HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
prebuilts
clang
host
linux-x86
clang-r339409b
include
llvm
ADT
STLExtras.h
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some templates that are useful if you are working with the // STL at all. // // No library is required when using these functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Config/abi-breaking.h" #include "llvm/Support/ErrorHandling.h" #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef EXPENSIVE_CHECKS #include
// for std::mt19937 #endif namespace llvm { // Only used by compiler if both template types are the same. Useful when // using SFINAE to test for the existence of member functions. template
struct SameType; namespace detail { template
using IterOfRange = decltype(std::begin(std::declval
())); template
using ValueOfRange = typename std::remove_reference
()))>::type; } // end namespace detail //===----------------------------------------------------------------------===// // Extra additions to
//===----------------------------------------------------------------------===// template
struct negation : std::integral_constant
{}; template
struct conjunction : std::true_type {}; template
struct conjunction
: B1 {}; template
struct conjunction
: std::conditional
, B1>::type {}; //===----------------------------------------------------------------------===// // Extra additions to
//===----------------------------------------------------------------------===// template
struct identity { using argument_type = Ty; Ty &operator()(Ty &self) const { return self; } const Ty &operator()(const Ty &self) const { return self; } }; template
struct less_ptr { bool operator()(const Ty* left, const Ty* right) const { return *left < *right; } }; template
struct greater_ptr { bool operator()(const Ty* left, const Ty* right) const { return *right < *left; } }; /// An efficient, type-erasing, non-owning reference to a callable. This is /// intended for use as the type of a function parameter that is not used /// after the function in question returns. /// /// This class does not own the callable, so it is not in general safe to store /// a function_ref. template
class function_ref; template
class function_ref
{ Ret (*callback)(intptr_t callable, Params ...params) = nullptr; intptr_t callable; template
static Ret callback_fn(intptr_t callable, Params ...params) { return (*reinterpret_cast
(callable))( std::forward
(params)...); } public: function_ref() = default; function_ref(std::nullptr_t) {} template
function_ref(Callable &&callable, typename std::enable_if< !std::is_same
::type, function_ref>::value>::type * = nullptr) : callback(callback_fn
::type>), callable(reinterpret_cast
(&callable)) {} Ret operator()(Params ...params) const { return callback(callable, std::forward
(params)...); } operator bool() const { return callback; } }; // deleter - Very very very simple method that is used to invoke operator // delete on something. It is used like this: // // for_each(V.begin(), B.end(), deleter
); template
inline void deleter(T *Ptr) { delete Ptr; } //===----------------------------------------------------------------------===// // Extra additions to
//===----------------------------------------------------------------------===// namespace adl_detail { using std::begin; template
auto adl_begin(ContainerTy &&container) -> decltype(begin(std::forward
(container))) { return begin(std::forward
(container)); } using std::end; template
auto adl_end(ContainerTy &&container) -> decltype(end(std::forward
(container))) { return end(std::forward
(container)); } using std::swap; template
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval
(), std::declval
()))) { swap(std::forward
(lhs), std::forward
(rhs)); } } // end namespace adl_detail template
auto adl_begin(ContainerTy &&container) -> decltype(adl_detail::adl_begin(std::forward
(container))) { return adl_detail::adl_begin(std::forward
(container)); } template
auto adl_end(ContainerTy &&container) -> decltype(adl_detail::adl_end(std::forward
(container))) { return adl_detail::adl_end(std::forward
(container)); } template
void adl_swap(T &&lhs, T &&rhs) noexcept( noexcept(adl_detail::adl_swap(std::declval
(), std::declval
()))) { adl_detail::adl_swap(std::forward
(lhs), std::forward
(rhs)); } // mapped_iterator - This is a simple iterator adapter that causes a function to // be applied whenever operator* is invoked on the iterator. template
()(*std::declval
()))> class mapped_iterator : public iterator_adaptor_base< mapped_iterator
, ItTy, typename std::iterator_traits
::iterator_category, typename std::remove_reference
::type> { public: mapped_iterator(ItTy U, FuncTy F) : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} ItTy getCurrent() { return this->I; } FuncReturnTy operator*() { return F(*this->I); } private: FuncTy F; }; // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... template
inline mapped_iterator
map_iterator(ItTy I, FuncTy F) { return mapped_iterator
(std::move(I), std::move(F)); } /// Helper to determine if type T has a member called rbegin(). template
class has_rbegin_impl { using yes = char[1]; using no = char[2]; template
static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); template
static no& test(...); public: static const bool value = sizeof(test
(nullptr)) == sizeof(yes); }; /// Metafunction to determine if T& or T has a member called rbegin(). template
struct has_rbegin : has_rbegin_impl
::type> { }; // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have rbegin()/rend() methods for this to work. template
auto reverse(ContainerTy &&C, typename std::enable_if
::value>::type * = nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { return make_range(C.rbegin(), C.rend()); } // Returns a std::reverse_iterator wrapped around the given iterator. template
std::reverse_iterator
make_reverse_iterator(IteratorTy It) { return std::reverse_iterator
(It); } // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have begin()/end() methods which return // bidirectional iterators for this to work. template
auto reverse( ContainerTy &&C, typename std::enable_if::value>::type * = nullptr) -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C)))) { return make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C))); } /// An iterator adaptor that filters the elements of given inner iterators. /// /// The predicate parameter should be a callable object that accepts the wrapped /// iterator's reference type and returns a bool. When incrementing or /// decrementing the iterator, it will call the predicate on each element and /// skip any where it returns false. /// /// \code /// int A[] = { 1, 2, 3, 4 }; /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); /// // R contains { 1, 3 }. /// \endcode /// /// Note: filter_iterator_base implements support for forward iteration. /// filter_iterator_impl exists to provide support for bidirectional iteration, /// conditional on whether the wrapped iterator supports it. template
class filter_iterator_base : public iterator_adaptor_base< filter_iterator_base
, WrappedIteratorT, typename std::common_type< IterTag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>::type> { using BaseT = iterator_adaptor_base< filter_iterator_base
, WrappedIteratorT, typename std::common_type< IterTag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>::type>; protected: WrappedIteratorT End; PredicateT Pred; void findNextValid() { while (this->I != End && !Pred(*this->I)) BaseT::operator++(); } // Construct the iterator. The begin iterator needs to know where the end // is, so that it can properly stop when it gets there. The end iterator only // needs the predicate to support bidirectional iteration. filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin), End(End), Pred(Pred) { findNextValid(); } public: using BaseT::operator++; filter_iterator_base &operator++() { BaseT::operator++(); findNextValid(); return *this; } }; /// Specialization of filter_iterator_base for forward iteration only. template
class filter_iterator_impl : public filter_iterator_base
{ using BaseT = filter_iterator_base
; public: filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin, End, Pred) {} }; /// Specialization of filter_iterator_base for bidirectional iteration. template
class filter_iterator_impl
: public filter_iterator_base
{ using BaseT = filter_iterator_base
; void findPrevValid() { while (!this->Pred(*this->I)) BaseT::operator--(); } public: using BaseT::operator--; filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin, End, Pred) {} filter_iterator_impl &operator--() { BaseT::operator--(); findPrevValid(); return *this; } }; namespace detail { template
struct fwd_or_bidi_tag_impl { using type = std::forward_iterator_tag; }; template <> struct fwd_or_bidi_tag_impl
{ using type = std::bidirectional_iterator_tag; }; /// Helper which sets its type member to forward_iterator_tag if the category /// of \p IterT does not derive from bidirectional_iterator_tag, and to /// bidirectional_iterator_tag otherwise. template
struct fwd_or_bidi_tag { using type = typename fwd_or_bidi_tag_impl
::iterator_category>::value>::type; }; } // namespace detail /// Defines filter_iterator to a suitable specialization of /// filter_iterator_impl, based on the underlying iterator's category. template
using filter_iterator = filter_iterator_impl< WrappedIteratorT, PredicateT, typename detail::fwd_or_bidi_tag
::type>; /// Convenience function that takes a range of elements and a predicate, /// and return a new filter_iterator range. /// /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the /// lifetime of that temporary is not kept by the returned range object, and the /// temporary is going to be dropped on the floor after the make_iterator_range /// full expression that contains this function call. template
iterator_range
, PredicateT>> make_filter_range(RangeT &&Range, PredicateT Pred) { using FilterIteratorT = filter_iterator
, PredicateT>; return make_range( FilterIteratorT(std::begin(std::forward
(Range)), std::end(std::forward
(Range)), Pred), FilterIteratorT(std::end(std::forward
(Range)), std::end(std::forward
(Range)), Pred)); } /// A pseudo-iterator adaptor that is designed to implement "early increment" /// style loops. /// /// This is *not a normal iterator* and should almost never be used directly. It /// is intended primarily to be used with range based for loops and some range /// algorithms. /// /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but /// somewhere between them. The constraints of these iterators are: /// /// - On construction or after being incremented, it is comparable and /// dereferencable. It is *not* incrementable. /// - After being dereferenced, it is neither comparable nor dereferencable, it /// is only incrementable. /// /// This means you can only dereference the iterator once, and you can only /// increment it once between dereferences. template
class early_inc_iterator_impl : public iterator_adaptor_base
, WrappedIteratorT, std::input_iterator_tag> { using BaseT = iterator_adaptor_base
, WrappedIteratorT, std::input_iterator_tag>; using PointerT = typename std::iterator_traits
::pointer; protected: #if LLVM_ENABLE_ABI_BREAKING_CHECKS bool IsEarlyIncremented = false; #endif public: early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} using BaseT::operator*; typename BaseT::reference operator*() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(!IsEarlyIncremented && "Cannot dereference twice!"); IsEarlyIncremented = true; #endif return *(this->I)++; } using BaseT::operator++; early_inc_iterator_impl &operator++() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); IsEarlyIncremented = false; #endif return *this; } using BaseT::operator==; bool operator==(const early_inc_iterator_impl &RHS) const { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(!IsEarlyIncremented && "Cannot compare after dereferencing!"); #endif return BaseT::operator==(RHS); } }; /// Make a range that does early increment to allow mutation of the underlying /// range without disrupting iteration. /// /// The underlying iterator will be incremented immediately after it is /// dereferenced, allowing deletion of the current node or insertion of nodes to /// not disrupt iteration provided they do not invalidate the *next* iterator -- /// the current iterator can be invalidated. /// /// This requires a very exact pattern of use that is only really suitable to /// range based for loops and other range algorithms that explicitly guarantee /// to dereference exactly once each element, and to increment exactly once each /// element. template
iterator_range
>> make_early_inc_range(RangeT &&Range) { using EarlyIncIteratorT = early_inc_iterator_impl
>; return make_range(EarlyIncIteratorT(std::begin(std::forward
(Range))), EarlyIncIteratorT(std::end(std::forward
(Range)))); } // forward declarations required by zip_shortest/zip_first template
bool all_of(R &&range, UnaryPredicate P); template
struct index_sequence; template
struct index_sequence_for; namespace detail { using std::declval; // We have to alias this since inlining the actual type at the usage site // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. template
struct ZipTupleType { using type = std::tuple
())...>; }; template
using zip_traits = iterator_facade_base< ZipType, typename std::common_type
::iterator_category...>::type, // ^ TODO: Implement random access methods. typename ZipTupleType
::type, typename std::iterator_traits
>::type>::difference_type, // ^ FIXME: This follows boost::make_zip_iterator's assumption that all // inner iterators have the same difference_type. It would fail if, for // instance, the second field's difference_type were non-numeric while the // first is. typename ZipTupleType
::type *, typename ZipTupleType
::type>; template
struct zip_common : public zip_traits
{ using Base = zip_traits
; using value_type = typename Base::value_type; std::tuple
iterators; protected: template
value_type deref(index_sequence
) const { return value_type(*std::get
(iterators)...); } template
decltype(iterators) tup_inc(index_sequence
) const { return std::tuple
(std::next(std::get
(iterators))...); } template
decltype(iterators) tup_dec(index_sequence
) const { return std::tuple
(std::prev(std::get
(iterators))...); } public: zip_common(Iters &&... ts) : iterators(std::forward
(ts)...) {} value_type operator*() { return deref(index_sequence_for
{}); } const value_type operator*() const { return deref(index_sequence_for
{}); } ZipType &operator++() { iterators = tup_inc(index_sequence_for
{}); return *reinterpret_cast
(this); } ZipType &operator--() { static_assert(Base::IsBidirectional, "All inner iterators must be at least bidirectional."); iterators = tup_dec(index_sequence_for
{}); return *reinterpret_cast
(this); } }; template
struct zip_first : public zip_common
, Iters...> { using Base = zip_common
, Iters...>; bool operator==(const zip_first
&other) const { return std::get<0>(this->iterators) == std::get<0>(other.iterators); } zip_first(Iters &&... ts) : Base(std::forward
(ts)...) {} }; template
class zip_shortest : public zip_common
, Iters...> { template
bool test(const zip_shortest
&other, index_sequence
) const { return all_of(std::initializer_list
{std::get
(this->iterators) != std::get
(other.iterators)...}, identity
{}); } public: using Base = zip_common
, Iters...>; zip_shortest(Iters &&... ts) : Base(std::forward
(ts)...) {} bool operator==(const zip_shortest
&other) const { return !test(other, index_sequence_for
{}); } }; template
class ItType, typename... Args> class zippy { public: using iterator = ItType
()))...>; using iterator_category = typename iterator::iterator_category; using value_type = typename iterator::value_type; using difference_type = typename iterator::difference_type; using pointer = typename iterator::pointer; using reference = typename iterator::reference; private: std::tuple
ts; template
iterator begin_impl(index_sequence
) const { return iterator(std::begin(std::get
(ts))...); } template
iterator end_impl(index_sequence
) const { return iterator(std::end(std::get
(ts))...); } public: zippy(Args &&... ts_) : ts(std::forward
(ts_)...) {} iterator begin() const { return begin_impl(index_sequence_for
{}); } iterator end() const { return end_impl(index_sequence_for
{}); } }; } // end namespace detail /// zip iterator for two or more iteratable types. template
detail::zippy
zip(T &&t, U &&u, Args &&... args) { return detail::zippy
( std::forward
(t), std::forward
(u), std::forward
(args)...); } /// zip iterator that, for the sake of efficiency, assumes the first iteratee to /// be the shortest. template
detail::zippy
zip_first(T &&t, U &&u, Args &&... args) { return detail::zippy
( std::forward
(t), std::forward
(u), std::forward
(args)...); } /// Iterator wrapper that concatenates sequences together. /// /// This can concatenate different iterators, even with different types, into /// a single iterator provided the value types of all the concatenated /// iterators expose `reference` and `pointer` types that can be converted to /// `ValueT &` and `ValueT *` respectively. It doesn't support more /// interesting/customized pointer or reference types. /// /// Currently this only supports forward or higher iterator categories as /// inputs and always exposes a forward iterator interface. template
class concat_iterator : public iterator_facade_base
, std::forward_iterator_tag, ValueT> { using BaseT = typename concat_iterator::iterator_facade_base; /// We store both the current and end iterators for each concatenated /// sequence in a tuple of pairs. /// /// Note that something like iterator_range seems nice at first here, but the /// range properties are of little benefit and end up getting in the way /// because we need to do mutation on the current iterators. std::tuple
...> IterPairs; /// Attempts to increment a specific iterator. /// /// Returns true if it was able to increment the iterator. Returns false if /// the iterator is already at the end iterator. template
bool incrementHelper() { auto &IterPair = std::get
(IterPairs); if (IterPair.first == IterPair.second) return false; ++IterPair.first; return true; } /// Increments the first non-end iterator. /// /// It is an error to call this with all iterators at the end. template
void increment(index_sequence
) { // Build a sequence of functions to increment each iterator if possible. bool (concat_iterator::*IncrementHelperFns[])() = { &concat_iterator::incrementHelper
...}; // Loop over them, and stop as soon as we succeed at incrementing one. for (auto &IncrementHelperFn : IncrementHelperFns) if ((this->*IncrementHelperFn)()) return; llvm_unreachable("Attempted to increment an end concat iterator!"); } /// Returns null if the specified iterator is at the end. Otherwise, /// dereferences the iterator and returns the address of the resulting /// reference. template
ValueT *getHelper() const { auto &IterPair = std::get
(IterPairs); if (IterPair.first == IterPair.second) return nullptr; return &*IterPair.first; } /// Finds the first non-end iterator, dereferences, and returns the resulting /// reference. /// /// It is an error to call this with all iterators at the end. template
ValueT &get(index_sequence
) const { // Build a sequence of functions to get from iterator if possible. ValueT *(concat_iterator::*GetHelperFns[])() const = { &concat_iterator::getHelper
...}; // Loop over them, and return the first result we find. for (auto &GetHelperFn : GetHelperFns) if (ValueT *P = (this->*GetHelperFn)()) return *P; llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); } public: /// Constructs an iterator from a squence of ranges. /// /// We need the full range to know how to switch between each of the /// iterators. template
explicit concat_iterator(RangeTs &&... Ranges) : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {} using BaseT::operator++; concat_iterator &operator++() { increment(index_sequence_for
()); return *this; } ValueT &operator*() const { return get(index_sequence_for
()); } bool operator==(const concat_iterator &RHS) const { return IterPairs == RHS.IterPairs; } }; namespace detail { /// Helper to store a sequence of ranges being concatenated and access them. /// /// This is designed to facilitate providing actual storage when temporaries /// are passed into the constructor such that we can use it as part of range /// based for loops. template
class concat_range { public: using iterator = concat_iterator
()))...>; private: std::tuple
Ranges; template
iterator begin_impl(index_sequence
) { return iterator(std::get
(Ranges)...); } template
iterator end_impl(index_sequence
) { return iterator(make_range(std::end(std::get
(Ranges)), std::end(std::get
(Ranges)))...); } public: concat_range(RangeTs &&... Ranges) : Ranges(std::forward
(Ranges)...) {} iterator begin() { return begin_impl(index_sequence_for
{}); } iterator end() { return end_impl(index_sequence_for
{}); } }; } // end namespace detail /// Concatenated range across two or more ranges. /// /// The desired value type must be explicitly specified. template
detail::concat_range
concat(RangeTs &&... Ranges) { static_assert(sizeof...(RangeTs) > 1, "Need more than one range to concatenate!"); return detail::concat_range
( std::forward
(Ranges)...); } //===----------------------------------------------------------------------===// // Extra additions to
//===----------------------------------------------------------------------===// /// Function object to check whether the first component of a std::pair /// compares less than the first component of another std::pair. struct less_first { template
bool operator()(const T &lhs, const T &rhs) const { return lhs.first < rhs.first; } }; /// Function object to check whether the second component of a std::pair /// compares less than the second component of another std::pair. struct less_second { template
bool operator()(const T &lhs, const T &rhs) const { return lhs.second < rhs.second; } }; /// \brief Function object to apply a binary function to the first component of /// a std::pair. template
struct on_first { FuncTy func; template
auto operator()(const T &lhs, const T &rhs) const -> decltype(func(lhs.first, rhs.first)) { return func(lhs.first, rhs.first); } }; // A subset of N3658. More stuff can be added as-needed. /// Represents a compile-time sequence of integers. template
struct integer_sequence { using value_type = T; static constexpr size_t size() { return sizeof...(I); } }; /// Alias for the common case of a sequence of size_ts. template
struct index_sequence : integer_sequence
{}; template
struct build_index_impl : build_index_impl
{}; template
struct build_index_impl<0, I...> : index_sequence
{}; /// Creates a compile-time integer sequence for a parameter pack. template
struct index_sequence_for : build_index_impl
{}; /// Utility type to build an inheritance chain that makes it easy to rank /// overload candidates. template
struct rank : rank
{}; template <> struct rank<0> {}; /// traits class for checking whether type T is one of any of the given /// types in the variadic list. template
struct is_one_of { static const bool value = false; }; template
struct is_one_of
{ static const bool value = std::is_same
::value || is_one_of
::value; }; /// traits class for checking whether type T is a base class for all /// the given types in the variadic list. template
struct are_base_of { static const bool value = true; }; template
struct are_base_of
{ static const bool value = std::is_base_of
::value && are_base_of