//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// JIT layer for breaking up modules and inserting callbacks to allow
// individual functions to be compiled on demand.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/Layer.h"
#include "llvm/ExecutionEngine/Orc/Legacy.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>
#include <list>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class Value;
namespace orc {
class ExtractingIRMaterializationUnit;
class CompileOnDemandLayer2 : public IRLayer {
friend class ExtractingIRMaterializationUnit;
public:
/// Builder for IndirectStubsManagers.
using IndirectStubsManagerBuilder =
std::function<std::unique_ptr<IndirectStubsManager>()>;
using GetAvailableContextFunction = std::function<LLVMContext &()>;
CompileOnDemandLayer2(ExecutionSession &ES, IRLayer &BaseLayer,
JITCompileCallbackManager &CCMgr,
IndirectStubsManagerBuilder BuildIndirectStubsManager,
GetAvailableContextFunction GetAvailableContext);
Error add(VSO &V, VModuleKey K, std::unique_ptr<Module> M) override;
void emit(MaterializationResponsibility R, VModuleKey K,
std::unique_ptr<Module> M) override;
private:
using StubManagersMap =
std::map<const VSO *, std::unique_ptr<IndirectStubsManager>>;
IndirectStubsManager &getStubsManager(const VSO &V);
void emitExtractedFunctionsModule(MaterializationResponsibility R,
std::unique_ptr<Module> M);
mutable std::mutex CODLayerMutex;
IRLayer &BaseLayer;
JITCompileCallbackManager &CCMgr;
IndirectStubsManagerBuilder BuildIndirectStubsManager;
StubManagersMap StubsMgrs;
GetAvailableContextFunction GetAvailableContext;
};
/// Compile-on-demand layer.
///
/// When a module is added to this layer a stub is created for each of its
/// function definitions. The stubs and other global values are immediately
/// added to the layer below. When a stub is called it triggers the extraction
/// of the function body from the original module. The extracted body is then
/// compiled and executed.
template <typename BaseLayerT,
typename CompileCallbackMgrT = JITCompileCallbackManager,
typename IndirectStubsMgrT = IndirectStubsManager>
class CompileOnDemandLayer {
private:
template <typename MaterializerFtor>
class LambdaMaterializer final : public ValueMaterializer {
public:
LambdaMaterializer(MaterializerFtor M) : M(std::move(M)) {}
Value *materialize(Value *V) final { return M(V); }
private:
MaterializerFtor M;
};
template <typename MaterializerFtor>
LambdaMaterializer<MaterializerFtor>
createLambdaMaterializer(MaterializerFtor M) {
return LambdaMaterializer<MaterializerFtor>(std::move(M));
}
// Provide type-erasure for the Modules and MemoryManagers.
template <typename ResourceT>
class ResourceOwner {
public:
ResourceOwner() = default;
ResourceOwner(const ResourceOwner &) = delete;
ResourceOwner &operator=(const ResourceOwner &) = delete;
virtual ~ResourceOwner() = default;
virtual ResourceT& getResource() const = 0;
};
template <typename ResourceT, typename ResourcePtrT>
class ResourceOwnerImpl : public ResourceOwner<ResourceT> {
public:
ResourceOwnerImpl(ResourcePtrT ResourcePtr)
: ResourcePtr(std::move(ResourcePtr)) {}
ResourceT& getResource() const override { return *ResourcePtr; }
private:
ResourcePtrT ResourcePtr;
};
template <typename ResourceT, typename ResourcePtrT>
std::unique_ptr<ResourceOwner<ResourceT>>
wrapOwnership(ResourcePtrT ResourcePtr) {
using RO = ResourceOwnerImpl<ResourceT, ResourcePtrT>;
return llvm::make_unique<RO>(std::move(ResourcePtr));
}
class StaticGlobalRenamer {
public:
StaticGlobalRenamer() = default;
StaticGlobalRenamer(StaticGlobalRenamer &&) = default;
StaticGlobalRenamer &operator=(StaticGlobalRenamer &&) = default;
void rename(Module &M) {
for (auto &F : M)
if (F.hasLocalLinkage())
F.setName("$static." + Twine(NextId++));
for (auto &G : M.globals())
if (G.hasLocalLinkage())
G.setName("$static." + Twine(NextId++));
}
private:
unsigned NextId = 0;
};
struct LogicalDylib {
struct SourceModuleEntry {
std::unique_ptr<Module> SourceMod;
std::set<Function*> StubsToClone;
};
using SourceModulesList = std::vector<SourceModuleEntry>;
using SourceModuleHandle = typename SourceModulesList::size_type;
LogicalDylib() = default;
LogicalDylib(VModuleKey K, std::shared_ptr<SymbolResolver> BackingResolver,
std::unique_ptr<IndirectStubsMgrT> StubsMgr)
: K(std::move(K)), BackingResolver(std::move(BackingResolver)),
StubsMgr(std::move(StubsMgr)) {}
SourceModuleHandle addSourceModule(std::unique_ptr<Module> M) {
SourceModuleHandle H = SourceModules.size();
SourceModules.push_back(SourceModuleEntry());
SourceModules.back().SourceMod = std::move(M);
return H;
}
Module& getSourceModule(SourceModuleHandle H) {
return *SourceModules[H].SourceMod;
}
std::set<Function*>& getStubsToClone(SourceModuleHandle H) {
return SourceModules[H].StubsToClone;
}
JITSymbol findSymbol(BaseLayerT &BaseLayer, const std::string &Name,
bool ExportedSymbolsOnly) {
if (auto Sym = StubsMgr->findStub(Name, ExportedSymbolsOnly))
return Sym;
for (auto BLK : BaseLayerVModuleKeys)
if (auto Sym = BaseLayer.findSymbolIn(BLK, Name, ExportedSymbolsOnly))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
return nullptr;
}
Error removeModulesFromBaseLayer(BaseLayerT &BaseLayer) {
for (auto &BLK : BaseLayerVModuleKeys)
if (auto Err = BaseLayer.removeModule(BLK))
return Err;
return Error::success();
}
VModuleKey K;
std::shared_ptr<SymbolResolver> BackingResolver;
std::unique_ptr<IndirectStubsMgrT> StubsMgr;
StaticGlobalRenamer StaticRenamer;
SourceModulesList SourceModules;
std::vector<VModuleKey> BaseLayerVModuleKeys;
};
public:
/// Module partitioning functor.
using PartitioningFtor = std::function<std::set<Function*>(Function&)>;
/// Builder for IndirectStubsManagers.
using IndirectStubsManagerBuilderT =
std::function<std::unique_ptr<IndirectStubsMgrT>()>;
using SymbolResolverGetter =
std::function<std::shared_ptr<SymbolResolver>(VModuleKey K)>;
using SymbolResolverSetter =
std::function<void(VModuleKey K, std::shared_ptr<SymbolResolver> R)>;
/// Construct a compile-on-demand layer instance.
CompileOnDemandLayer(ExecutionSession &ES, BaseLayerT &BaseLayer,
SymbolResolverGetter GetSymbolResolver,
SymbolResolverSetter SetSymbolResolver,
PartitioningFtor Partition,
CompileCallbackMgrT &CallbackMgr,
IndirectStubsManagerBuilderT CreateIndirectStubsManager,
bool CloneStubsIntoPartitions = true)
: ES(ES), BaseLayer(BaseLayer),
GetSymbolResolver(std::move(GetSymbolResolver)),
SetSymbolResolver(std::move(SetSymbolResolver)),
Partition(std::move(Partition)), CompileCallbackMgr(CallbackMgr),
CreateIndirectStubsManager(std::move(CreateIndirectStubsManager)),
CloneStubsIntoPartitions(CloneStubsIntoPartitions) {}
~CompileOnDemandLayer() {
// FIXME: Report error on log.
while (!LogicalDylibs.empty())
consumeError(removeModule(LogicalDylibs.begin()->first));
}
/// Add a module to the compile-on-demand layer.
Error addModule(VModuleKey K, std::unique_ptr<Module> M) {
assert(!LogicalDylibs.count(K) && "VModuleKey K already in use");
auto I = LogicalDylibs.insert(
LogicalDylibs.end(),
std::make_pair(K, LogicalDylib(K, GetSymbolResolver(K),
CreateIndirectStubsManager())));
return addLogicalModule(I->second, std::move(M));
}
/// Add extra modules to an existing logical module.
Error addExtraModule(VModuleKey K, std::unique_ptr<Module> M) {
return addLogicalModule(LogicalDylibs[K], std::move(M));
}
/// Remove the module represented by the given key.
///
/// This will remove all modules in the layers below that were derived from
/// the module represented by K.
Error removeModule(VModuleKey K) {
auto I = LogicalDylibs.find(K);
assert(I != LogicalDylibs.end() && "VModuleKey K not valid here");
auto Err = I->second.removeModulesFromBaseLayer(BaseLayer);
LogicalDylibs.erase(I);
return Err;
}
/// Search for the given named symbol.
/// @param Name The name of the symbol to search for.
/// @param ExportedSymbolsOnly If true, search only for exported symbols.
/// @return A handle for the given named symbol, if it exists.
JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) {
for (auto &KV : LogicalDylibs) {
if (auto Sym = KV.second.StubsMgr->findStub(Name, ExportedSymbolsOnly))
return Sym;
if (auto Sym = findSymbolIn(KV.first, Name, ExportedSymbolsOnly))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
}
return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);
}
/// Get the address of a symbol provided by this layer, or some layer
/// below this one.
JITSymbol findSymbolIn(VModuleKey K, const std::string &Name,
bool ExportedSymbolsOnly) {
assert(LogicalDylibs.count(K) && "VModuleKey K is not valid here");
return LogicalDylibs[K].findSymbol(BaseLayer, Name, ExportedSymbolsOnly);
}
/// Update the stub for the given function to point at FnBodyAddr.
/// This can be used to support re-optimization.
/// @return true if the function exists and the stub is updated, false
/// otherwise.
//
// FIXME: We should track and free associated resources (unused compile
// callbacks, uncompiled IR, and no-longer-needed/reachable function
// implementations).
Error updatePointer(std::string FuncName, JITTargetAddress FnBodyAddr) {
//Find out which logical dylib contains our symbol
auto LDI = LogicalDylibs.begin();
for (auto LDE = LogicalDylibs.end(); LDI != LDE; ++LDI) {
if (auto LMResources =
LDI->getLogicalModuleResourcesForSymbol(FuncName, false)) {
Module &SrcM = LMResources->SourceModule->getResource();
std::string CalledFnName = mangle(FuncName, SrcM.getDataLayout());
if (auto Err = LMResources->StubsMgr->updatePointer(CalledFnName,
FnBodyAddr))
return Err;
return Error::success();
}
}
return make_error<JITSymbolNotFound>(FuncName);
}
private:
Error addLogicalModule(LogicalDylib &LD, std::unique_ptr<Module> SrcMPtr) {
// Rename all static functions / globals to $static.X :
// This will unique the names across all modules in the logical dylib,
// simplifying symbol lookup.
LD.StaticRenamer.rename(*SrcMPtr);
// Bump the linkage and rename any anonymous/private members in SrcM to
// ensure that everything will resolve properly after we partition SrcM.
makeAllSymbolsExternallyAccessible(*SrcMPtr);
// Create a logical module handle for SrcM within the logical dylib.
Module &SrcM = *SrcMPtr;
auto LMId = LD.addSourceModule(std::move(SrcMPtr));
// Create stub functions.
const DataLayout &DL = SrcM.getDataLayout();
{
typename IndirectStubsMgrT::StubInitsMap StubInits;
for (auto &F : SrcM) {
// Skip declarations.
if (F.isDeclaration())
continue;
// Skip weak functions for which we already have definitions.
auto MangledName = mangle(F.getName(), DL);
if (F.hasWeakLinkage() || F.hasLinkOnceLinkage()) {
if (auto Sym = LD.findSymbol(BaseLayer, MangledName, false))
continue;
else if (auto Err = Sym.takeError())
return std::move(Err);
}
// Record all functions defined by this module.
if (CloneStubsIntoPartitions)
LD.getStubsToClone(LMId).insert(&F);
// Create a callback, associate it with the stub for the function,
// and set the compile action to compile the partition containing the
// function.
auto CompileAction = [this, &LD, LMId, &F]() -> JITTargetAddress {
if (auto FnImplAddrOrErr = this->extractAndCompile(LD, LMId, F))
return *FnImplAddrOrErr;
else {
// FIXME: Report error, return to 'abort' or something similar.
consumeError(FnImplAddrOrErr.takeError());
return 0;
}
};
if (auto CCAddr =
CompileCallbackMgr.getCompileCallback(std::move(CompileAction)))
StubInits[MangledName] =
std::make_pair(*CCAddr, JITSymbolFlags::fromGlobalValue(F));
else
return CCAddr.takeError();
}
if (auto Err = LD.StubsMgr->createStubs(StubInits))
return Err;
}
// If this module doesn't contain any globals, aliases, or module flags then
// we can bail out early and avoid the overhead of creating and managing an
// empty globals module.
if (SrcM.global_empty() && SrcM.alias_empty() &&
!SrcM.getModuleFlagsMetadata())
return Error::success();
// Create the GlobalValues module.
auto GVsM = llvm::make_unique<Module>((SrcM.getName() + ".globals").str(),
SrcM.getContext());
GVsM->setDataLayout(DL);
ValueToValueMapTy VMap;
// Clone global variable decls.
for (auto &GV : SrcM.globals())
if (!GV.isDeclaration() && !VMap.count(&GV))
cloneGlobalVariableDecl(*GVsM, GV, &VMap);
// And the aliases.
for (auto &A : SrcM.aliases())
if (!VMap.count(&A))
cloneGlobalAliasDecl(*GVsM, A, VMap);
// Clone the module flags.
cloneModuleFlagsMetadata(*GVsM, SrcM, VMap);
// Now we need to clone the GV and alias initializers.
// Initializers may refer to functions declared (but not defined) in this
// module. Build a materializer to clone decls on demand.
auto Materializer = createLambdaMaterializer(
[&LD, &GVsM](Value *V) -> Value* {
if (auto *F = dyn_cast<Function>(V)) {
// Decls in the original module just get cloned.
if (F->isDeclaration())
return cloneFunctionDecl(*GVsM, *F);
// Definitions in the original module (which we have emitted stubs
// for at this point) get turned into a constant alias to the stub
// instead.
const DataLayout &DL = GVsM->getDataLayout();
std::string FName = mangle(F->getName(), DL);
unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(F->getType());
JITTargetAddress StubAddr =
LD.StubsMgr->findStub(FName, false).getAddress();
ConstantInt *StubAddrCI =
ConstantInt::get(GVsM->getContext(), APInt(PtrBitWidth, StubAddr));
Constant *Init = ConstantExpr::getCast(Instruction::IntToPtr,
StubAddrCI, F->getType());
return GlobalAlias::create(F->getFunctionType(),
F->getType()->getAddressSpace(),
F->getLinkage(), F->getName(),
Init, GVsM.get());
}
// else....
return nullptr;
});
// Clone the global variable initializers.
for (auto &GV : SrcM.globals())
if (!GV.isDeclaration())
moveGlobalVariableInitializer(GV, VMap, &Materializer);
// Clone the global alias initializers.
for (auto &A : SrcM.aliases()) {
auto *NewA = cast<GlobalAlias>(VMap[&A]);
assert(NewA && "Alias not cloned?");
Value *Init = MapValue(A.getAliasee(), VMap, RF_None, nullptr,
&Materializer);
NewA->setAliasee(cast<Constant>(Init));
}
// Build a resolver for the globals module and add it to the base layer.
auto LegacyLookup = [this, &LD](const std::string &Name) -> JITSymbol {
if (auto Sym = LD.StubsMgr->findStub(Name, false))
return Sym;
if (auto Sym = LD.findSymbol(BaseLayer, Name, false))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
return nullptr;
};
auto GVsResolver = createSymbolResolver(
[&LD, LegacyLookup](const SymbolNameSet &Symbols) {
auto SymbolFlags = lookupFlagsWithLegacyFn(Symbols, LegacyLookup);
if (!SymbolFlags) {
logAllUnhandledErrors(SymbolFlags.takeError(), errs(),
"CODLayer/GVsResolver flags lookup failed: ");
return SymbolFlagsMap();
}
if (SymbolFlags->size() == Symbols.size())
return *SymbolFlags;
SymbolNameSet NotFoundViaLegacyLookup;
for (auto &S : Symbols)
if (!SymbolFlags->count(S))
NotFoundViaLegacyLookup.insert(S);
auto SymbolFlags2 =
LD.BackingResolver->lookupFlags(NotFoundViaLegacyLookup);
for (auto &KV : SymbolFlags2)
(*SymbolFlags)[KV.first] = std::move(KV.second);
return *SymbolFlags;
},
[this, &LD,
LegacyLookup](std::shared_ptr<AsynchronousSymbolQuery> Query,
SymbolNameSet Symbols) {
auto NotFoundViaLegacyLookup =
lookupWithLegacyFn(ES, *Query, Symbols, LegacyLookup);
return LD.BackingResolver->lookup(Query, NotFoundViaLegacyLookup);
});
SetSymbolResolver(LD.K, std::move(GVsResolver));
if (auto Err = BaseLayer.addModule(LD.K, std::move(GVsM)))
return Err;
LD.BaseLayerVModuleKeys.push_back(LD.K);
return Error::success();
}
static std::string mangle(StringRef Name, const DataLayout &DL) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
}
return MangledName;
}
Expected<JITTargetAddress>
extractAndCompile(LogicalDylib &LD,
typename LogicalDylib::SourceModuleHandle LMId,
Function &F) {
Module &SrcM = LD.getSourceModule(LMId);
// If F is a declaration we must already have compiled it.
if (F.isDeclaration())
return 0;
// Grab the name of the function being called here.
std::string CalledFnName = mangle(F.getName(), SrcM.getDataLayout());
JITTargetAddress CalledAddr = 0;
auto Part = Partition(F);
if (auto PartKeyOrErr = emitPartition(LD, LMId, Part)) {
auto &PartKey = *PartKeyOrErr;
for (auto *SubF : Part) {
std::string FnName = mangle(SubF->getName(), SrcM.getDataLayout());
if (auto FnBodySym = BaseLayer.findSymbolIn(PartKey, FnName, false)) {
if (auto FnBodyAddrOrErr = FnBodySym.getAddress()) {
JITTargetAddress FnBodyAddr = *FnBodyAddrOrErr;
// If this is the function we're calling record the address so we can
// return it from this function.
if (SubF == &F)
CalledAddr = FnBodyAddr;
// Update the function body pointer for the stub.
if (auto EC = LD.StubsMgr->updatePointer(FnName, FnBodyAddr))
return 0;
} else
return FnBodyAddrOrErr.takeError();
} else if (auto Err = FnBodySym.takeError())
return std::move(Err);
else
llvm_unreachable("Function not emitted for partition");
}
LD.BaseLayerVModuleKeys.push_back(PartKey);
} else
return PartKeyOrErr.takeError();
return CalledAddr;
}
template <typename PartitionT>
Expected<VModuleKey>
emitPartition(LogicalDylib &LD,
typename LogicalDylib::SourceModuleHandle LMId,
const PartitionT &Part) {
Module &SrcM = LD.getSourceModule(LMId);
// Create the module.
std::string NewName = SrcM.getName();
for (auto *F : Part) {
NewName += ".";
NewName += F->getName();
}
auto M = llvm::make_unique<Module>(NewName, SrcM.getContext());
M->setDataLayout(SrcM.getDataLayout());
ValueToValueMapTy VMap;
auto Materializer = createLambdaMaterializer([&LD, &LMId,
&M](Value *V) -> Value * {
if (auto *GV = dyn_cast<GlobalVariable>(V))
return cloneGlobalVariableDecl(*M, *GV);
if (auto *F = dyn_cast<Function>(V)) {
// Check whether we want to clone an available_externally definition.
if (!LD.getStubsToClone(LMId).count(F))
return cloneFunctionDecl(*M, *F);
// Ok - we want an inlinable stub. For that to work we need a decl
// for the stub pointer.
auto *StubPtr = createImplPointer(*F->getType(), *M,
F->getName() + "$stub_ptr", nullptr);
auto *ClonedF = cloneFunctionDecl(*M, *F);
makeStub(*ClonedF, *StubPtr);
ClonedF->setLinkage(GlobalValue::AvailableExternallyLinkage);
ClonedF->addFnAttr(Attribute::AlwaysInline);
return ClonedF;
}
if (auto *A = dyn_cast<GlobalAlias>(V)) {
auto *Ty = A->getValueType();
if (Ty->isFunctionTy())
return Function::Create(cast<FunctionType>(Ty),
GlobalValue::ExternalLinkage, A->getName(),
M.get());
return new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage,
nullptr, A->getName(), nullptr,
GlobalValue::NotThreadLocal,
A->getType()->getAddressSpace());
}
return nullptr;
});
// Create decls in the new module.
for (auto *F : Part)
cloneFunctionDecl(*M, *F, &VMap);
// Move the function bodies.
for (auto *F : Part)
moveFunctionBody(*F, VMap, &Materializer);
auto K = ES.allocateVModule();
auto LegacyLookup = [this, &LD](const std::string &Name) -> JITSymbol {
return LD.findSymbol(BaseLayer, Name, false);
};
// Create memory manager and symbol resolver.
auto Resolver = createSymbolResolver(
[&LD, LegacyLookup](const SymbolNameSet &Symbols) {
auto SymbolFlags = lookupFlagsWithLegacyFn(Symbols, LegacyLookup);
if (!SymbolFlags) {
logAllUnhandledErrors(SymbolFlags.takeError(), errs(),
"CODLayer/SubResolver flags lookup failed: ");
return SymbolFlagsMap();
}
if (SymbolFlags->size() == Symbols.size())
return *SymbolFlags;
SymbolNameSet NotFoundViaLegacyLookup;
for (auto &S : Symbols)
if (!SymbolFlags->count(S))
NotFoundViaLegacyLookup.insert(S);
auto SymbolFlags2 =
LD.BackingResolver->lookupFlags(NotFoundViaLegacyLookup);
for (auto &KV : SymbolFlags2)
(*SymbolFlags)[KV.first] = std::move(KV.second);
return *SymbolFlags;
},
[this, &LD, LegacyLookup](std::shared_ptr<AsynchronousSymbolQuery> Q,
SymbolNameSet Symbols) {
auto NotFoundViaLegacyLookup =
lookupWithLegacyFn(ES, *Q, Symbols, LegacyLookup);
return LD.BackingResolver->lookup(Q,
std::move(NotFoundViaLegacyLookup));
});
SetSymbolResolver(K, std::move(Resolver));
if (auto Err = BaseLayer.addModule(std::move(K), std::move(M)))
return std::move(Err);
return K;
}
ExecutionSession &ES;
BaseLayerT &BaseLayer;
SymbolResolverGetter GetSymbolResolver;
SymbolResolverSetter SetSymbolResolver;
PartitioningFtor Partition;
CompileCallbackMgrT &CompileCallbackMgr;
IndirectStubsManagerBuilderT CreateIndirectStubsManager;
std::map<VModuleKey, LogicalDylib> LogicalDylibs;
bool CloneStubsIntoPartitions;
};
} // end namespace orc
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H