of virtual registers and register units read by the instruction.
SmallVector<RegisterMaskPair, 8> Uses;
/// List of virtual registers and register units defined by the
/// instruction which are not dead.
SmallVector<RegisterMaskPair, 8> Defs;
/// List of virtual registers and register units defined by the
/// instruction but dead.
SmallVector<RegisterMaskPair, 8> DeadDefs;
/// Analyze the given instruction \p MI and fill in the Uses, Defs and
/// DeadDefs list based on the MachineOperand flags.
void collect(const MachineInstr &MI, const TargetRegisterInfo &TRI,
const MachineRegisterInfo &MRI, bool TrackLaneMasks,
bool IgnoreDead);
/// Use liveness information to find dead defs not marked with a dead flag
/// and move them to the DeadDefs vector.
void detectDeadDefs(const MachineInstr &MI, const LiveIntervals &LIS);
/// Use liveness information to find out which uses/defs are partially
/// undefined/dead and adjust the RegisterMaskPairs accordingly.
/// If \p AddFlagsMI is given then missing read-undef and dead flags will be
/// added to the instruction.
void adjustLaneLiveness(const LiveIntervals &LIS,
const MachineRegisterInfo &MRI, SlotIndex Pos,
MachineInstr *AddFlagsMI = nullptr);
};
/// Array of PressureDiffs.
class PressureDiffs {
PressureDiff *PDiffArray = nullptr;
unsigned Size = 0;
unsigned Max = 0;
public:
PressureDiffs() = default;
~PressureDiffs() { free(PDiffArray); }
void clear() { Size = 0; }
void init(unsigned N);
PressureDiff &operator[](unsigned Idx) {
assert(Idx < Size && "PressureDiff index out of bounds");
return PDiffArray[Idx];
}
const PressureDiff &operator[](unsigned Idx) const {
return const_cast<PressureDiffs*>(this)->operator[](Idx);
}
/// Record pressure difference induced by the given operand list to
/// node with index \p Idx.
void addInstruction(unsigned Idx, const RegisterOperands &RegOpers,
const MachineRegisterInfo &MRI);
};
/// Store the effects of a change in pressure on things that MI scheduler cares
/// about.
///
/// Excess records the value of the largest difference in register units beyond
/// the target's pressure limits across the affected pressure sets, where
/// largest is defined as the absolute value of the difference. Negative
/// ExcessUnits indicates a reduction in pressure that had already exceeded the
/// target's limits.
///
/// CriticalMax records the largest increase in the tracker's max pressure that
/// exceeds the critical limit for some pressure set determined by the client.
///
/// CurrentMax records the largest increase in the tracker's max pressure that
/// exceeds the current limit for some pressure set determined by the client.
struct RegPressureDelta {
PressureChange Excess;
PressureChange CriticalMax;
PressureChange CurrentMax;
RegPressureDelta() = default;
bool operator==(const RegPressureDelta &RHS) const {
return Excess == RHS.Excess && CriticalMax == RHS.CriticalMax
&& CurrentMax == RHS.CurrentMax;
}
bool operator!=(const RegPressureDelta &RHS) const {
return !operator==(RHS);
}
};
/// A set of live virtual registers and physical register units.
///
/// This is a wrapper around a SparseSet which deals with mapping register unit
/// and virtual register indexes to an index usable by the sparse set.
class LiveRegSet {
private:
struct IndexMaskPair {
unsigned Index;
LaneBitmask LaneMask;
IndexMaskPair(unsigned Index, LaneBitmask LaneMask)
: Index(Index), LaneMask(LaneMask) {}
unsigned getSparseSetIndex() const {
return Index;
}
};
using RegSet = SparseSet<IndexMaskPair>;
RegSet Regs;
unsigned NumRegUnits;
unsigned getSparseIndexFromReg(unsigned Reg) const {
if (TargetRegisterInfo::isVirtualRegister(Reg))
return TargetRegisterInfo::virtReg2Index(Reg) + NumRegUnits;
assert(Reg < NumRegUnits);
return Reg;
}
unsigned getRegFromSparseIndex(unsigned SparseIndex) const {
if (SparseIndex >= NumRegUnits)
return TargetRegisterInfo::index2VirtReg(SparseIndex-NumRegUnits);
return SparseIndex;
}
public:
void clear();
void init(const MachineRegisterInfo &MRI);
LaneBitmask contains(unsigned Reg) const {
unsigned SparseIndex = getSparseIndexFromReg(Reg);
RegSet::const_iterator I = Regs.find(SparseIndex);
if (I == Regs.end())
return LaneBitmask::getNone();
return I->LaneMask;
}
/// Mark the \p Pair.LaneMask lanes of \p Pair.Reg as live.
/// Returns the previously live lanes of \p Pair.Reg.
LaneBitmask insert(RegisterMaskPair Pair) {
unsigned SparseIndex = getSparseIndexFromReg(Pair.RegUnit);
auto InsertRes = Regs.insert(IndexMaskPair(SparseIndex, Pair.LaneMask));
if (!InsertRes.second) {
LaneBitmask PrevMask = InsertRes.first->LaneMask;
InsertRes.first->LaneMask |= Pair.LaneMask;
return PrevMask;
}
return LaneBitmask::getNone();
}
/// Clears the \p Pair.LaneMask lanes of \p Pair.Reg (mark them as dead).
/// Returns the previously live lanes of \p Pair.Reg.
LaneBitmask erase(RegisterMaskPair Pair) {
unsigned SparseIndex = getSparseIndexFromReg(Pair.RegUnit);
RegSet::iterator I = Regs.find(SparseIndex);
if (I == Regs.end())
return LaneBitmask::getNone();
LaneBitmask PrevMask = I->LaneMask;
I->LaneMask &= ~Pair.LaneMask;
return PrevMask;
}
size_t size() const {
return Regs.size();
}
template<typename ContainerT>
void appendTo(ContainerT &To) const {
for (const IndexMaskPair &P : Regs) {
unsigned Reg = getRegFromSparseIndex(P.Index);
if (P.LaneMask.any())
To.push_back(RegisterMaskPair(Reg, P.LaneMask));
}
}
};
/// Track the current register pressure at some position in the instruction
/// stream, and remember the high water mark within the region traversed. This
/// does not automatically consider live-through ranges. The client may
/// independently adjust for global liveness.
///
/// Each RegPressureTracker only works within a MachineBasicBlock. Pressure can
/// be tracked across a larger region by storing a RegisterPressure result at
/// each block boundary and explicitly adjusting pressure to account for block
/// live-in and live-out register sets.
///
/// RegPressureTracker holds a reference to a RegisterPressure result that it
/// computes incrementally. During downward tracking, P.BottomIdx or P.BottomPos
/// is invalid until it reaches the end of the block or closeRegion() is
/// explicitly called. Similarly, P.TopIdx is invalid during upward
/// tracking. Changing direction has the side effect of closing region, and
/// traversing past TopIdx or BottomIdx reopens it.
class RegPressureTracker {
const MachineFunction *MF = nullptr;
const TargetRegisterInfo *TRI = nullptr;
const RegisterClassInfo *RCI = nullptr;
const MachineRegisterInfo *MRI;
const LiveIntervals *LIS = nullptr;
/// We currently only allow pressure tracking within a block.
const MachineBasicBlock *MBB = nullptr;
/// Track the max pressure within the region traversed so far.
RegisterPressure &P;
/// Run in two modes dependending on whether constructed with IntervalPressure
/// or RegisterPressure. If requireIntervals is false, LIS are ignored.
bool RequireIntervals;
/// True if UntiedDefs will be populated.
bool TrackUntiedDefs = false;
/// True if lanemasks should be tracked.
bool TrackLaneMasks = false;
/// Register pressure corresponds to liveness before this instruction
/// iterator. It may point to the end of the block or a DebugValue rather than
/// an instruction.
MachineBasicBlock::const_iterator CurrPos;
/// Pressure map indexed by pressure set ID, not class ID.
std::vector<unsigned> CurrSetPressure;
/// Set of live registers.
LiveRegSet LiveRegs;
/// Set of vreg defs that start a live range.
SparseSet<unsigned, VirtReg2IndexFunctor> UntiedDefs;
/// Live-through pressure.
std::vector<unsigned> LiveThruPressure;
public:
RegPressureTracker(IntervalPressure &rp) : P(rp), RequireIntervals(true) {}
RegPressureTracker(RegionPressure &rp) : P(rp), RequireIntervals(false) {}
void reset();
void init(const MachineFunction *mf, const RegisterClassInfo *rci,
const LiveIntervals *lis, const MachineBasicBlock *mbb,
MachineBasicBlock::const_iterator pos,
bool TrackLaneMasks, bool TrackUntiedDefs);
/// Force liveness of virtual registers or physical register
/// units. Particularly useful to initialize the livein/out state of the
/// tracker before the first call to advance/recede.
void addLiveRegs(ArrayRef<RegisterMaskPair> Regs);
/// Get the MI position corresponding to this register pressure.
MachineBasicBlock::const_iterator getPos() const { return CurrPos; }
// Reset the MI position corresponding to the register pressure. This allows
// schedulers to move instructions above the RegPressureTracker's
// CurrPos. Since the pressure is computed before CurrPos, the iterator
// position changes while pressure does not.
void setPos(MachineBasicBlock::const_iterator Pos) { CurrPos = Pos; }
/// Recede across the previous instruction.
void recede(SmallVectorImpl<RegisterMaskPair> *LiveUses = nullptr);
/// Recede across the previous instruction.
/// This "low-level" variant assumes that recedeSkipDebugValues() was
/// called previously and takes precomputed RegisterOperands for the
/// instruction.
void recede(const RegisterOperands &RegOpers,
SmallVectorImpl<RegisterMaskPair> *LiveUses = nullptr);
/// Recede until we find an instruction which is not a DebugValue.
void recedeSkipDebugValues();
/// Advance across the current instruction.
void advance();
/// Advance across the current instruction.
/// This is a "low-level" variant of advance() which takes precomputed
/// RegisterOperands of the instruction.
void advance(const RegisterOperands &RegOpers);
/// Finalize the region boundaries and recored live ins and live outs.
void closeRegion();
/// Initialize the LiveThru pressure set based on the untied defs found in
/// RPTracker.
void initLiveThru(const RegPressureTracker &RPTracker);
/// Copy an existing live thru pressure result.
void initLiveThru(ArrayRef<unsigned> PressureSet) {
LiveThruPressure.assign(PressureSet.begin(), PressureSet.end());
}
ArrayRef<unsigned> getLiveThru() const { return LiveThruPressure; }
/// Get the resulting register pressure over the traversed region.
/// This result is complete if closeRegion() was explicitly invoked.
RegisterPressure &getPressure() { return P; }
const RegisterPressure &getPressure() const { return P; }
/// Get the register set pressure at the current position, which may be less
/// than the pressure across the traversed region.
const std::vector<unsigned> &getRegSetPressureAtPos() const {
return CurrSetPressure;
}
bool isTopClosed() const;
bool isBottomClosed() const;
void closeTop();
void closeBottom();
/// Consider the pressure increase caused by traversing this instruction
/// bottom-up. Find the pressure set with the most change beyond its pressure
/// limit based on the tracker's current pressure, and record the number of
/// excess register units of that pressure set introduced by this instruction.
void getMaxUpwardPressureDelta(const MachineInstr *MI,
PressureDiff *PDiff,
RegPressureDelta &Delta,
ArrayRef<PressureChange> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit);
void getUpwardPressureDelta(const MachineInstr *MI,
/*const*/ PressureDiff &PDiff,
RegPressureDelta &Delta,
ArrayRef<PressureChange> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit) const;
/// Consider the pressure increase caused by traversing this instruction
/// top-down. Find the pressure set with the most change beyond its pressure
/// limit based on the tracker's current pressure, and record the number of
/// excess register units of that pressure set introduced by this instruction.
void getMaxDownwardPressureDelta(const MachineInstr *MI,
RegPressureDelta &Delta,
ArrayRef<PressureChange> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit);
/// Find the pressure set with the most change beyond its pressure limit after
/// traversing this instruction either upward or downward depending on the
/// closed end of the current region.
void getMaxPressureDelta(const MachineInstr *MI,
RegPressureDelta &Delta,
ArrayRef<PressureChange> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit) {
if (isTopClosed())
return getMaxDownwardPressureDelta(MI, Delta, CriticalPSets,
MaxPressureLimit);
assert(isBottomClosed() && "Uninitialized pressure tracker");
return getMaxUpwardPressureDelta(MI, nullptr, Delta, CriticalPSets,
MaxPressureLimit);
}
/// Get the pressure of each PSet after traversing this instruction bottom-up.
void getUpwardPressure(const MachineInstr *MI,
std::vector<unsigned> &PressureResult,
std::vector<unsigned> &MaxPressureResult);
/// Get the pressure of each PSet after traversing this instruction top-down.
void getDownwardPressure(const MachineInstr *MI,
std::vector<unsigned> &PressureResult,
std::vector<unsigned> &MaxPressureResult);
void getPressureAfterInst(const MachineInstr *MI,
std::vector<unsigned> &PressureResult,
std::vector<unsigned> &MaxPressureResult) {
if (isTopClosed())
return getUpwardPressure(MI, PressureResult, MaxPressureResult);
assert(isBottomClosed() && "Uninitialized pressure tracker");
return getDownwardPressure(MI, PressureResult, MaxPressureResult);
}
bool hasUntiedDef(unsigned VirtReg) const {
return UntiedDefs.count(VirtReg);
}
void dump() const;
protected:
/// Add Reg to the live out set and increase max pressure.
void discoverLiveOut(RegisterMaskPair Pair);
/// Add Reg to the live in set and increase max pressure.
void discoverLiveIn(RegisterMaskPair Pair);
/// Get the SlotIndex for the first nondebug instruction including or
/// after the current position.
SlotIndex getCurrSlot() const;
void increaseRegPressure(unsigned RegUnit, LaneBitmask PreviousMask,
LaneBitmask NewMask);
void decreaseRegPressure(unsigned RegUnit, LaneBitmask PreviousMask,
LaneBitmask NewMask);
void bumpDeadDefs(ArrayRef<RegisterMaskPair> DeadDefs);
void bumpUpwardPressure(const MachineInstr *MI);
void bumpDownwardPressure(const MachineInstr *MI);
void discoverLiveInOrOut(RegisterMaskPair Pair,
SmallVectorImpl<RegisterMaskPair> &LiveInOrOut);
LaneBitmask getLastUsedLanes(unsigned RegUnit, SlotIndex Pos) const;
LaneBitmask getLiveLanesAt(unsigned RegUnit, SlotIndex Pos) const;
LaneBitmask getLiveThroughAt(unsigned RegUnit, SlotIndex Pos) const;
};
void dumpRegSetPressure(ArrayRef<unsigned> SetPressure,
const TargetRegisterInfo *TRI);
} // end namespace llvm
#endif // LLVM_CODEGEN_REGISTERPRESSURE_H